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Abstract

QRS detection within an electrocardiogram (ECG) is the basis of virtually any further pro-

cessing and any error caused by this detection will propagate to further processing stages.

However, standard benchmarking procedures of QRS detectors are seriously flawed

because they report almost always close to 100% accuracy for any QRS detection algo-

rithm. This is due to the use of large temporal error margins and noise-free ECG databases

which grossly overestimate their performance. The use of a large fixed error margin masks

temporal jitter between detection and ground truth measurements. Here, we present a new

performance measure (JF) which combines temporal jitter with the F-score, and also an

ECG database with decreasing levels of signal to noise ratios based on noise generated

from different tasks. Our new performance measure JF fully encompasses all the types of

errors that can occur, equally weights them and provides a percentage value which allows

direct comparison between QRS detection algorithms. In combination with the new noisy

ECG database, the JF performance measure now varies between 50% and 100% for differ-

ent detectors and signal to noise conditions thereby making it possible to find the best detec-

tor for an application.

Introduction

An electrocardiogram (ECG) records the electrical activity of the heart [1]. In the normal

heart, each cardiac cycle (heartbeat) consists of atrial activation which produces a P wave. This

is followed by atrial repolarisation, and ventricular activation which gives rise to the QRS com-

plex. Atrial repolarisation is generally hidden by the QRS complex. Finally, ventricular repolar-

isation follows ventricular activation giving rise to a T wave. In an abnormal recording, the P

wave may not be present though other signs of atrial activity may be seen. In some abnormal

cardiac cycles, the source of ventricular activation may be in the ventricles giving one or more

QRS complexes of a different morphology compared to the normally conducted beat for that
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heart. In all cases, the most identifiable wave with the fastest rate of inscription is the QRS

complex [2]. Detecting the QRS complex is the first step in calculating any further measures.

Most QRS detection algorithms will use a distinctive R peak as may be found in one or two

lead recording with carefully placed electrodes but if more leads are available, a function which

combines leads and automatically produces a prominent R wave can be used [3].

When the presence of a QRS complex has been detected, further measures such as heart

rate and heart rate variability (HRV) can be calculated. Heart rate can simply be calculated by

taking the difference between two QRS detection time stamps, which is mathematically the

same as finding the first derivative. However, derivatives amplify noise and thus any errors in

the QRS detection will result in even larger errors as further derivatives are taken. When calcu-

lating HRV, the 2nd derivative between successive QRS complexes is used, and thus any small

errors in the QRS detection will compound into much larger errors in any subsequent HRV

result [4]. As such, a heart beat detector algorithm that can accurately and precisely identify

the QRS complexes in an ECG, is vital in obtaining a useful and representative HRV. Errors

that can occur from poor QRS detector algorithms are: missed QRS complexes (false nega-

tives), extra QRS complexes (false positives), and temporal inaccuracies (temporal jitter). For

that reason it is imperative to be able to evaluate detectors and select one which has the lowest

occurrence of the above errors. In order to benchmark detectors, the principal requirements

are:

1. i) a precisely annotated ECG database with various noise levels and QRS morphologies, and

2. ii) a performance measure taking into account all relevant errors reporting meaningful val-

ues to be able to compare detectors.

The current state of the art neither provides the required database nor the performance

measure. This paper outlines the current state of the art regarding these two points.

In order to meet the first requirement, an ECG database with precisely annotated QRS

complexes is essential. Almost all published research on heartbeat detection algorithms uses

the MIT-BIH Arrhythmia Database (MITDB) [5, 6] for testing. This database contains 48

ambulatory, 30-minute-long, annotated ECG recordings, 25 of which contain less common

arrhythmias. The recordings have a sampling rate of 360 samples/sec with an 11 bit resolution

over a 10 mV range. Although it has become the standard for detector evaluation, the almost

exclusive use of this database poses an issue due to its two main shortcomings:

1. Very few examples of motion artefacts: This leads to attempts looking only at sections of

the ECG recordings which contain a fair amount of noise. The work by [7–9] tried to high-

light noise resilience using only small sections (3. . .10s) of a few select records. As these

noisy sections make up such a small proportion of the database, they have very little impact

on the overall results.

2. Inconsistent QRS complex annotations which clearly have a temporal jitter (Fig 1). This

poses a serious problem when benchmarking the detectors because it introduces an addi-

tional temporal jitter in QRS annotation time-stamps.

Of the current 33 available ECG databases on PhysioNet, only two aim to provide examples

of noisy ECG signals. However, both have flaws which limit their usefulness. The MIT-BIH

Noise Stress Test Database (NSTDB) [10] features synthesised noisy signals that are not repre-

sentative of a realistic noisy recording. The other database, Motion Artefact Contaminated

ECG Database [11], consists of 27 recordings of just a single subject standing and is not
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annotated, and so is therefore unsuitable for detector evaluation. In conclusion, the current

ECG databases are not suitable for QRS detector benchmarking.

After having shown that the current databases are not suitable for detector benchmarking,

we now consider the state of the art of performance measures. Currently, the Association for

the Advancement of Medical Instrumentation (AAMI) recommends evaluating detector per-

formance on sensitivity (Se), positive predictivity (+P), false positive rate (FPR) and overall

accuracy (Acc) [12]. All of these measures are based on the idea that a QRS detection is

required to fall in a fixed temporal window w which is illustrated in Fig 2. al is a set of anno-

tated sample positions where the actual detection has occurred. dk are the sample positions

where the detector has detected the QRS complex. For example, in Fig 2 the first QRS detec-

tion has been annotated at a0 and the detection happens at exactly d0 = a0 the same sample and

is classified as a true positive. The 2nd annotation a1 has also a matching QRS complex d1 but

this falls outside of the temporal window |d1 − a1| > w so that it is a false positive. Of course,

there are also cases where there is an annotation as with a3 but no matching QRS detection so

that we have a false negative. There will also be detections such as d4 and d5 which are false pos-

itives. The standard approach is to count how many detections fall within the temporal win-

dow w and count these as “true positives” (TP). With the total number of detections card(dk)
and annotations card(al) we obtain:

TP ¼ cardðjal � akj < wÞ ð1Þ

Fig 1. MITDB heartbeat annotations (dots) not located on R-peaks (record 107) and jitter between annotations.

https://doi.org/10.1371/journal.pone.0309739.g001

Fig 2. Examples of ECG detection errors using a fixed temporal window. d0. . .4 are sample numbers of detected QRS

complexes. a0. . .4 are sample numbers of the annotated QRS complex (ground truth). w is the temporal window used

for the classical performance measures sensitivity, positive predictivity, false positive rate and overall accuracy.

https://doi.org/10.1371/journal.pone.0309739.g002
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FP ¼ cardðdkÞ � TP ð2Þ

FN ¼ cardðalÞ � TP ð3Þ

where card() is the number of elements in a set which is called the cardinal number. For exam-

ple, if we have three annotations {a0, a1, a2} in a set then its cardinal number is: card({a0, a1,

a2}) = 3. FN is the number of false negatives, and FP is the number of false positives where false

negatives are the number of missed heartbeats, and false positives are essentially the number of

extra detections.

SE ¼
TP

TP þ FN
ð4Þ

þP ¼
TP

TP þ FP
ð5Þ

A ¼
TPþ TN

TP þ TN þ FP þ FN
ð6Þ

where SE is sensitivity, + P is positive predictivity and A the accuracy. Ideally a performance

measures should take into account true positives (TP, Eq 1, false positives (FP, Eq 2) and false

negatives (FN, Eq 3). However, the sensitivity SE is only taking into account TP and FN while

the positive predictivity + P only takes into account TP and FP. One might be tempted to use

the accuracy but it cannot be calculated because the number of true negatives TN is not known

in QRS detection tasks. Thus, all standard measures either miss out on one performance

parameter or, in case of the accuracy, cannot be calculated. However, these are not the only

problems. The other issue is the fixed temporal window used to calculate TP, FP and FN which

we discuss now.

The fixed predefined temporal window w of tolerance is widely set as ten times of the sam-

pling interval as advised by Xie and Dubiel [13] in their software library for working with Phy-

sionet databases such as the MIT-BIH arrhythmia database [5, 6]:

w ¼
10

fs
ð7Þ

where fs is the sampling rate of the ECG recording. For example, at a sampling rate of fs = 250

samples/sec this gives a temporal window of 40 ms which means that any QRS complex within

this window is classified as a true positive and outside of this window as a false negative. Many

detector algorithms report high sensitivity scores due to these large windows w [12, 14], yet

this is not representative of the actual detector ability across all applications, specifically HRV,

as it disregards the temporal jitter. That omitting jitter is problematic can be seen in Fig 2

when comparing the annotations a1 and a4. For a1 the detection d1 lies outside the window w
and is classified as a false detection. However, for the annotation a4 the detection d3 lies within

the window and is classified as a perfect true positive ignoring the temporal inaccuracy. Thus a

resulting high sensitivity might not mean that the detector is perfect if it has a high jitter

between detections falling within the window w. Gradl et al [15] proposed a possible measure

to account for QRS detection inaccuracies using the MITDB. However, their measure uses the

absolute deviation from each QRS complex which does not account for detectors that use dif-

ferent detection positions such as the R-S slope [16], and by using the MITDB, errors from
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inexact annotations are introduced and are not demonstrated against realistic noisy scenarios.

Gradl et al [15] do not attempt to combine their QRS accuracy measure with any of the other

possible errors that could occur during detection, and thus there is still no overarching bench-

marking parameter proposed.

The combination of current benchmarking parameters not accounting for all error types,

large tolerance windows masking temporal inaccuracies, inaccurately annotated ECG record-

ings, and a lack of realistic noisy recordings, has resulted in all of the most commonly used

detector algorithms’ performance measures being based on fallacious results under biased con-

ditions. It is clear that the current ECG testing databases and the current recommended per-

formance parameters for benchmarking algorithms are insufficient.

In this paper, we are presenting a new open access ECG database [17] from 25 subjects who

performed different tasks such as sitting, performing a maths test, walking on a treadmill,

using a hand-bike and jogging: https://doi.org/10.5281/zenodo.10925903. ECGs were simulta-

neously recorded from both the Einthoven leads and from a chest strap. All ECGs were then

annotated at sample precision allowing benchmarking of the different R-peak detectors at the

highest possible precision. Having a database with increasing noise levels and strict timing

requirements allows us to then determine which detector performs best and highlights the

consequences of poor detection. This is particularly relevant for applications such as heart rate

variability where 2nd derivative quantities will be most susceptible to R peak jitter. The use of

both Einthoven and chest strap tests if detectors are robust against different QRS complex

morphologies and give important insights into the applicability of these detectors for chest

worn heart rate monitors.

Having a database which offers both sample precision annotations, various noise levels and

two different ECG morphologies allows us then to present our new benchmarking score (JF)

that equally accounts for all error types, including temporal inaccuracies, and is application-

independent to truly assess different detector algorithms.

The combination of a precise ECG database with various noise levels and our new perfor-

mance measure offers a tool to robustly benchmark new QRS complex detectors.

Methods

Glasgow University Database

The Glasgow University Database (GUDB) consists of two-minute two lead ECG recordings

from 25 subjects each performing five different tasks, for a total of 125 records. The tasks were

chosen to be repeatable and representative of common, realistic scenarios. The tasks were as

follows:

• sitting

• using a tablet to perform a maths test

• walking on a treadmill

• using a hand-bike

• jogging

Ethical approval was given by the ethics committee at the Institute of Neuroscience and

Psychology, School of Psychology at the University of Glasgow, with reference 300180026. The

recruitment period was from October 15th, 2018 to December 21st, 2018.

Prior to the experiment, participants were given an information sheet and were asked to

give signed consent by signing two consent forms, one for the researchers and another for
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them to keep. Where the participant consented (24 out of the 25), a video synchronised to the

data was recorded for each task. This video allows database users to see exactly how the move-

ment was performed for each ECG recording and for any artefacts in the data to be identified.

In addition, the acceleration of the torso was recorded. The participants were all over the age

of 18 and had no known cardiovascular conditions. The database is available through the Uni-

versity of Glasgow’s open access research data repository [17].

The ECG signals were recorded using an Attys Bluetooth data acquisition board (Glasgow

Neuro LTD, Glasgow). This board has a sampling rate of 250 samples/sec and a resolution of

24 bits over a range of ±0.4 V. As this device is wireless, it increases electrical isolation and

allows a moving subject to be recorded easily without the need of a cumbersome tether. The

Attys features two differential analogue recording channels. Two separate Attys were used at

the same time to record both Einthoven II & III and the approximate difference between the

chest leads V1 − V2. These two configurations represent a best and worst-case recording setup.

This allows the impact of recording setup on signal noise to be investigated.

1. The best-case setup uses the first Attys mounted on an elastic electrode chest strap (Ama-

zon, UK), connected with short cables zip tied together (Fig 3A and 3B). This configuration

minimises the effect of cable movement artefacts as much as possible and is worn tightly on

the subject to prevent the electrodes from moving. As the chest strap is worn high around

the chest, the electrodes are approximately in the same location as V1 and V2 in the standard

six electrode chest configuration [18]. The left electrode (Pulse Medical, UK) on the chest

strap is connected to the positive terminal of the differential amplifier and the right elec-

trode is connected to the negative terminal. The second channel of the Attys records the

switch signal used to synchronise the data with the video. The switch (Fig 3A) is worn on a

belt around the waist. When switched, it produces an audible click and shorts channel two

to ground. The circuit diagram configuration can be seen in Fig 3A.

Fig 3. Experimental setup and example ECG traces. A: Wiring of the two wireless biosignal amplifiers (Attys). The first amplifier records V1 − V2 with a chest

strap and the second amplifier Einthoven II & III with standard Ag/AgCl electrodes. B: Photo of the chest strap and the biosignal amplifier mounted on it.

Signal comparison between C: chest strap and D: Einthoven II recording while the subject was jogging.

https://doi.org/10.1371/journal.pone.0309739.g003
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2. The worse-case configuration uses the second Attys connected to standard ECG electrodes

(Pulse Medical, UK) with loose cables. The positive terminal of the first differential ampli-

fier is connected to the left hip, and the negative terminal to the right shoulder. The Attys is

put into Einthoven ECG mode where the positive terminal of the CH1 differential amplifier

is connected internally to the positive terminal of CH2 amplifier input. The negative termi-

nal of the CH2 differential amplifier is connected to the left shoulder. This configuration

allows two ECG signals to be recorded using only three cables. CH1 records Einthoven II

between the left hip and right shoulder and CH2 records Einthoven III between the left hip

and the left shoulder. The circuit diagram for this configuration can be seen in Fig 3A.

Having introduced the best and worse-case measurement situations, we show the corre-

sponding raw signals in Fig 3C and 3D when the subject is jogging. The chest strap recording

remains largely noise free while the Einthoven signal has significant noise contamination.

Once the subject had been successfully connected to the data acquisition equipment, the

actual experiment followed the following protocol:

1. 120 second ECG recording, sitting down

2. 120 second ECG recording, timed maths questions on a tablet

3. 120 second break

4. 120 second ECG recording, walking on a treadmill at 2 kph

5. 120 second break

6. 120 second ECG recording, using a hand bike

7. 120 second break

8. 120 second ECG recording, jogging on a treadmill at 7 kph

9. Electrodes and chest strap removed from participant

The ECG data was stored without any signal processing in our open access ECG database

[17]. When accessing the database for benchmarking 50 Hz and DC drift was removed on

demand with a 4th order Butterworth notch filter and a 4th order 0.1 Hz highpass filter.

Annotation procedure. To annotate the data with heartbeat locations, a Python script

was created which uses a Matplotlib [19] interactive plot. An ECG data file was loaded into the

plot and ran through a heartbeat detection algorithm (EngZee segmenter from the BioSPPy

library [20]) to provide an initial estimation of QRS locations. This estimation was then manu-

ally inspected by one of the authors (BP) to remove any false positives and add any missing

QRS complexes. BP is a non-medical professional with training in signal processing and data

analysis. Where there was too much noise to reliably annotate the entire recording, no annota-

tion file was made. Of the 125 recordings, 2 chest strap and 19 loose cable recordings were

unable to be annotated. This mostly occurred in the jogging scenario. The annotation sample

locations are saved to a .tsv file when the plot is closed. This is performed for both the chest

strap ECG and the Einthoven II loose cable recording.

Detector software implementation

The eight algorithms chosen represent popular and well regarded QRS detectors, as well as a

range of different detection techniques. The eight detector algorithms were: Pan & Tompkins

[21], Elgendi et al [22], Kalidas & Tamil [8], Christov [23], Hamilton [24], the matched filter
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detector, the EngZee Mod detector [25] and the WQRS detector [26]. The main criterion for

selection was that the algorithm could be implemented in a real time system. All of the algo-

rithms were implemented in Python, and the code can be found at Porr et al 2024 [27] and is

continuously maintained.

Evaluating detectors

Traditional benchmarking method: Sensitivity. All of the GUDB recordings that had

corresponding annotations were evaluated: 123 for the chest strap and 106 Einthoven II setups.

The widely used detection tolerance of w = 10/fs seconds was used [13] (see Fig 2). Note that

all detectors will delay the signals to some extent, so the detected time stamps will always

appear to be later. Thus, in order to allow sample precision evaluation, the median delay was

subtracted from the true QRS detection time stamp and calculated separately for every subject,

activity, and measurement protocol, as it was different each time.

The performance of the detector algorithms was compared using the current most com-

monly recommended performance parameter: sensitivity (Eq 4). The sensitivities for sitting &

jogging, Einthoven & chest strap and the different detectors were then tested against a thresh-

old of 90% with the help of the one sample t-test. Valid p values need be based on at least 20

different sensitivity values. Alpha level was set to 0.05.

While the above approach simply assesses the sensitivity performance when QRS complexes

occur either within a temporal window or not, they ignore the temporal jitter between the

annotations and the QRS detections. In the next section, we present our new performance

measure which also takes into account the jitter.

New benchmarking measure: JF. A new benchmarking approach JF is presented which

takes into account the temporal jitter (J) of the detection point and combines it with all avail-

able statistical data for QRS detection which are extra beats (FP, false positives), missed beats

(FN, false negatives) and true detections (TP, true positives) represented by the F1-score (F)

which is a performance measure of the accuracy of the detection [28]. Also, in contrast to the

traditional approach, no fixed temporal window is used, but rather the F1-score is penalised

more and more with increasing jitter. Our new measure JF is open source (code: [29]).

Fig 4 demonstrates the working principle of the JF algorithm which is now explained step

by step. Its input is the sample points dk of a QRS detector which are compared against the

QRS detection annotations al. As a first step, we need to compensate for constant detection

delays by subtracting the median delay between the detections dk and annotations al from the

individual detection timestamps:

~dk ¼ dk � median
�

8l;min
k
ðjal � dkjÞ

�

ð8Þ

where 8means “for all” with l = 0. . .card(al) − 1.

As a next step, we now need to find the mapping between the annotations and the detec-

tions to be able to identify true detections, missed QRS complexes and spuriously detected

QRS complexes. In order to achieve this, we iterate through all annotation indices l = 0. . .card

(al) − 1 and find, for each annotation timestamp l, the index k within the detections ~dk which

has the smallest temporal difference and store it in the set pl:

pl ¼ argmink¼0...cardð ~dk Þ� 1
jal � ~dk j ð9Þ

where argmin outputs the index k where the minimum between jal � ~dk j occurs. Without any

missing detections or spurious detections, the index of pl = l will simply be a one-to-one
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mapping between annotations and detections. However, as illustrated for the annotation l = 1

in Fig 4, there is no matching detection, and thus it is a missing beat. Depending if the annota-

tion is closer to d0 or d1, the annotation will be falsely associated with one of them. This can be

rectified by switching the perspective and then iterating through the pl indices to check if there

are duplicates. For example, here p0 = p1 = 0 both point to the same detection. However, clearly

p0 is closer to d0 so that p1 = 0 should be discarded. Similarly, if the annotation at l = 1 were

closer to k = 1, then p1 = p2 = 1 is the duplicate position. Thus, formally we minimise the tem-

poral difference between the detection indices while keeping the correspondence between

QRS annotation and detection unique:

Dm ¼
minkjal � dpk

j

fs
with unique pk

� �

ð10Þ

where Δm are now the jitter values of true detections, and the number of elements card(Δm) are

the number of the true positive detections.

As a next step, the jitter Δm needs to be evaluated and turned into a performance measure

between 0 and 100%. We define the following mapping function as the jitter score:

f ð�DÞ ¼
1

1þ
�D

12 ms

ð11Þ

Fig 4. Graphical illustration of the JF algorithm. A: Time stamps al of the QRS annotations versus the time stamps of

the actual QRS detections dk. pl links the index numbers of the annotations l = 0, 1, 2, 3 to the index numbers k of the

detections dk. B: Mapping function Eq 11 which maps the average jitter �D to a score between zero and one which

reaches 0.5 at a jitter of 12 ms.

https://doi.org/10.1371/journal.pone.0309739.g004
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where �D is the average over all individual jitter values Δm. This means that an average jitter of

�D ¼ 12 ms results in a performance of 0.5 or 50%.

Having calculated the average temporal jitter, we now need to calculate the F1-score. Here,

the number of the individual jitter readings card(Δm), being the number of the true positive

(TP) detections, can be used to calculate the number of missed beats (false negatives = FN) and

extra beats (false positives = FP):

TP ¼ cardðDmÞ ð12Þ

FP ¼ cardðdkÞ � cardðDmÞ ð13Þ

FN ¼ cardðalÞ � cardðDmÞ ð14Þ

Having obtained the statistical parameters, we can now calculate the F1-score:

F1 ¼
2TP

2TPþ FPþ FN
ð15Þ

The F1-score is a normalised measure between zero and one. As a final step, we can now

combine the jitter score f (Eq 11) and the F1-score (Eq 15):

JF ¼ F1 � f ð�DÞ � 100% ð16Þ

JF reaches 100% if the average jitter is zero ð�D ¼ 0Þ and there are no false negative or false pos-

itive detections. Both increase of jitter and increase of false negative or false positive detections

will decrease the value of JF.

The JF performance values (Eq 16) for sitting and jogging in combination with Einthoven,

chest strap and the different detectors are then tested against a threshold of 90% with the help

of the one sample t-test. Valid p-values need be based on at least 20 different sensitivity values.

Alpha level is set to 0.05.

Results

Traditional method: Sensitivity

Fig 5 shows sensitivity values for the different detectors as calculated with Eq 4. The asterisk

indicates if the sensitivity of a detector is significantly greater than 90%. It can be seen that 22

of the 32 sensitivity values are above 90%. Panel A shows the results for the standard Einthoven

II leads for sitting and jogging. Let us first focus on sitting with the Einthoven leads. This is a

standard condition comparable to other noise free databases such as the MITDB with virtually

no artefacts. Except for the Hamilton detector, all other detectors reach significantly sensitivity

values above 90%. Jogging creates movement artefacts through cable movements and muscle

noise (see Fig 3) which then cause sensitivity values for more detectors to significantly drop

below 90% such as Elgendi, matched filter, EngZee, Hamilton and WQRS. Fig 5B shows the

same detectors for sitting and jogging but with a chest strap. This reduces the movement arte-

facts and muscle noise but at the same time, the ECG measured at the chest electrodes has a

different shape compared to the standard Einthoven leads. Still, 12 sensitivity values are all sig-

nificantly above the 90% threshold and it makes it hard to decide which detector to choose.

Overall the large detection error margin between detector timestamp and ground truth results

in very high sensitivity readings.
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JF

Fig 6 shows the JF score for the different detectors as calculated with Eq 16. Overall it is quali-

tatively apparent that the introduction of jitter to the performance measure causes a much

larger variation of the JF values than the sensitivity above (Fig 5). Let us start again with the

Einthoven leads while sitting which has the best signal to noise ratio. Now, only the EngZee,

the Elgendi and the WQRS detector reach JF values significantly above 90%. When using a

chest strap instead, the Elgendi detector and the matched filter reach significantly JF values

above 90%. This shows that the Elgendi detector is robust against different ECG morphologies

and keeps its excellent performance irrespective of lead configurations.

When jogging, the signal to noise ratio of the ECG signal drops because of Electromyogram

(EMG) and movement artefacts. Here, clearly the JF score drops which pushes all detectors

significantly below the 90% threshold. Note that jogging is the worst case scenario and that the

other experiments introduce gradually more and more noise.

Fig 7 benchmarks the detectors against increasing noise levels imposed on the ECG. We

have taken the 3 detectors EngZee, Elgendi and the WQRS which had excellent performance

in the noise free condition (Fig 6) and subjected them to noise. In addition, we have taken the

Fig 6. JF values. A: Einthoven, B: Chest strap. Significantly above 90% indicated with a “*”.

https://doi.org/10.1371/journal.pone.0309739.g006

Fig 5. Classical sensitivity values. A: Einthoven, B: Chest strap. Significantly above 90% indicated with an asterisk.

https://doi.org/10.1371/journal.pone.0309739.g005
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worst performer, namely the the Pan & Tompkins detector. The maths test introduces small

and irregular noise through movement artefacts and muscle noise. We note that all three con-

temporary detectors EngZee, Elgendi and WQRS perform identically here. As mentioned

before, the EngZee detector undertakes a final maximum detection of the QRS-complex which

is no longer advantageous in the presence of noise, possibly because of multiple peaks intro-

duced by high frequency EMG noise. Nevertheless, all three detectors (excluding Pan & Tomp-

kins) are significantly above 90%. During walking and while operating a handbike, the

performance of the Elgendi and WQRS detectors drops significantly below 90%. Both activities

generate stronger artefacts. The handbike generates more upper body artefacts while walking

generates artefacts from muscles in the whole body. Jogging is the worst case scenario where

sometimes, even through visual inspection, QRS complexes simply cannot be identified. Here,

all detectors are significantly below the 90% mark and thus not reliable enough, certainly for

high precision tasks such as heartrate variability. The EngZee detector is the clear winner for

noisy ECGs while for low-noise tasks such as sitting in a chair, EngZee, Elgendi and the

WQRS perform equally well, producing significantly JF values above 90%.

Discussion

In this paper, we have presented a new approach to benchmarking QRS detectors. In order to

achieve this we created first a new ECG database [17] with real world noise, artefacts and two

popular ECG recording approaches reflecting both standard clinical practice and lifestyle

applications. Secondly, we developed a new benchmarking score for QRS detectors (JF) which

combines the F1- score with the temporal Jitter of the detection. To demonstrate how our new

score can be used to benchmark QRS detectors, we implemented eight popular QRS detection

algorithms in Python [27].

We will now discuss other benchmark measures and also which ECG databases they used

for benchmarking. Friesen et al [31] used as a benchmark measure the percentage of QRS

complexes correctly detected (TP) and the number of false positives (FP). However, they did

not take into account the number of missed beats (FN). While this would allow the calculation

of the positive predictability they simply listed the TP and FN values in tables. Temporal jitter

was not taken into account. However, they noted the lack of noisy ECGs in the MIT-BIH data-

base making it not directly suitable for benchmarking. They solved this problem by artificially

adding EMG-noise, powerline interference, baseline shifts and a combination of them.

Fig 7. Comparing detector performance against increasing signal to noise ratios. The JF benchmark value was calculated for the different activities

of sitting, doing a maths test, walking, operating a hand-bike and jogging. The 4 detectors EngZee, Elgendi, WQRS and Pan& Tompkins have been

benchmarked. If a JF value is significantly above 90% it is indicated with an asterisk.

https://doi.org/10.1371/journal.pone.0309739.g007
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However, adding artificially created noise causes a rather uniform noise distribution over all

subjects, while in our case the noise is individual and varies between subjects. In addition, our

noise originates from real experiments while artificially generated noise relies on a good noise

model but this is hard to achieve, in particular for EMG and movement artefacts. In fact,

movement artefacts are modelled in this paper as a simple sudden baseline shift.

The work by Rodrigues et al [32] uses as a benchmark measure the percentage of missed

detections (FN) and false alarms (FP). As with the work discussed above [31], these statistical

measures are not combined but shown separately. Instead of using the MIT-BIH database, a

special ECG database was created from patients fitted with a pacemaker. Again, it was noted

that the ECG recordings did not contain any noise but instead of adding noise artificially, real

noise was recorded and then added to the noise-free ECGs. This work acknowledges that noise

cannot be created easily artificially but needs to be recorded to be realistic, which is in the

same spirit as our work. However, the noise was nevertheless then added to the recordings arti-

ficially, and did not emerge from a recording made during different tasks. Adding noise artifi-

cially allows a gradual reduction of the signal to noise ratio but it assumes that the nature of

the noise stays the same. Instead, we decreased the signal to noise ratio successively by having

different tasks with increasing noise levels.

Sensitivity, for example used by Merah et al [35], is probably the most popular performance

measure and is referenced in most papers. The problem with sensitivity is that it only takes

into account the true positives (TP) and false negatives (FN) but not the false positives (FP).

For that reason, this paper also calculates the positive predictive value (PPV), which is then

presented side by side with the sensitivity.

Merino et al [36] benchmarked the QRS detection through sensitivity, positive predict

value and accuracy. The latter was defined as A = TP/(TP + FP + FN) (s.i.c) in contrast to the

textbook definition of accuracy (Eq 6)–roughly reminiscent of the F1 score. Instead of using

just the MIT-BIH database, the authors randomly selected ECGs from five Physionet databases

to gain a higher variability of the data in terms of ECG morphologies and recording conditions

but did not add any noise to the recordings. Consequently, all results are above 99% with small

variations effectively being meaningless which ultimately has motivated us to create our noisy

ECG database so that sensitivity values are not all between 99% and 100%. For other recent

QRS detection algorithms and their resulting sensitivities, see for example Kumar et al [37]

where all tabulated sensitivities range from 99.31%. . .99.98%, again making it impossible to

perform any meaningful statistical comparison.

Given the centre stage of sensitivity, we now compare sensitivity values obtained from our

dataset with those from the original literature. The QRS detectors used here are those which

are most popular and are actively maintained on github as an open source repository. Apart

from being popular, they also provide the different basic concepts for real time ECG detection,

upon which newer detectors build.

Table 1 shows the sensitivity results for the eight QRS detectors. The 2nd column states the

originally cited sensitivities from the literature. Note that none of the eight papers specify the

width of the temporal window w (Eq 7) and thus the temporal detection tolerance is declared

as “unspecified”. As with the studies mentioned above, not all used the MIT/BIH database so

that in the detailed discussion below, we will state the dataset used for every detector—if

known. The 3rd column shows our sensitivity results using the standard temporal window of

w = 10/fs (Eq 7) using our new GUDB database from the Einthoven leads while sitting. The 4th

column shows the results of our new JF performance measure. In total, 3911 QRS complexes

were used to calculate the average and standard deviations of sensitivities and JF scores for all

detectors.
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Pan & Tompkins [21] were one of the first to develop a real-time QRS detection algorithm.

The performance was analysed by playing tapes of ECG recordings from the MIT/BIH data-

base which were turned into digital signals, processed in a digital processor and then turned

back into analogue signals for comparison with the annotations. Coincidence between the

detected QRS complexes and the annotations was assessed by visual inspection so that a pre-

cise jitter tolerance could not be given. Overall, Pan & Tompkins [21] reported a sensitivity of

99.3% (Table 1) which we have confirmed closely. However, our JF benchmark produces a

value of 75.3±19.1 which is not only significantly below the 90% margin but also has a huge

standard deviation (see also Fig 7). The Pan & Tompkins algorithm is the oldest detector

benchmarked here but its adaptive thresholding is still used in newer algorithms as outlined

below.

Instead of bandpass filtering the ECG, Kalidas & Tamil [8] employed the stationary wavelet

transform to filter the ECG which resulted in a high sensitivity in their paper of 99.88%

(Table 1) which is reproduced by our work here. However, neither a statistical significance test

nor the detection tolerance (see Eq 7) is published. Moreover, given their 99.88% sensitivity, it

suggests that again a large temporal jitter w was permitted. However, the exact margin is not

mentioned in the text. While the sensitivity does not take jitter into account, our JF benchmark

does: indeed, it is one of the lowest (Fig 6) for both Einthoven and chest strap and is compara-

ble to the original Pan & Tompkins detector. This comes as no surprise because Kalidas &

Tamil also used the original Pan & Tompkins thresholding but preceded it by a wavelet filter

instead of a bandpass filter. A wavelet filter is essentially a bandpass filter so that the overall

performance is very similar to the Pan & Tompkins detector. However, while Kalidas & Tamil

pioneered ECG detection with wavelet filters, this field has moved on. Wavelets with their

matching scaling function allow the creation of filter cascades and then the recombination of

the resulting signals for thresholding [34, 38]. We acknowledge the development of this field

over the years, but we have kept to the original work of Kalidas and Tamil as newer wavelet

analyses are beyond the scope of this paper.

Hamilton [24] had in mind an open source QRS detector with a high sensitivity which is a

further development of the detector proposed by Pan & Tompkins [21]. In order to be able to

run it on a microcontroller, Hamilton [24] presented a stripped down version of their full

detector implementation, omitting certain QRS detection rules. For Hamilton’s original detec-

tor, the author reported a sensitivity of 99.74% and for the microcontroller version 99.80%

(Table 1). The sensitivities were not compared to other detectors nor has a statistical analysis

Table 1. Original cited sensitivities from the literature, in comparison to the new overall JF Benchmark scores for each detector using GUDB.

Original cited sensitivity (%) (* based

on RR intervals: see main text)

Sensitivity and standard deviation of Einthoven II,

sitting, based on GUDB and a tolerance of w = 10/fs
JF score and standard deviation of

Einthoven II, sitting, based on GUDB

Elgendi et al.

[30]

92.66 . . .98.31 99.4 ± 0.4 97.7 ± 7.7

Kalidas & Tamil

[8]

99.88 99.4 ± 0.6 73.9 ± 20.8

Engzee [25] 96.50* 98.2 ± 2.7 99.8 ± 0.6

Christov [23] 84.5 . . .96.5 97.4 ± 10.9 95.4 ± 17.6

Hamilton [23] 99.74 . . .99.80 82.3 ± 35.8 84.6 ± 19.5

Pan &

Tompkins [21]

99.30 98.9 ± 1.7 75.3 ± 19.1

Matched filter N/A 97.7 ± 1.8 93.3 ± 15.9

WQRS [26] 99.65 96.3 ± 3.5 97.8 ± 6.3

https://doi.org/10.1371/journal.pone.0309739.t001
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been performed. The author stated that the detectors perform comparably. The jitter tolerance

is not mentioned in the paper. However, we report a sensitivity of just 82.3 ± 35.8% which falls

substantially short of the claimed 99.74%. . .99.80%. This again shows that the Pan & Tomp-

kins detection algorithm cannot be much improved beyond its original performance.

Instead of improving the detection algorithm, the work by Elgendi et al [22] aimed to opti-

mise the bandpass filter frequencies used for the QRS detection. Different frequency bands

were benchmarked and the 8 − 20 Hz band was chosen to be optimal, having the highest sensi-

tivity. However, all originally cited sensitivities, even the sub-optimal ones, vary only between

92.66% and 98.31% (Table 1) where some deviate less than one percent. There is no statistical

analysis in the paper stating which band is significantly better than another. A temporal toler-

ance is not given. The lack of statistical tests in the original paper and the omission of the toler-

ance render the recommendations towards cut-off frequencies questionable. While their own

analysis is inconclusive, our own JF benchmark (Table 1) places them into the category of the

best performers and is certainly an algorithm which could be used in production.

Christov [23] starts off not just with Einthoven I but creates a complex lead combining the

derivatives from all standard 12 leads. This is then sent through various thresholds to detect

the QRS complexes. The author achieved a sensitivity of 84.5%. . .96.5% at a tolerance of

w = 60 ms (Table 1). The article has no discussion section and thus does not compare its results

to other approaches and has no statistical evaluations. In the conclusion section, the author

claims that: “The statistical indices are higher than, or comparable to, those cited in the scien-

tific literature.” [23]. This is not confirmed for our JF measure where, even when sitting, its

value is significantly below 90% with also a very high standard deviation.

Similar to Christov [23], taking the derivative of the ECG signal is the central idea of Engl-

ese et al [37] which is then turned into a real-time version by Lourenco et al [25] using an

adaptive threshold. The paper then compares the real-time version with the previous off-line

version and the detector by Christov [23] which requires a fixed threshold. This paper does

not use the MIT-DB database but used locally recorded ECGs. The author also devised a differ-

ent performance measure: the deviation from the mean RR interval needs to be less than 10%

for individual RR pairs, or in other words, the RR interval variation needs to be within normal

limits of the resting heart rate variability [38]. The author’s online algorithms leads to average

valid RR intervals of 96.50% (Table 1) depending upon on- or offline algorithms, use of elec-

trodes, the algorithm itself and filtering. These high readings are expected because the perfor-

mance measure will most likely detect only crude deviations from the mean RR interval, for

example a missed beat, which then results in twice the RR interval being measured, or an addi-

tional spurious detection, which results in a very short RR interval. Even more important is

that this measure does not compare against the ground truth of RR intervals and only looks at

the self consistency of the RR intervals, which might have been wrong in relation to the anno-

tations in the first place. There has been no statistical test to determine which of these results

differ significantly, but one could easily have been performed with the reasonably large num-

ber of subjects available (N = 62). Our JF benchmark produces a high JF value but with a low

standard deviation.

Overall, virtually every paper reporting very high sensitivities of 98% or more is not at all

helpful, and has only been possible because of high temporal tolerances of probably 100 ms or

even more. Our new JF benchmark, taking into account both the all-or-nothing errors such as

missed beats and the continuous jitter, produces values which allow meaningful comparisons

between detectors. We conclude that of the ones benchmarked EngZee, Elgendi and the

WQRS are the best detectors available. However, our JF benchmark can be applied to any new

detector developed and will inform the development of new QRS detectors which result in ulti-

mately more reliable clinical equipment. We have also shown an approach how to create an
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ECG database with increasing levels of noise. So far our database is only from healthy subjects

but calls for a similar approach for patients with a pace maker or pathological heart

conditions.
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34. Merino M, Gómez IM, Molina AJ. Envelopment filter and K-means for the detection of QRS waveforms

in electrocardiogram. Medical Engineering & Physics. 2015; 37(6):605–609. https://doi.org/10.1016/j.

medengphy.2015.03.019 PMID: 25922210

PLOS ONE A new QRS detector stress test combining temporal jitter and F-score

PLOS ONE | https://doi.org/10.1371/journal.pone.0309739 November 11, 2024 17 / 18

https://doi.org/10.1016/j.cmpb.2015.12.008
http://www.ncbi.nlm.nih.gov/pubmed/26775139
https://github.com/MIT-LCP/wfdb-python
https://doi.org/10.1109/TBME.2007.912658
https://doi.org/10.1109/TBME.2007.912658
http://www.ncbi.nlm.nih.gov/pubmed/18269982
https://doi.org/10.1155/2018/9050812
https://doi.org/10.1155/2018/9050812
http://www.ncbi.nlm.nih.gov/pubmed/29854370
https://doi.org/10.5281/zenodo.10925903
https://doi.org/10.5281/zenodo.10925903
http://www.scst.org.uk/resources/RESTING_12.pdf
http://www.scst.org.uk/resources/RESTING_12.pdf
https://doi.org/10.1109/MCSE.2007.55
https://github.com/PIA-Group/BioSPPy/
https://doi.org/10.1109/TBME.1985.325532
http://www.ncbi.nlm.nih.gov/pubmed/3997178
http://www.elgendi.net/papers/QRS_Bands_final.pdf
http://www.elgendi.net/papers/QRS_Bands_final.pdf
https://doi.org/10.1186/1475-925X-3-28
http://www.ncbi.nlm.nih.gov/pubmed/15333132
http://ieeexplore.ieee.org/document/1166717/
https://doi.org/10.5281/zenodo.7652725
https://doi.org/10.1038/s41598-022-16517-4
https://doi.org/10.1038/s41598-022-16517-4
http://www.ncbi.nlm.nih.gov/pubmed/35879331
https://doi.org/10.5281/zenodo.10899564
https://doi.org/10.5281/zenodo.10899564
https://doi.org/10.5220/0002742704280431
https://doi.org/10.1109/10.43620
http://www.ncbi.nlm.nih.gov/pubmed/2303275
https://doi.org/10.1109/TCSI.2005.857925
https://doi.org/10.1016/j.cmpb.2015.06.003
https://doi.org/10.1016/j.cmpb.2015.06.003
http://www.ncbi.nlm.nih.gov/pubmed/26105724
https://doi.org/10.1016/j.medengphy.2015.03.019
https://doi.org/10.1016/j.medengphy.2015.03.019
http://www.ncbi.nlm.nih.gov/pubmed/25922210
https://doi.org/10.1371/journal.pone.0309739


35. Kumar A, Komaragiri R, Kumar M. Design of efficient fractional operator for ECG signal detection in

implantable cardiac pacemaker systems. International Journal of Circuit Theory and Applications. 2019;

47(9):1459–1476. https://doi.org/10.1002/cta.2667

36. Kumar A, Kumar M, Komaragiri R. Design of a Biorthogonal Wavelet Transform Based R-Peak Detec-

tion and Data Compression Scheme for Implantable Cardiac Pacemaker Systems. Journal of Medical

Systems. 2018; 42(6):102. https://doi.org/10.1007/s10916-018-0953-2 PMID: 29675598

37. Englese W, Zeelenberg C. A single scan algorithm for QRS-detection and feature extraction. Comput-

ers in Cardiology. 1979; 6:37–42.

38. Shaffer F, Ginsberg JP. An Overview of Heart Rate Variability Metrics and Norms. Frontiers in public

health. 2017; 5:258. https://doi.org/10.3389/fpubh.2017.00258 PMID: 29034226

PLOS ONE A new QRS detector stress test combining temporal jitter and F-score

PLOS ONE | https://doi.org/10.1371/journal.pone.0309739 November 11, 2024 18 / 18

https://doi.org/10.1002/cta.2667
https://doi.org/10.1007/s10916-018-0953-2
http://www.ncbi.nlm.nih.gov/pubmed/29675598
https://doi.org/10.3389/fpubh.2017.00258
http://www.ncbi.nlm.nih.gov/pubmed/29034226
https://doi.org/10.1371/journal.pone.0309739

