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Abstract

Brain tumor detection in clinical applications is a complex and challenging task due to the

intricate structures of the human brain. Magnetic Resonance (MR) imaging is widely pre-

ferred for this purpose because of its ability to provide detailed images of soft brain tissues,

including brain tissue, cerebrospinal fluid, and blood vessels. However, accurately detecting

brain tumors from MR images remains an open problem for researchers due to the varia-

tions in tumor characteristics such as intensity, texture, size, shape, and location. To

address these issues, we propose a method that combines multi-level thresholding and

Convolutional Neural Networks (CNN). Initially, we enhance the contrast of brain MR

images using intensity transformations, which highlight the infected regions in the images.

Then, we use the suggested CNN architecture to classify the enhanced MR images into nor-

mal and abnormal categories. Finally, we employ multi-level thresholding based on Tsallis

entropy (TE) and differential evolution (DE) to detect tumor region(s) from the abnormal

images. To refine the results, we apply morphological operations to minimize distortions

caused by thresholding. The proposed method is evaluated using the widely used Harvard

Medical School (HMS) dataset, and the results demonstrate promising performance with

99.5% classification accuracy and 92.84% dice similarity coefficient. Our approach outper-

forms existing state-of-the-art methods in brain tumor detection and automated disease

diagnosis from MR images.

1. Introduction

Medical imaging plays a crucial role in clinical settings, providing valuable assistance to radiol-

ogists in patient analysis. Within medical imaging, the accurate detection and classification of
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brain tumors are particularly challenging and of utmost importance. In recent decades,

research in medical imaging has flourished across various disciplines, including health moni-

toring, mathematics, computer science, engineering, and medicine.

Brain tumors are characterized by the abnormal and uncontrolled growth of cells within or

around the brain. They are classified as non-malignant (benign) or malignant. Malignant

tumors consist of cancerous cells that can spread to other parts of the body from their point of

origin, whereas non-malignant tumors lack cancerous cells and do not metastasize. The World

Health Organization (WHO) categorizes brain tumors into four grades: Grade I-IV. Grade I

tumors are considered benign and typically pose a minimal threat. Grade II tumors are low-

grade malignant tumors with a higher tendency to recur and progress to a higher grade. Grade

III and IV tumors are classified as malignant and are generally more aggressive. Grade I

tumors usually do not infiltrate nearby brain tissues, while grade II tumors may occasionally

spread around brain tissues. In contrast, grade III and IV tumors are more likely to invade

other brain tissues or even the spinal cord, making their treatment more challenging and pos-

ing significant risks to healthy brain tissues [1]. Therefore, early identification and accurate

classification of such brain tumors are of paramount importance in medical imaging.

The advancement of medical imaging in brain tumor detection has been driven by the evo-

lution of various scanning methods. Among these methods, Magnetic Resonance (MR) imag-

ing has emerged as a widely utilized approach for examining brain images due to its

exceptional ability to accurately differentiate soft tissues based on the characteristics of abnor-

mal cells, including their location, shape, and size. Consequently, MR imaging plays a pivotal

role in precise brain tumor detection [2]. Moreover, MR imaging offers the advantage of being

non-invasive and provides multiple images with varying contrast visualizations of the same tis-

sue, thereby furnishing radiologists with additional details during patient diagnosis.

Despite the benefits of MR imaging, clinical practitioners often face challenges as they

require significant expertise and time to manually represent and classify brain tumors from

MR images accurately. This manual process can introduce errors in the tumor detection pro-

cedure. To address these limitations, various research investigations have been conducted in

recent years to identify and classify brain MR images more effectively, thereby minimizing

these issues [3]. In the subsequent section, we present a review of some notable works in this

field and summarize the key challenges encountered in brain tumor detection using medical

imaging.

2. Literature review

Several studies have proposed different approaches for brain tumor detection using medical

imaging. An unsupervised learning method for identifying brain tumors and segmenting tis-

sues in MR images is presented in [4]. The approach uses a clustering technique that combines

self-organizing maps (SOM) and fuzzy K-means (FKM) algorithms to extract features from

the image. The identified features are then clustered into different classes based on the image

intensity values. An improved automated brain tumor detection system was developed by

Arunkumar et al. [5], using K-means clustering and artificial neural networks. (ANN). In

order to implement an automated tumor detection model, Lu et al. [6] combined transfer

learning with AlexNet. Nagapattinam et al. [7] proposed an automated CAD approach for

brain tumor segmentation using genetic and adaptive neuro-fuzzy inference system (ANFIS)

techniques.

Using hyper-column methods and attention modules, Toaçar et al. [8] designed the

BrainMRNet architecture. A new deep-learning method that combines recursive feature elimi-

nation (RFE) and support vector machines (SVM) was introduced by Toaçar et al. [9]. By
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make use of support vector machines (SVMs) and multi-layer perceptron (MLP) an automatic

method for brain tumors detection is presented in [10]. A two-stage classification framework

for brain tumor identification using an SVM classifier is proposed in [11]. The first stage

involves identifying tumor and non-tumor regions using an image processing technique called

Image Difference of Smoothed Signals (IDSS). In the second stage, features extracted from the

tumor regions are fed to the SVM classifier for classification into different tumor types.

An augmentation-based 2D convolutional neural network (CNN) system was proposed by

Chanu et al. [12]. A new framework for segmenting and classifying brain tumors using deep

convolutional neural networks (DCNN) was presented by Kuraparthi et al. [13]. Sethy et al.

[14] implemented a deep feature fusion technique to distinguish brain MR images using

VGG-16, principal component analysis (PCA) and SVM. In [15], a new method for segment-

ing abnormal parts in multimodal images by combining the kernel possibilistic C-means

(KPCM) clustering algorithm, particle swarm optimization (PSO), and morphological recon-

struction filters is proposed.

An automated tool for the early identification of brain tumors from MRI multimodal

images are developed by combining the Cuckoo Search (CS) optimization algorithm with the

K-nearest neighbor (KNN) classifier [16]. An improved multi-view fuzzy c-means clustering

(IMV-FCM) algorithm is developed in [17]. The proposed algorithm aims to overcome the

limitation of traditional methods by using multiple views of the image to capture the complex

features and details of the brain tissues.

The CNN framework was used by Amin et al. [18] to identify and categories brain tumors.

Arpit Kumar Sharma et al. [19] designed a technique based on the modified ResNet50 archi-

tecture and enhanced watershed (EWS) algorithm to distinguish between pathological and

normal brain MR scans. In [20, 21], new deep-learning-based algorithms for predicting MR-

based brain tumors are presented. In [22], a new approach for brain tumor segmentation from

MRI images is presented. It combines the SOM and active contour model (ACM) techniques.

The proposed approach, SOMACM, initializes the contour using SOM, which the ACM fur-

ther refines. Wessam et al. [23] designed a classification framework for brain tumors based on

variational auto-encoders and CNNs. Remzan et al. [24] developed a deep learning-based

automatic tumor detection system.

Rahman et al. [25] proposed a parallel deep CNN (PDCNN) architecture to detect brain

tumors in MRI images. Mohsen Ahmadi et al. [26] implemented a CNN and robust principal

component analysis (RPCA) based approach for the identification of brain lesion in MR

images. Sarah Zuhair Kurdi et al. [27] presented a meta-heuristic optimized CNN

(MHO-CNN) architecture for the classification of brain MR images. Abdullah et al. [28] sug-

gested a ML-based approach the identification of brain tumors using MR images. Ghada Saad

et al. [29] developed a hybrid approach for the identification of brain abnormality from MR

images using shape, and texture features. Jaber Alyami1et al. [30] proposed a novel approach

for the localization of brain tumors from MR images using VGG, slap swam approach (SSA),

and cubic-based SVM classifier. Table 1 illustrates the pros and cons of the existing studies.

2.1. Research gaps

From the above-mentioned conventional brain tumor identification and classification

approaches, we identify the following research gaps:

1. While some approaches have employed traditional local texture feature extraction methods

like local binary patterns (LBPs) [11], these techniques are sensitive to illumination varia-

tions, random noise, and rotations. As a result, their robustness and accuracy in detecting

brain tumors may be compromised.
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Table 1. Pros and cons of the state-of-the-art methods.

Reference Pros Cons

Vishnuvarthanan et al. [4] Efficient in terms of processing time and memory requirements. Used limited data for validation.

Arunkumar N et al. [5] Offers simplicity, and interpretability. Limitations in handling complex shapes make it less ideal for brain

tumor analysis.

Lu et al. [6] Reducing the training time and computational resources. Limited interpretability and fine-tuning challenges.

Nagarathinam et al. [7] ANFIS to capture complex relationships within the data and

improve classification of tumor regions.

ANFIS models can be complex to design and optimize, requiring

careful selection of membership functions and fuzzy rules.

Toğaçar et al. [8] Relatively preserve the valuable features due to the hypercolumn

technique and minimizing the parameter redundancy

Potentially increasing the training time.

Toğaçar et al. [9] RFE reduce the model complexity and easy to implement. Greedy feature selection and depends upon the ranking criterion.

Kurmi Y et al. [10] Mitigate the effects of noise and inhomogeneity.

Handle more complex object boundaries

Smooth out details or shrink the segmented region, leading to

information loss.

Polepaka S et al. [11] Addresses low-contrast and non-Illumination issues. The enhanced local binary patterns (E-LBP) might limit its ability

to capture larger textural patterns.

Chanu MM et al. [12], and

Remzan N et al. [24]

Eliminating the need for manual feature engineering, this can be

time-consuming and error-prone.

Computationally expensive.

Kuraparthi S et al. [13] Minimize the overfitting issues by data augmentation Relying on pre-trained CNNs for feature extraction might limit

control over the specific features used for classification.

Sethy PK et al. [14] Fusing deep features extracted from different layers of the networks

might capture complementary information, leading to better

performance.

Dimensionality reduction.

PCA assumes a linear relationship between the features. If the

relationships are non-linear, it might not capture the most

important information.

Sumathi R et al. [15] KFCM allows for handling uncertainties in image segmentation,

potentially leading to more robust results.

The effectiveness of the KFCM depends on choosing appropriate

parameters, which can be challenging.

Sumathi R et al. [16] Cuckoo Search (CS) is easy to implement and having a global

search capability to finding the global optimum and avoiding

getting stuck in local optima.

CS might converge slower than some other optimization algorithms

like particle swarm optimization (PSO).

Hua L et al. [17] IMV-FCM addresses the classic FCM algorithm’s sensitivity to

noise by incorporating an adaptive learning mechanism.

Adding multiple views and an adaptive learning mechanism might

increase the computational complexity of the algorithm compared

to basic FCM.

Dehkordi AA et al. [18] Nonlinear lévy chaotic moth flame optimizer (NLCMFO) improves

the hyperparameter tuning ability to find the optimal parameters.

NLCMFO likely involves several parameters for both Lévy flights

and chaotic search that need to be tuned for optimal performance.

This can be challenging and require problem-specific adjustments.

Sharma AK et al. [19] Enhanced watershed algorithm significantly handling the over

segmentation problems.

Leads to under segmentation.

Sharma S et al. [20], and

Alsaif H et al. [21]

VGG relatively extracts rich and hierarchical features from images. High computational cost and prone to overfitting.

Sandhya G [22] SOMACM can be effective for segmenting complex objects with

irregular shapes or weak boundaries in images.

Combining SOMs and ACMs adds complexity to the segmentation

process compared to using a basic ACM. This can lead to higher

computational cost and potentially make it less efficient.

Salama WM [23] Convolutional variational autoencoders (CVAE) allows them to

capture spatial relationships in images, making them suitable for

learning complex image distributions with intricate details.

Training CVAEs can be more complex compared to simpler

autoencoder architectures.

Rahman T et al. [25] Faster training and scalability. Complexity of implementation

Ahmadi M et al. [26] Robust PCA (RPCA) effectively handling outliers and noise in the

data.

RPCA can be computationally more expensive compared to

standard PCA.

Kurdi SZ et al. [27] MHO-CNN improves the hyperparameter tuning and handles the

high dimensionality of the hyperparameter space in complex CNN

architectures.

No guarantee of global optimum.

Saad G et al. [29] Computationally efficient. Sensitivity to noise.

Alyami J et al. [30] Simple and easy to implement. Slow convergence and limited theoretical understanding.

https://doi.org/10.1371/journal.pone.0306492.t001
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2. Certain studies [7, 10] have utilized statistical texture features to differentiate between nor-

mal and abnormal brain MR images. However, they do not account for the spatial correla-

tion between adjacent pixels, potentially limiting their ability to capture important spatial

information relevant to accurate tumor detection.

3. Many existing approaches neglect data augmentation [8, 9, 19, 29], leading to lower classifi-

cation accuracy. Machine learning and deep learning models often rely on a sufficient

amount of data for optimal performance. The lack of data augmentation can hinder the

model’s ability to generalize well to new and unseen cases.

4. Several studies have resorted to pre-trained CNN models like ResNet-50, VGG, and Alex-

Net [6, 9, 14, 20, 21, 23, 24]. However, employing these models requires a large number of

parameters, resulting in increased computational complexity and potentially limiting their

practicality in real-time applications.

To address these challenges and enhance brain tumor detection accuracy while mitigating

overfitting and reducing computational complexity, we propose a novel framework. This dis-

tinctive approach incorporates advanced texture feature extraction methods, considering spa-

tial correlations, and integrates data augmentation techniques to boost classification

performance. Additionally, our framework introduces different strategies to optimize and

streamline the training of deep learning models, ensuring efficient and accurate tumor detec-

tion in medical imaging. By bridging these research gaps, our approach aims to significantly

improve brain tumor diagnosis and classification in clinical settings.

The article is structured as follows: Section 3 presents the proposed techniques. Section 4,

the outcomes of the segmentation and classification of the proposed and state-of-the-art

frameworks are compared and analyzed. Section 5 highlights the major findings of the pro-

posed framework. Finally, Section 6 presents the conclusion of the study.

3. Proposed methodology

Detecting and categorizing brain tumors through MRI images can be challenging because of

the differences in the characteristics of tumors. In this study, we introduce an innovative

approach that utilizes CNN and multi-level thresholding to overcome this issue. Our proposed

system comprises two components: classification and segmentation, as shown in Fig 1. The

subsequent sections provide a comprehensive overview of these phases.

3.1. Classification phase

The brain MR image classification process consists of two stages. In the first stage, an intensity

transformation operator is used to adjust the contrast of the images. In the second stage, image

data augmentation techniques are applied to enhance the model performance by reducing

overfitting.

3.1.1. Database. To evaluate the performance of the proposed model, we collected 264

T2-weighted brain MR images with 256×256 resolution from a publicly available database,

namely Harvard medical school [31], which includes 194 abnormal and 70 normal subjects.

However, this dataset may not be sufficient to build an efficient model. Therefore, further, we

employ data augmentation described in section 3.1.3.

3.1.2. Contrast enhancement. MRI images of the brain often suffer from unwanted infor-

mation or artifacts, which can occur during the scanning process. In some cases, artifacts pres-

ent in brain MR images can make it challenging for radiologists to accurately identify or

extract the region of interest, especially when abnormalities are present. To address this issue,

we utilized an intensity transformation method to increase the contrast of the images and
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improve their overall quality. For this purpose, we used a MATLAB built-in function, imadjust

[32]. This function adjusts the contrast of an image by stretching its intensity values to cover

the full dynamic range. This function maps the input image’s intensities to new values span-

ning a specified range of pixel values in the output image. Here, we limit the low and high

pixel values between 0.01 and 0.99. By this, we can improve the contrast of brain MR images.

After that, we applied data augmentation to improve the model classification accuracy.

3.1.3 Data augmentation. The CNN models heavily depend on the size and diversifica-

tion of data to minimize overfitting problems. However, many application domains lack diver-

sified and massive data, especially medical image analysis. Therefore, to enhance the

performance of our proposed framework and minimize overfitting, we utilized image data

augmentation techniques. These techniques involved applying geometric transformation oper-

ators, including scaling, translation, reflection, shearing, and rotation, to create a more diverse

set of input data with the help of configurations mentioned in the work [33]. This process

induced 2376 brain MR images from the dataset mentioned in section 3.1.1. The augmented

data raised the original data to 2376 MR images, 1746 abnormal and 630 healthy. After that,

we employed the suggested CNN framework on these augmented images to detect abnormal

MR images.

3.1.4. The proposed CNN architecture. CNN is a typical neural network model that

proved efficient in image classification and recognition. Usually, they include convolutional

layers (that apply convolution operation on the input data), activation layers (introduce non-

linearity into the data), batch normalization or batch norm (enhance the network stability),

pooling layers (that down-sample the spatial dimensions of the data), fully connected layers

(that use standard multi-layer perceptron architecture) and softmax (estimate the class

Fig 1. The proposed brain tumor segmentation and classification approach.

https://doi.org/10.1371/journal.pone.0306492.g001
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probabilities) [33]. CNNs have some critical advantages over traditional neural networks [34],

such as:

• Parameter Sharing: CNNs use shared weights in the convolutional layers, which reduce the

number of parameters to learn, leading to reduced overfitting and increased efficiency.

• Spatial Invariance: CNNs have a property called spatial invariance, meaning that the net-

work is translation invariant and can detect the same feature anywhere in the input.

• Downsampling: CNNs have pooling layers that down-sample the spatial dimensions of the

data, reducing the number of parameters to learn and the computational cost, making the

network less prone to overfitting.

CNNs have proven to be effective in image classification and computer vision tasks due to

their properties stated above. Prior studies have developed conventional deep learning models

such as ResNet-50, VGG, and AlexNet to detect abnormalities in brain MR images [6, 8, 12,

13, 15, 24, 25]. However, these models require many parameters, leading to increased compu-

tational complexity. To alleviate this issue, we suggested a lightweight CNN architecture that

reduces the number of trainable and non-trainable parameters, thereby reducing training time

without compromising classification performance.

Fig 2 represents the architecture of our lightweight CNN framework. It consists of three

fundamental blocks, namely, Convolutional, Identity, and Inception, shown in Figs 3–5, in

addition to zero padding, average pooling, and a softmax layer. Here, initially, zero padding

was applied to preserve the characteristics of the image at the edges and control the dimensions

of the output feature map. Then, a sequence of layers was employed to attain significant edge

features such as a 7×7 convolution layer with 32 filters, batch norm, ReLU activation, and 3×3

max pooling with stride 2. After that, we used a series of convolutional, identity, and inception

blocks with specified filters, namely, F1, F2, F3, F4, F5, and F6. The significance of these blocks

is described in the subsequent sections.

A. Identity block. Identity networks, also known as identity-based networks or identity

mappings, are deep neural network architectures that use identity maps to improve learning.

The primary goal of identity networks is to allow for deeper architectures that are easier to

train and converge than traditional deep neural networks. It is achieved by adding identity

maps as skip connections that bypass one or more layers and map inputs directly to outputs.

The identity maps provide a direct path for the gradients to flow during backpropagation, pre-

venting the vanishing or exploding gradients problem and enabling the network to learn more

effectively. The concept of identity networks was introduced in the ResNet (Residual Network)

architecture, which demonstrated state-of-the-art performance in computer vision tasks. Since

then, identity-based architectures have become popular and widely used in various fields,

including computer vision, speech recognition, and natural language processing.

The suggested identity network used in implementing our model is shown in Fig 3. It

mainly consists of three convolution modules (two 1×1 and one 3×3) with filter sizes F1, F2,

and F3, respectively. In addition, each convolution module is preceded by batch norm and

ReLU activation layer. We employed three identity networks in the proposed model with

F1 = 32, 64; F2 = 32, 64; F3 = 64, 256.

B. Convolution block. The main motive of the proposed CNN frameworks is to achieve high

accuracy with low-computational cost. To meet this criterion, we introduced the ‘Convolution’

module into the presented architecture, represented in Fig 4. The suggested convolution mod-

ule has four 1×1 convolution blocks with filters F1, F2, and F3, and followed by a batch norm

and ReLU activation. The 1×1 convolution is primarily utilized in [35] for cross-channel
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pooling, but later it is employed in implementing modern architectures such as GoogleNet,

ResNet, SqueezeNet, and Inception-ResNet since

1. It reduces the number of feature maps.

2. Reduce the computational cost by minimizing the parameter map.

3. Introduce the non-linearity into the network.

4. Create smaller architectures that retain a higher degree of accuracy.

In the suggested CNN architecture, we used two convolution blocks with F1 = 32, 64;

F2 = 32, 64; and F3 = 64, 128 with stride s = 1 and 2.

The proposed CNN model includes a 5×5 average pooling with stride 3, a 1×1 convolu-

tional layer with 64 filters, and a softmax layer. These layers were incorporated before the out-

comes were passed to the segmentation phase, which identifies the affected region of

pathological brain MR images.

Fig 2. The suggested CNN framework.

https://doi.org/10.1371/journal.pone.0306492.g002
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C. Inception block. Inception is a type of deep neural network architecture introduced in

2014 by Google researchers. The name “Inception” refers to the architecture’s ability to exam-

ine multiple scales or “aspects” of the input data simultaneously, in a parallel manner. It is

achieved using multiple branches with different kernel sizes in the convolutional layers, allow-

ing the network to capture features at different scales. The multiple branches then concatenate

their output activations to form a combined feature representation, which is then passed on to

Fig 3. Block diagram of the identity block.

https://doi.org/10.1371/journal.pone.0306492.g003

Fig 4. Block diagram of the convolution block.

https://doi.org/10.1371/journal.pone.0306492.g004
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the next layer. This architecture helps reduce overfitting, improve accuracy, and allow for

more efficient use of computation resources. The Inception architecture has gained wide-

spread popularity in the field of computer vision, particularly for image classification tasks. Its

impact on the development of deep learning models for a variety of applications has been

significant.

The proposed inception network utilized in the implementation of our model is shown in

Fig 5. It mainly consists of six convolution modules (four 1×1, one 3×3, and one 5×5) with fil-

ter sizes F1, F2, F3, F4, F5, and F6 and each convolution module is followed by a ReLU activa-

tion layer. In our model, we applied two inception network architectures with F1 = 32, 64;

F2 = 64, 64; F3 = 96, 128; F4 = 16, 16; F5 = 32, 64; and F6 = 32, 32. The entire flow of the pro-

posed classification model is illustrated in the Algorithm 1.

D. Inception block. Inception is a type of deep neural network architecture introduced in

2014 by Google researchers. The name “Inception” refers to the architecture’s ability to

Fig 5. Block diagram of the inception block.

https://doi.org/10.1371/journal.pone.0306492.g005
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examine multiple scales or “aspects” of the input data simultaneously, in a parallel manner. It

is achieved using multiple branches with different kernel sizes in the convolutional layers,

allowing the network to capture features at different scales. The multiple branches then concat-

enate their output activations to form a combined feature representation, which is then passed

on to the next layer. This architecture helps reduce overfitting, improve accuracy, and allow

for more efficient use of computation resources. The Inception architecture has gained wide-

spread popularity in the field of computer vision, particularly for image classification tasks. Its

impact on the development of deep learning models for a variety of applications has been

significant.

The proposed inception network utilized in the implementation of our model is shown in

Fig 5. It mainly consists of six convolution modules (four 1×1, one 3×3, and one 5×5) with fil-

ter sizes F1, F2, F3, F4, F5, and F6 and each convolution module is followed by a ReLU activa-

tion layer. In our model, we applied two inception network architectures with F1 = 32, 64;

F2 = 64, 64; F3 = 96, 128; F4 = 16, 16; F5 = 32, 64; and F6 = 32, 32. The entire flow of the pro-

posed classification model is illustrated in the Algorithm 1.
Algorithm 1: MRI Classification and Tumor Segmentation
Input: Original MR-T2 images: original images (194 abnormal, 70
normal)
Output: Classified images: classified_images (normal/abnormal labels)
Steps:
1. Pre-processing: For each image in original_images:
• Apply “imadjust” function to enhance contrast and normalize
intensity range to [0.01, 0.99].

• Store the pre-processed images in preprocessed_images.
2. Data Augmentation:
• Apply data augmentation techniques (e.g., flipping, scaling, and
rotation) to preprocessed_images to create a larger dataset
augmented_images.

• Ensure augmented_images maintain a balanced class distribution
(normal/abnormal).

3. CNN Model: Define a lightweight CNN architecture with:
• Convolutional blocks for feature extraction.
• Identity blocks for gradient flow improvement.
• Inception blocks for efficient feature reuse.
• Zero padding to maintain image size during convolution.
• Average pooling for dimensionality reduction.
• Softmax layer for final classification (normal/abnormal).
• Train the CNN model on augmented_images with appropriate loss
function and optimizer.

4. Classification:
• Use the trained CNN model to classify each image in
preprocessed_images.

• Store the predicted labels (normal/abnormal) in
classified_images.

3.2. Segmentation

Segmentation is essential in various image-processing applications, such as medical imaging,

content-based image retrieval, and computer vision. Medical imaging is imperative to identify

the region of interest (ROI) in patients with brain-related diseases. In this study, our approach

aims to differentiate the normal and abnormal regions of brain MR images by thresholding

and morphological operations.

We first pre-process the brain MR images and estimate the global thresholding value using

Tsallis entropy-based multi-level thresholding and differential evolution (DE) to accomplish
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this. This allows us to differentiate the affected and unaffected areas of the image using the esti-

mated thresholding value. However, this process can lead to imperfections in the obtained

threshold image. To address this issue, we perform post-processing using morphological oper-

ations [32, 36]. This method ensures the accuracy of the segmentation results and allows us to

identify the ROI for further analysis.

3.2.1. Multi-level Tsallis entropy. In the context of image processing, entropy relatively

stores the precise variations contained in the image. Let us assume that J be an input image

with the dimensions of U × V and the corresponding normalized histogram of the image J is

denoted by H = (h1, h2, h3. . ., hm), where hm ¼
rm
U�Vð Þ

; 0 � m < L; rm be the number of occur-

rences of gray-level m and L is the total number of gray-levels of J (usually 255). Now, partition

the image into m+1 classes by m thresholds (T) and then estimate the Tsallis entropy [37] for

each partition using Eq (1):

H1 Tð Þ ¼
1 �

XT1

k¼0

pk
P1

� �g

g � 1
;H2 Tð Þ ¼

1 �
XT2

k¼T1þ1

pk
P2

� �g

g � 1
;Hm Tð Þ ¼

1 �
XL� 1

k¼Tmþ1

pk
Pm

� �g

g � 1
ð1Þ

where γ represents an entropy index and it is always a real value.

P1 Tð Þ ¼
XT1

k¼0

hk; P2 Tð Þ ¼
XT2

k¼T1þ1

hk; . . . ; Pm Tð Þ ¼
XL� 1

k¼Tmþ1

hk: ð2Þ

To attain the significant threshold value Topt, the total Tsallis entropy function must be

maximized as follows:

Topt ¼ arg max H1 Tð Þ þH2 Tð Þ þH3 Tð Þ þ . . .þHmþ1 Tð Þ
� �� �

ð3Þ

The above task (Eq (3)) is achieved by a population-based meta-heuristic global optimiza-

tion approach known as Differential Evolution [38]. It is a simple and efficient evolutionary

approach than other existing evolution frameworks like a genetic algorithm (GA) [39], and

particle swarm optimization (PSO) [40]. Here, it is maximized the entropy function by itera-

tively enhancing a candidate solution subject to an evolutionary procedure. The whole process

of DE is illustrated in Fig 6. After performing the thresholding, for an effective outcome, fur-

thermore, we employed post-processing using mathematical morphology concepts.

3.2.2. Post-processing. Post-processing is an essential step in the segmentation process to

remove imperfections that occur in the threshold image. It involves morphological image

operations such as erosion and dilation, taking into account the shape and boundary area of

the tumor. By performing these operations on the threshold image, we can improve the accu-

racy of tumor detection in brain MR images. A disk-shaped template with a radius of ten is

typically used for this purpose. Algorithm 2 outlines the proposed segmentation algorithm.

Algorithm 2: The proposed segmentation approach
1. Read the enhanced brain MR image, J.
2. Perform multi-level Tsallis entropy using the process outlined in

section 3.2.1.
3. Employ DE approach to optimize the entropy function. To achieve

this, here, we consider the following parameters:
Number of thresholds = 6,
Optimization parameters (D) = 12,
Population size (NP) = 10 × D,
Weighting factor (F) = 0.5,
Cross-over probability (CR) = 0.9,
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4. To obtain an appropriate thresholding value (Ta), we consider the
mean of the first three largest thresholding values.

5. Obtain the segmented image by applying the binarization process
using the threshold attained in step 4.

6. For significant brain tumor segmentation, finally, we employed
post-processing which is described in section 3.2.2.

Fig 6. Flow diagram of the differential evolution.

https://doi.org/10.1371/journal.pone.0306492.g006
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3.3. Evaluation measures

The presented framework is assessed through the following metrics [41]:

Accuracy ¼
TP þ TN

TPþ TN þ FPþ FN
ð4Þ

True Positive Rate ðTPRÞ ¼
TP

TP þ FN
ð5Þ

True Negative Rate ðTNRÞ ¼
TN

TN þ FP
ð6Þ

Positive Predictive Value ðPPVÞ ¼
TP

TP þ FP
ð7Þ

F-Score ¼ 2
PPV � TPR
PPV þ TPR

� �

ð8Þ

Dice Similarity Coefficient ðDSCÞ ¼
2� jT \ TGj

jTj þ jTGj
ð9Þ

Area Under Curve ðAUCÞ ¼
TPRþ TNR

2

� �

ð10Þ

where, T = Segmented image; TG = Ground truth; TP = True Positive; TN = True Negative;

FP = False Positive, and FN = False Negative.

4. Experimental results

The simulation results of the suggested approach are presented in the section. To test the reli-

ability of our framework, we conducted extensive simulations based on K-fold cross-validation

(K-FCV). Generally, K-FCV is an easy and effective technique for reducing overfitting com-

pared to other validation strategies [42]. However, choosing of K is a crucial part of the valida-

tion process. A model with a low variance and a high bias will result from a smaller K-fold

sample size. In a similar vein, when the K-fold parameter is significantly increased, the model

becomes overfit. Hence, we chose the number 5 for K because it seemed like a good compro-

mise between reliability and randomness. For ease of comprehension, the presented model

simulation results are subdivided into two sections. Here, the first module identifies the abnor-

mality of brain MR images. The second module deals with the segmentation of pathological

brain MR images.

4.1. Identification of brain abnormality

We used the suggested CNN framework to predict brain MR image abnormality. Our model

was trained on contrasted enhanced augmented images, allowing it to automatically detect rel-

evant edge details through hidden layers and backpropagation learning. To optimize the train-

ing process, we utilized a batch size of 64 and trained for 30 epochs. We also experimented

with various optimizers to minimize loss, including SGDM [43], AdaMax [44], Adam [44],

Adagrad [45], Adadelta [46], RMSProp [47], and Nadam [48], and the specific hyperpara-

meters for each are listed in Table 2.
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Tables 3–9 display the performance of our strategy on various optimizers. It is evident from

these tables that Adadelta underperforms compared to other optimizers, particularly in identi-

fying healthy brain MR images due to the drastic decrease in learning rate in the later stages of

training. We found that Adagrad and RMSProp outperformed Adadelta by about 95%, but

this level of accuracy is not acceptable for clinical diagnosis. On the other hand, SGDM,

Adam, AdaMax, and Nadam produced relatively high accuracy, averaging at around 99%.

However, among these optimizers, Adam and Nadam significantly improved the proposed

technique’s performance by effectively minimizing the loss function. They achieved 99.66%

TPR, 99.2% TNR, 99.71% PPV, 99.52% F-Score, 99.42% AUC, and 99.5% accuracy on the pro-

posed CNN architecture. Primarily it is because they slow down when converging to the local

minima and minimize the high variance.

Table 2. Various optimization algorithms’ parameters considered in this work.

Optimization Parameters

SGDM α = 0.001, momentum = 0.9

Adam α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 1e-07

Adamax α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 1e-07

Adagrad α = 0.001 and ε = 1e-07

Adadelta α = 0.001, ε = 1e-07 and rho = 0.95

RMSprop α = 0.001, ε = 1e-07 and rho = 0.9

Nadam α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 1e-07

Note: α: learning rate; β1, β2: ‘rho’ and decay factors; ε:constant (considered a smaller value for numerical stability)

https://doi.org/10.1371/journal.pone.0306492.t002

Table 3. Performance measures of the proposed CNN architecture: SGDM optimization.

5-FCV (Fold wise) Evaluation Measures (%)

TPR TNR PPV F-Score AUC Accuracy

1 99.7 98.60 99.40 99.55 99.15 99.37

2 100 97.62 99.14 99.57 98.81 99.37

3 100 98.55 99.41 99.7 99.27 99.58

4 98.91 98.11 99.45 99.18 98.51 98.74

5 99.72 94.87 98.34 99.02 97.3 98.52

Mean ± SD 99.67±0.2 97.55±0.7 99.15±0.21 99.40±0.13 98.60±0.35 99.12±0.2

https://doi.org/10.1371/journal.pone.0306492.t003

Table 4. Performance measures of the proposed CNN architecture: Adam optimization.

5-FCV (Fold wise) Evaluation Measures (%)

TPR TNR PPV F-Score AUC Accuracy

1 100 100 100 100 100 100

2 99.7 99.31 99.7 99.7 99.5 99.37

3 99.15 97.52 99.15 98.33 98.33 98.74

4 99.73 100 100 99.86 99.86 99.8

5 99.72 99.16 99.72 99.72 99.44 99.58

Mean ± SD 99.66±0.14 99.19±0.45 99.71±0.15 99.52±0.3 99.42±0.29 99.5±0.21

https://doi.org/10.1371/journal.pone.0306492.t004
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4.2. Segmentation of abnormal brain MR images

Brain tumor segmentation from MR images is a method for differentiating the diseased tissue

from the healthy tissue to differentiate the infected area from its non-infected area at the pixel

level. To meet this criterion, we proposed Tsallis entropy and DE-based multi-level

Table 6. Performance measures of the proposed CNN architecture: Adadelta optimization.

5-FCV (Fold wise) Evaluation Measures (%)

TPR TNR PPV F-Score AUC Accuracy

1 96.83 72.86 90.56 93.60 84.84 90.33

2 95.96 71.87 90.24 93.01 83.91 89.47

3 95.78 78.99 93.16 94.45 87.38 91.58

4 95.08 73.64 90.63 92.80 84.36 89.26

5 94.85 70.4 89.97 92.34 82.62 88.42

Mean ± SD 95.7±0.35 73.55±1.46 90.91±0.57 93.24±0.36 84.62±0.78 89.81±0.53

https://doi.org/10.1371/journal.pone.0306492.t006

Table 5. Performance measures of the proposed CNN architecture: Adamax optimization.

5-FCV (Fold wise) Evaluation Measures (%)

TPR TNR PPV F-Score AUC Accuracy

1 100 94.91 98.35 99.17 97.45 98.74

2 100 99.21 99.71 99.85 99.61 99.8

3 99.72 94.78 98.35 99.21 97.25 98.52

4 99.7 98.58 99.4 99.55 99.14 99.37

5 100 95.52 98.3 99.14 97.76 98.74

Mean ± SD 99.88±0.07 96.6±0.94 98.82±0.3 99.38±0.14 98.24±0.47 99.03±0.23

https://doi.org/10.1371/journal.pone.0306492.t005

Table 7. Performance measures of the proposed CNN architecture: Adagrad optimization.

5-FCV (Fold wise) Evaluation Measures (%)

TPR TNR PPV F-Score AUC Accuracy

1 87.75 99.20 99.67 93.33 93.47 90.75

2 99.16 90.75 96.97 97.74 94.95 97.05

3 91.64 100 100 95.63 95.82 94.10

4 94.85 99.20 99.67 97.20 97.02 95.90

5 99.72 93.38 97.78 98.74 96.55 98.10

Mean ± SD 94.62±2.27 96.5±1.86 98.18±0.61 96.53±0.94 95.56±0.63 95.18±1.3

https://doi.org/10.1371/journal.pone.0306492.t007

Table 8. Performance measures of the proposed CNN architecture: Nadam optimization.

5-FCV (Fold wise) Evaluation Measures (%)

TPR TNR PPV F-Score AUC Accuracy

1 99.42 100 100 99.71 99.71 99.58

2 100 98.47 99.42 99.71 99.23 99.58

3 99.44 99.14 99.72 99.57 99.29 99.36

4 99.16 99.16 99.71 99.43 99.16 99.16

5 100 99.24 99.71 99.85 99.62 99.78

Mean ± SD 99.60±0.17 99.2±0.24 99.71±0.09 99.65±0.07 99.4±0.11 99.5±0.106

https://doi.org/10.1371/journal.pone.0306492.t008
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thresholding approach in this work. Here, initially, partitions the image into six classes (e.g.,

class 1, class 2. . . class 6) using randomly initialized thresholding values says that t1, t2. . . t6 (t1

< t2< t3 <. . .. < t6). Afterward, we calculate the Tsallis entropy from each class and then esti-

mate the optimal thresholding value with the help of DE. The implications of the suggested

segmentation model on single and multiple tumors are illustrated in Figs 7 and 8. Further, to

test the impact of the proposed segmentation, we collected 25 infected brain tumor images

from the database mentioned in section 3.1.1 and the corresponding inferences are shown in

Table 10 and the highest attained measures are highlighted in bold face.

5. Discussion

Detecting brain tumors from MR images is a difficult and intricate task, mainly due to the

impact of noise, limited data, and the movements of organs within the brain. To resolve these

issues, researchers introduced various methodologies (refer to Section 2) based on fundamen-

tal steps involved in machine learning. However, they have a few problems (refer to Section

2.1). Hence, in this work, we presented a distinctive methodology for an early diagnosis of

brain tumors using CNN and multi-level image thresholding. Table 11 indicates the classifica-

tion performance of the suggested model with other state-of-the-art approaches, as discussed

in Section 2. From this, we noted that the suggested diagnosis model attained approximately

1.2% higher accuracy than the conventional pre-trained CNN architectures [6, 9, 14, 20, 21,

23, 24] and other deep learning frameworks. This slight improvement is very important in the

brain image analysis since brain tumor is life-threatening disease. The significant merits of the

presented technique are:

1. Our model instantaneously reads the structure of brain MR images, extracts the hidden

details for identifying abnormal patients, and minimizes the intervention of human beings.

2. Required a smaller number of parameters than the pre-trained CNN models, that is

approximately 5, 53,794 (or 0.55 million), including 5, 49,890 trainable and 3904 non-

trainable.

3. Overcome the over-fitting issues and improve the model generalization ability by intro-

ducing the weights into the convolutional layers using the concept of ‘He weight

initialization’.

4. Significantly obtained high classification accuracy due to image augmentation.

5. Effectively extract the hidden texture details without the intervention of humans.

Table 9. Performance measures of the proposed CNN architecture: RMSProp optimization.

5-FCV (Fold wise) Evaluation Measures (%)

TPR TNR PPV F-Score AUC Accuracy

1 99.72 88.13 96.22 97.94 93.92 96.85

2 100 73.68 90.71 95.13 86.84 92.63

3 94.67 99.15 99.70 97.12 96.91 95.78

4 99.41 97.74 99.12 99.26 98.57 98.94

5 99.13 93.22 95.03 97.04 96.17 95.57

Mean ± SD 98.58±0.98 90.38±4.6 96.15±1.61 97.3±0.67 94.48±2.05 95.95±1.02

Note: *SD stands for standard deviation

https://doi.org/10.1371/journal.pone.0306492.t009
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Similarly, when comparing our method with the existing segmentation models, we found

that a 3% increase in DSC value (Table 12). In the medical imaging, this improvement is cru-

cial because it improves the efficiency of diagnostic tool. The main motives behind the success

of the suggested segmentation model are as follows:

Tsallis entropy is ability to analyze the non-extensive details.

Fig 7. The results of the applied segmentation technique to detect single tumor can be observed in four sets of images. (a)-(d) shows

the original input images, (e)-(h), the images have undergone contrast enhancement through intensity transformation to improve the

visibility of the tumors, (i)-(l), the segmentation technique has been applied using multi-level thresholding to distinguish the tumor

regions from healthy, (m)-(p), refined segmented images.

https://doi.org/10.1371/journal.pone.0306492.g007
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Fig 8. The results of the applied segmentation technique to detect multiple tumors can be observed in four sets of images. (a)-(d) shows the original

input images, (e)-(h), the images have undergone contrast enhancement through intensity transformation to improve the visibility of the tumors, (i)-(l), the

segmentation technique has been applied using multi-level thresholding to distinguish the tumor regions from healthy, (m)-(p), refined segmented images.

https://doi.org/10.1371/journal.pone.0306492.g008
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1. Tsallis entropy is taken into consideration of correlation between sub-samples due to its

pseudo-additivity property.

2. Differential evolution requires less parameter tuning, fast and accurate convergence

towards finding a global minimum.

5.1. Advantages

Major advantages of the proposed model compared to the existing approaches stated above are

as follows:

• Efficiency: Lightweight CNN architectures require less training time and computational

resources compared to complex models. This makes them suitable for deployment on

devices with limited processing power.

• Improved Classification Accuracy: The use of a CNN can potentially achieve higher accu-

racy in classifying normal and abnormal MR images compared to traditional machine learn-

ing methods. This leads to a more reliable identification of potential tumor cases.

• Better Tumor Segmentation: The Tsallis entropy and DE-based multi-level thresholding

approach offers a clear method for segmenting the tumor region at the pixel level. This

Table 10. Evaluation of metrics of the suggested segmentation strategy.

Images DSC PPV TPR TNR F-Score AUC Accuracy

1 90.25 99.94 99.14 98.64 99.53 98.89 99.12

2 90.28 99.94 99.65 96.84 99.79 98.25 99.6

3 92.57 99.48 99.3 93.63 99.38 96.46 98.87

4 92.05 99.6 99.2 94.53 99.39 96.87 98.88

5 97.36 99.8 99.95 95.83 99.87 97.89 99.76

6 95.78 99.91 99.91 95.78 99.91 97.85 99.83

7 88.62 99.96 99.06 99.09 99.51 99.08 99.06

8 96.86 99.47 99.77 99.24 99.87 99.51 99.75

9 94.02 99.93 99.67 97.87 99.8 98.77 99.62

10 96.71 99.99 99.91 99.16 99.95 99.53 99.9

11 95.34 99.4 99.17 96.08 99.28 97.62 98.76

12 95.59 99.4 99.68 94.31 99.53 96.99 99.16

13 91.28 99.55 99.28 93.16 99.41 96.22 98.9

14 89.94 100 98.73 100 99.36 99.37 98.8

15 89 99.99 98.06 99.94 99.02 99 98.2

16 88.6 100 99.82 100 99.91 99.91 99.83

17 91.58 98.93 99.56 88.44 99.24 94 98.61

18 89.97 99.36 99.31 90.32 99.34 94.82 98.76

19 95.48 99.95 99.85 97.76 99.9 98.81 99.81

20 90.47 100 99.47 99.82 99.73 99.64 99.48

21 94.94 100 99.45 100 99.72 99.73 99.48

22 96.46 99.94 99.85 97.91 99.89 98.88 99.79

23 91.58 99.78 99.48 94.79 99.63 97.14 99.29

24 91.08 100 99.47 100 99.73 99.73 99.48

25 95.32 99.77 100 91.42 99.88 95.71 99.77

Average 92.84 99.76 99.47 96.58 99.62 98.03 99.3

https://doi.org/10.1371/journal.pone.0306492.t010
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provides a detailed map of the diseased tissue, aiding in treatment planning and surgical

procedures.

• Potential for Automation: By automating the classification and segmentation process, this

methodology can significantly reduce the workload for radiologists and improve the effi-

ciency of brain tumor diagnosis.

5.2. Limitations

As we know every approach have some pros and cons, here, we listed a few limitations of the

presented framework:

Table 11. Classification performance of the implemented approach and state-of-the-art works.

Methodology Metrics (%)

TPR TNR Accuracy

BrainMRNet [8] 96 96.08 96.05

ANN [5] 90.9 96.78 94.07

AlexNet+VGG-16+RFE [6] 97.83 95.74 96.77

2D-CNN [12] 94.11 100 97.14

AlexNet [9] 100 75 95.71

DCNN [13] 100 96.67 98.28

NLCMFO + CNN [18] 96 98.6 97.4

EWS+ResNet 50 [19] 96.67 84.21 92

VGG-19 [20] 100 94.73 98

VGG-16+SVM [14] 93.04 82.16 88.35

GLCM+ANFIS [7] 96.2 97.7 98.7

CS+KNN [16] 90.3 91 98.12

ELBP+SVM [11] 98.48 94.28 97.02

PDCNN [25] 95.65 100 97.33

Deep CNN [23] 96.88 96.88 96.88

CNN [24] 98.20 98.33 98.20

MHO-CNN [27] 98.7 98.3 98

SVM [28] 94.2 84.78 90.68

Hybrid Approach [29] 100 90.9 96.7

VGG 19+SSA+Cubic SVM [30] 99 98.36 99.1

The Proposed Model 99.6 99.2 99.5

https://doi.org/10.1371/journal.pone.0306492.t011

Table 12. Segmentation performance of the implemented model and state-of-the-art works.

Methodology DSC

NLR-MRF [10] 0.77

SOM +FKM [4] 0.47

KFCM +PSO [15] 0.85

Cuckoo Search [16] 0.9

FCM +PSO [22] 0.87

IMV-FCM [17] 0.89

CNN+RPCA [26] 0.91

The Proposed Model 0.93

https://doi.org/10.1371/journal.pone.0306492.t012
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• Sensitivity to Training Data: Lightweight CNN’s can be sensitive to the quality and size of

the training dataset. Limited data or data with specific biases might affect the model’s

generalization.

• Requirement for Pre-processing: The Tsallis entropy and DE-based approach might

require specific pre-processing steps for optimal performance. This can add complexity to

the overall pipeline.

• Potential for Inaccuracy: Thresholding techniques can be susceptible to noise and artifacts

in MR images, leading to inaccurate segmentation boundaries.

5.3. Future scope

To limit the above-mentioned issues, in the future our work is extended using the following

technologies:

• Deep Learning Integration: Explore integrating the Tsallis entropy and DE-based approach

with deep learning architectures for potentially improved segmentation accuracy and

robustness to noise.

• Real-time Applications: Investigate methods to optimize the methodology for real-time

applications, such as image-guided surgery or intra-operative tumor identification.

• Explainable AI: Explore techniques for making the CNN model more interpretable. This

can help healthcare professionals understand the rationale behind the model’s predictions

and build trust in its results.

• Generalizability Studies: Conduct studies to evaluate the generalizability of the methodol-

ogy on diverse datasets with different types of brain tumors and image acquisition protocols.

• Incorporation of Clinical Data: Consider incorporating additional clinical data (e.g.,

patient history) into the model to potentially improve the accuracy of both classification and

segmentation.

6. Conclusion

In this study, we developed a new methodology to distinguish between normal and abnormal

MR images by identifying the infected areas from brain tumor images. Here, preprocessing is

primarily used to reduce the effects of unwanted artifacts that happen while capturing MR

images. Then, we used image augmentation based on geometric transformations to improve

the predictive model’s performance. Further, we extracted the hidden texture details from the

augmented images and classified them as normal and abnormal by the suggested CNN archi-

tecture. Finally, MR images of the pathological brain were subjected to multi-level threshold-

ing to isolate the region of interest. From the empirical findings of brain MR images, we

witnessed that our suggested model identifies abnormal patients with an accuracy of 99.5%.

From the detailed analysis of experimental assessments, it is noted that compared to the exist-

ing approaches, the proposed methodology accurately classifies the given brain MR images as

normal and abnormal with 99.5% accuracy and effectively identifies the location of affected

regions with 0.93 DSC. Hence, the presented technique can be used as a powerful tool for MR-

based brain tumor classification and identification. In the future, we would like to extend our

work on 3-dimensional brain MR images.
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