Supporting Information S3 - Additional Results

Overview

Here we present additional results of the individual and population-level study of northern fur seals (NFS). Section 1 contains plots of $\beta_{i,t}$ for the two animals in our focused individual study for all models listed in Table 1. Section 2 contains results for $\beta_{i,t}$ in the full model for all animals and trips not shown in the manuscript. The temporally-varying nature of the $\beta_{i,t}$, and the variation in path length, observation window, and spatial locations between the northern fur seals in the study make it difficult to tabulate results. The plots in Section 2 show the time varying $\beta_{i,t}$, and the population-level movement clusters that each time-point on each path corresponds to. Finally, in Section 3 we have included example trace plots for the $\beta_{i,t}$ that illustrate convergence of the MCMC algorithm used in our individual-level approach.

1 Results for Animal 1 and Animal 2 - Model Comparison
Animal 1 - Model 2

Animal 1 - Model 3
Animal 1 - Model 4

Distance to Rookery

Chlorophyll A

Primary Production

Animal 1 - Model 5

Distance to Rookery

Chlorophyll A

Sea Surface Temperature
Animal 1 - Model 6

![Graph 1](#)

Animal 1 - Model 7

![Graph 2](#)
Velocity-Based Movement Modeling

Animal 1 - Model 8

Animal 1 - Model 9
Animal 1 - Model 10

Animal 1 - Model 11
Animal 1 - Model 12

Primary Production

Animal 1 - Model 13

Sea Surface Temperature
Animal 1 - Model 14

![Chlorophyll A graph](image)

Animal 1 - Model 15

![Distance to Rookery graph](image)
Animal 2 - Model 2

Animal 2 - Model 3
Animal 2 - Model 4

Animal 2 - Model 5

Sea Surface Temperature
Animal 2 - Model 6

Animal 2 - Model 7
Animal 2 - Model 8

Distance to Rookery

Primary Production

Animal 2 - Model 9

Chlorophyll A

Sea Surface Temperature
Animal 2 - Model 10

Animal 2 - Model 11
Animal 2 - Model 12

![Primary Production Graph]

Animal 2 - Model 13

![Sea Surface Temperature Graph]
Animal 2 - Model 14

![Chlorophyll A](image)

Animal 2 - Model 15

![Distance to Rookery](image)
2 Full-Model Individual Results for All Animals Not Shown In Paper
<table>
<thead>
<tr>
<th>Animal Index</th>
<th>Number of Trips</th>
<th>Year Captured</th>
<th>Sex</th>
<th>Tag Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2000</td>
<td>M</td>
<td>173</td>
<td>Plots shown in manuscript.</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2000</td>
<td>F</td>
<td>148</td>
<td>Plots for one trip shown in manuscript.</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1999</td>
<td>M</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1999</td>
<td>M</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1999</td>
<td>M</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1999</td>
<td>M</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1999</td>
<td>M</td>
<td>140</td>
<td>Two trips did not converge (BDMCMC).</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1999</td>
<td>M</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1999</td>
<td>M</td>
<td>142</td>
<td>Did not converge (BDMCMC).</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1999</td>
<td>M</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1999</td>
<td>M</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2000</td>
<td>F</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1999</td>
<td>M</td>
<td>150</td>
<td>Two trips did not converge (CRAWL).</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1999</td>
<td>M</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>2000</td>
<td>M</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>2000</td>
<td>F</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>2000</td>
<td>M</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>2000</td>
<td>M</td>
<td>155</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>2000</td>
<td>M</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>2000</td>
<td>M</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>2000</td>
<td>M</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>2000</td>
<td>M</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>2000</td>
<td>M</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>2000</td>
<td>M</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>2000</td>
<td>F</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>2000</td>
<td>F</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>2000</td>
<td>F</td>
<td>164</td>
<td>Two trips did not converge (CRAWL).</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>2000</td>
<td>F</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>2000</td>
<td>F</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>2000</td>
<td>M</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>2000</td>
<td>M</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>2000</td>
<td>F</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>2000</td>
<td>F</td>
<td>170</td>
<td>Did not converge (BDMCMC).</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>2000</td>
<td>F</td>
<td>171</td>
<td>Did not converge (BDMCMC).</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>2000</td>
<td>M</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>2000</td>
<td>M</td>
<td>173</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>1999</td>
<td>M</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2</td>
<td>2000</td>
<td>F</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3</td>
<td>2000</td>
<td>F</td>
<td>176</td>
<td>Did not converge (CRAWL).</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2000</td>
<td>M</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>2000</td>
<td>M</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>2000</td>
<td>F</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>2000</td>
<td>F</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>2000</td>
<td>F</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>1999</td>
<td>M</td>
<td>146</td>
<td></td>
</tr>
</tbody>
</table>
Velocity-Based Movement Modeling

Animal 4 Trip 1, male

Distance to Rookery

Chlorophyll A

Sea Surface Temperature

Primary Production
Velocity-Based Movement Modeling

Animal 13 Trip 1, male

Distance to Rookery

Chlorophyll A

Sea Surface Temperature

Primary Production
Velocity-Based Movement Modeling
Velocity-Based Movement Modeling

Animal 14 Trip 2, female

Distance to Rookery

Chlorophyll A

Sea Surface Temperature

Primary Production

Hours

Hours

Hours
Velocity-Based Movement Modeling

Animal 15 Trip 2, female

Distance to Rookery

Chlorophyll A

Sea Surface Temperature

Primary Production
Velocity-Based Movement Modeling
Velocity-Based Movement Modeling

Animal 16 Trip 1, female

Distance to Rookery

Chlorophyll A

Sea Surface Temperature

Primary Production
Velocity-Based Movement Modeling
Velocity-Based Movement Modeling

Animal 16 Trip 2, female

Distance to Rookery

Chlorophyll A

Sea Surface Temperature

Primary Production
Velocity-Based Movement Modeling

Animal 21 Trip 1, male

Distance to Rookery

Chlorophyll A

Sea Surface Temperature

Primary Production
Velocity-Based Movement Modeling

Animal 22 Trip 1, male

Distance to Rookery

Chlorophyll A

Sea Surface Temperature

Primary Production
Velocity-Based Movement Modeling

Animal 24 Trip 1, male

Distance to Rookery

Chlorophyll A

Sea Surface Temperature

Primary Production
Velocity-Based Movement Modeling
Velocity-Based Movement Modeling
Velocity-Based Movement Modeling
Velocity-Based Movement Modeling

Animal 31 Trip 1, male

Distance to Rookery

Chlorophyll A

Sea Surface Temperature

Primary Production
Velocity-Based Movement Modeling

![Animal Trip Chart](image)

- **Distance to Rookery**
 - **Chlorophyll A**
- **Sea Surface Temperature**
- **Primary Production**

Hours: 36765, 36770, 36775, 36780

- -0.10 to 0.10
- -1.5 to 1.5

Cluster 1, 2, 3, 4, 5, 6, 7
Velocity-Based Movement Modeling

Animal Trip 2, female

Distance to Rookery

Chlorophyll A

Sea Surface Temperature

Primary Production
Velocity-Based Movement Modeling

Animal Trip 1, female

Distance to Rookery

Chlorophyll A

Sea Surface Temperature

Primary Production
Velocity-Based Movement Modeling

Animal 39 Trip 2, female

Distance to Rookery

Chlorophyll A

Sea Surface Temperature

Primary Production
Velocity-Based Movement Modeling

Animal 39 Trip 3, female

Distance to Rookery

Chlorophyll A

Sea Surface Temperature

Primary Production
3 Trace Plots

To assess convergence of our MCMC algorithm, we examined trace plots. We show trace plots from Animal 1 that exhibit convergence. Trace plots for 4 out of the 50 at-sea paths in our study exhibited slow mixing, and were removed from the analysis for lack of convergence (see Section 3.1 of the manuscript).

Figure 1. Animal 1 - Trace Plot for σ^2.
Figure 2. Animal 1 - Trace Plot for β_t at $t = 50$ hours.
Figure 3. Animal 1 - Trace Plot for β_t at $t = 100$ hours.
Figure 4. Animal 1 - Trace Plot for β_t at $t = 200$ hours.