Appendix S1 Expectation of the reciprocal of a scaled inverse Chi-square random variable

Given that
\[\gamma_j | \sigma_j^2 \sim N(0, \sigma_j^2) \]
and
\[\sigma_j^2 \sim \frac{\nu \gamma S^2}{\lambda^2}, \]

The joint distribution of \(\gamma_j \) and \(\sigma_j^2 \) is
\[p(\gamma_j, \sigma_j^2) \propto \exp\left(-\frac{\nu \gamma S^2}{2\sigma_j^2}\right) (\sigma_j^2)^{-\left(1+\frac{\nu}{2}\right)} \cdot \exp\left(-\frac{\gamma_j^2}{2\sigma_j^2}\right) \]
\[\propto \exp\left(-\frac{\nu \gamma S^2 + \gamma_j^2}{2\sigma_j^2}\right) (\sigma_j^2)^{-\left(1+\frac{\nu+1}{2}\right)}. \]

This is the kernel of the conditional distribution of \(\sigma_j^2 \) given \(\gamma_j \), which is a scaled inverse Chi-square distribution with degrees of freedom \(\nu + 1 \) and scale parameter \(\frac{\gamma_j^2 + \nu \gamma S^2}{\nu+1} \).

To show that
\[\mathbb{E}_{\sigma_j^2 | \gamma, \gamma_j = \gamma^{(k)}} \left(\frac{1}{\sigma_j^2} \right) = \left(\frac{\gamma_j^{(k)}}{\nu \gamma + 1} \right)^{-1}, \]

it suffices to show that the expectation of the reciprocal of a scaled inverse Chi-square variable is the reciprocal of its scale parameter. Suppose \(X \) is a scaled inverse Chi-square random variable with degrees of freedom \(\nu \) and scale parameter \(S^2 \), the probability density function for \(X \) is given by
\[p(x | \nu, S^2) = \left(\frac{\nu S^2}{\Gamma(\frac{\nu}{2})} \right)^{-\frac{\nu}{2}} \cdot \exp\left(-\frac{\nu S^2}{2x}\right) \cdot \frac{1}{x^{1+\frac{\nu}{2}}}. \]

It follows that the probability density function for \(Y = \frac{1}{X} \) is
\[p(y | \nu, S^2) = \left(\frac{\nu S^2}{\Gamma(\frac{\nu}{2})} \right)^{-\frac{\nu}{2}} \cdot \exp\left(-\frac{\nu S^2}{2y}\right) \cdot \frac{1}{y^{1+\frac{\nu}{2}}} \cdot \left(-\frac{1}{y^2}\right) \]
\[= \left(\frac{\nu S^2}{\Gamma(\frac{\nu}{2})} \right)^{-\frac{\nu}{2}} \cdot \exp\left(-\frac{\nu S^2}{2y}\right) \cdot y^{\frac{\nu}{2}-1}. \]

This is the probability density function of Gamma distribution with shape parameter \(\frac{\nu}{2} \) and rate parameter \(\frac{\nu S^2}{2} \). The expectation of Gamma distribution is the shape over rate and therefore the expectation of \(\frac{1}{X} \) is \(\frac{1}{\frac{S^2}{2}} \).