Anabaenolysin A, $MH^+ = 559$

\[\text{EIC 559.4 +All MS} \]

\[\text{EIC 785.4 +All MS} \]

\[\text{EIC 578.4 +All MS} \]

$\text{R1} = \text{R1} - \text{H}_2\text{O}$

$\text{R2} = \text{R1} - \text{H}_2\text{O}$
Figure S13. Derivatisation of anabaenolysin A with 4-methyl-1, 2, 4-triazoline-3,5-dione (MTAD) and LC-MS analysis of the reaction mixture.
A: Reference chromatogram of protonated anabaenolysin A (m/z 559, Rt 20.2 min). Chromatograms from the reaction mixture;
B: Ion chromatogram of m/z 559 showing the absence of anabaenolysin A in the reaction mixture. C: Ion chromatogram of m/z 785 with two peaks (Rt 12.2 min and 12.9 min) representing two different MTAD derivatives of anabaenolysin A. Product ion spectra from MTAD-anabaenolysin A derivatives; D: MS2 from the former eluting (Rt 12.2 min) MTAD derivative of anabaenolysin A showing characteristic ions m/z 387 and m/z 544. E: MS2 from the latter eluting (Rt 12.9 min) MTAD derivative of anabaenolysin A showing characteristic ions m/z 413 (low intensity) and m/z 518.