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Abstract

Automatic and accurate segmentation of medical images plays an essential role in disease

diagnosis and treatment planning. Convolution neural networks have achieved remarkable

results in medical image segmentation in the past decade. Meanwhile, deep learning mod-

els based on Transformer architecture also succeeded tremendously in this domain. How-

ever, due to the ambiguity of the medical image boundary and the high complexity of

physical organization structures, implementing effective structure extraction and accurate

segmentation remains a problem requiring a solution. In this paper, we propose a novel

Dual Encoder Network named DECTNet to alleviate this problem. Specifically, the DECT-

Net embraces four components, which are a convolution-based encoder, a Transformer-

based encoder, a feature fusion decoder, and a deep supervision module. The convolutional

structure encoder can extract fine spatial contextual details in images. Meanwhile, the

Transformer structure encoder is designed using a hierarchical Swin Transformer architec-

ture to model global contextual information. The novel feature fusion decoder integrates the

multi-scale representation from two encoders and selects features that focus on segmenta-

tion tasks by channel attention mechanism. Further, a deep supervision module is used to

accelerate the convergence of the proposed method. Extensive experiments demonstrate

that, compared to the other seven models, the proposed method achieves state-of-the-art

results on four segmentation tasks: skin lesion segmentation, polyp segmentation, Covid-19

lesion segmentation, and MRI cardiac segmentation.

Introduction

In order to assist physicians in understanding and analyzing medical images, medical image seg-

mentation has received increasing attention due to its efficient and effective characteristics in

recent years [1], such as skin lesion segmentation [2–4], cardiac and myocardial segmentation

[5–8], colonoscopic polyp segmentation [9–12], and Covid-19 lesion segmentation [13–15].

Accurate semantic segmentation of medical images significantly facilitates quantitative pathol-

ogy assessment, treatment planning, and disease progression monitoring. However, manual
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image segmentation is time-consuming, requiring expertise and limited reproducibility. There-

fore, it is essential to develop approaches to achieve automatic medical image segmentation.

Convolution Neural networks(CNNs) have achieved considerable success in medical image

analysis in the past decade. They have achieved state-of-the-art performance in a large number

of segmentation tasks. Compared with traditional methods, CNNs have superior modeling

representation capability and automatically learn task-relevant features in medical images. In

particular, the most extensive application is the UNet [16] architecture based on the encoder

and decoder. In UNet, the encoder analyzes the semantic image information and learns high-

dimensional features, and the decoder performs image segmentation according to the repre-

sentations. Since the encoder lacks the details of the original image when learning high-dimen-

sional representations, skip connections are employed to supplement the detailed information

in the decoder’s features, and this technique significantly improves the image segmentation

performance.

With the great success of Transformer architecture in the field of NLP, several studies have

been devoted to transferring Transformer architecture to the computer vision domain. The

Vision Transformer(ViT) model [17] is the first to demonstrate the efficacy of the Transformer

architecture in computer vision. The advantage of the ViT model is that it can establish the

dependence between long-term pixels in images, improving the performance in visual tasks.

Swin Transformer [18] also demonstrates the efficacy of Transformer architecture with hierar-

chical representations for vision tasks. However, different from CNNs, the Transformer archi-

tectures need more annotated samples to perform better than the convolutional models due to

the lack of inductive bias. The convolution-based models can extract low-dimensional seman-

tic information from images and establish fine spatial detail features, but they are not perfect

for establishing global relationships due to the limits of the receptive field. On the contrary, the

Transformer architectures provide excellent compensation by achieving global information

modeling, which is the drawback of the convolution-based models. For this reason, we com-

bine the advantages of convolution and Transformer structures to design a novel medical

image segmentation model.

Specifically, we propose a segmentation model with a dual encoder that enables combining

the advantages of the convolution and Transformer architectures. The convolution encoder

with channel and spatial attention can sufficiently extract the local context information. In

contrast, the Swin Transformer architecture is utilized as the fundamental component of the

Transformer encoder, which is based on the window and shift-window self-attention tech-

nique and is sensitive to global context information. It is proved in [19, 20] that the visual fea-

tures extracted by the Transformer architecture differ from the convolution architecture. Guo

et al. [21] proves that a strong backbone is a key to semantic segmentation. In addition, to

improve the Swin Transformer architecture for dense prediction tasks, we designed a STP

Block in the Swin Transformer encoder to enable the encoder to extract shallow semantic

information in the initial stage.

Similar to UNet, DECTNet employs the skip connection between the encoder and the

decoder. However, because the stage of the convolutional encoder outputs features at different

scales from the stage of the Transformer encoder, we design a feature fusion decoder stage. It

can fuse features of different scales from different stages and select the representations benefi-

cial to specific tasks by the unique feature selection module. We further design a deep supervi-

sion module to supervise the decoder stage outputs. It can accelerate the convergence of the

model and enable the model to obtain superior segmentation performance.

Like our proposed DECTNet, Li et al [22] designed a segmentation model with a dual

encoder based on convolution and Transformer architectures named CATS. However, CATS

applies the vanilla ViT [17] architecture in the Transformer-based encoder, which increases
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the parameters and the computational complexity of the segmentation model. In addition, the

DECTNet contains abundant channels and spatial attention, feature selection, and fusion

modules to extract suitable representations from redundant features for specific segmentation

tasks, which is not available with the CATS method but is essential for dense prediction tasks.

In summary, the main contributions of this paper are reflected in the following three aspects:

• We propose a novel segmentation method called DECTNet, which has two encoders based

on convolution and Swin Transformer architectures. The convolution-based encoder

through the dense connections and CBAM module enables to select the specific task-relevant

local features. Meanwhile, by combining the STB module, the standalone and entire Swin

Transformer encoder allows the efficient establishment of the global representation in

images.

• To learn knowledge of the features from different encoders, we design a practical feature

fusion decoder, which integrates the representation from the convolution encoder and the

Swin Transformer encoder. It enables to select the valuable information from features for

segmentation tasks.

• We perform extensive experiments in four medical image segmentation tasks. Experiments

show that our model performs best on most metrics compared to other state-of-the-art mod-

els. Furthermore, the ablation experiments demonstrated the effect of each component of

the proposed DECTNet.

The remainder of this paper is arranged as follows. Section Related works introduces the

related works. Section Materials and methods describes the proposed DECTNet in detail. Sec-

tion Experiment and Section Results present the experiment implementation and results. Sec-

tion Discussion and Section Conclusion contain the discussion and conclusions.

Related works

According to the different network structures, the existing medical image segmentation meth-

ods based on deep learning can be divided into two categories: 1) the methods based on convo-

lution structures; and 2) the methods that combine convolution and the self-attention

mechanism. Although some models entirely adopt the self-attention mechanism as the feature

extraction technology, the number of these models is relatively small, so we classify them into

the second category.

Methods based on convolution network

In recent years, numerous convolution-based segmentation models have significantly pro-

gressed in various segmentation tasks. In particular, FCN [23] is one of the most notable

approaches. It has the analysis and synthesis path consisting of cascaded convolution, pooling,

and deconvolution layers. Compared to FCN, the UNet has a skip connection between the

analysis and synthesis paths, which supplements the detailed information lacking in the fea-

tures of synthesis paths. Because of its flexible structure, UNet is widely applied in medical

image segmentation.

Compared to UNet, the UNet++ [24] and CPFNet [25] apply additional skip connections

between the encoder and decoder to aggregate features from different semantic scales. In addi-

tion, DeepLabv3+ [26] and CENet [27] employ multiple convolutional branches with various

receptive fields to improve the multi-scale information capture capability of the model.

As the channel and spatial attention are effective in visual tasks [28, 29], several approaches

combining convolution and attention mechanism have emerged. For example, [30, 31] use
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channel attention to guide shallow-level learning of global feature representation. In contrast,

the attention UNet proposed in [32] combines spatial attention with UNet structure for

abdominal pancreas segmentation from CT images. Roy et al. [33] propose a scSE framework

that combines spatial attention and channel attention, which has been proven effective on

whole brain and abdominal multiple organs segmentation tasks. In addition, Song et al. [34]

and other works [35, 36] also start from the perspective of the combination of convolution and

attention mechanism to design models to deal with specific medical image segmentation tasks.

Methods combined convolution with self-attention mechanism

With the success of the Transformer architecture in natural language processing, its applica-

tion to computer vision has become a popular research domain. ViT [17] is the first method to

successfully employ the Transformer architecture to solve computer vision problems. It

divides images into patches and establishes global context dependencies by computing the

similarity between patches. The Swin Transformer [18] is an improved version of the ViT. It

introduces the window and shift-window self-attention module to reduce the computational

complexity of the Transformer structures. Furthermore, different from ViT, Swin Transformer

allows for producing multiple scales of features, essential for applying the Transformer struc-

ture on dense predictions, such as object detection and image segmentation.

Recently, researchers have attempted to combine traditional convolution with the self-

attention mechanism to design models with superior performance in medical image segmenta-

tion tasks. In particular, TransUNet [37] combines ViT and UNet, which employs an encoder-

decoder and convolution portion to extract local contextual information in high-resolution,

low-dimension features. It also uses the Transformer portion to establish the global relation-

ships of patches in low-resolution, high-dimension features. TransUNet establishes global

dependencies between patches of high-dimensional representation through self-attention but

fails to establish long-term reliance between the patches of low-dimensional semantic features.

Cao et al. [38] proposed the SwinUNet, which employs the Swin Transformer Blocks in the

UNet backbone instead of convolution as the feature extraction technique. After the pre-train-

ing process, this method performs excellently on multi-organ and cardiac segmentation tasks.

In addition, Hung et al. [39] designed a cross-slice attention Transformer module. Combin-

ing it with convolutional networks and skip connections enables the accurate segmentation of

prostate partitions in MRI. Liu et al. [40] designed the MCTHNet by integrating convolution

and transformer structures for multi-modal medical image segmentation with limited annota-

tion, and their approach achieved the best semi-supervised results on several multi-modal

datasets. Furthermore, TransFuse [41], Medical Transformer [42], TransBTS [43], FCT [44],

and HiFormer [45] combine self-attention with convolutional networks to achieve excellent

results in specific medical image segmentation tasks.

Although increasing research has been focused on combining the self-attention mechanism

and convolution to improve the performance of segmentation models, only some studies have

noticed that the strong backbone of the Transformer architecture may have positive impacts

on image segmentation. Therefore, we combine the Transformer structure rather than the

simple self-attention technique with convolution architecture.

Materials and methods

Overview

Fig 1 illustrates the overall architecture of our proposed DECTNet. The DECTNet is based on

two-encoders-single-decoder architecture and consists of four main parts: convolution struc-

ture encoder, Swin Transformer structure encoder, feature fusion decoder, and deep
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supervision module. For the convenience of expression, we denote the four main components

as C-Encoder, ST-Encoder, F-Decoder, and DS-Module, respectively. In the following subsec-

tions of this section, we describe the structure of each component of the proposed method in

detail.

Convolution-based encoder

As shown in Fig 1, the convolution-based encoder of the DECTNet consists of four stages.

Like the UNet encoder stage, each part in the C-encoder has the same structure but operates

on different scale features. Except for the deepest stage, there is a downsampling operation

between different stages, which reduces the scale of the features but increases the channels of

features to extract high-dimension representations. The detailed design of the single stages is

shown in Fig 2.

Fig 2 demonstrates the detailed structure of the C-encoder stage. Each stage combines a

dense connection block [46] and a CBAM block [28]. In a single stage, the features pass into

the dense connection block for adequate information extraction and then through the CBAM

module to further enhance the valuable information for the segmentation task. It should be

noted that in a single stage, the scale and channels of the features are not changed.

Compared with the Residual block, the dense connection block has a more abundant resid-

ual connection, which can fully utilize features and reduce the impact of gradient disappear-

ance. When the features are output from the dense connection block, they are fed to the

CBAM module. The role of the CBAM module is to add a spatial attention mask and channel

attention mask to the features. It can make the model pay more attention to the task-related

information and ignore the task-independent information of the features. Compared to the SE

Fig 1. Overview of our proposed DECTNet approach with dual-encoder-single-decoder structure. DECTNet consists of four components:

Convolution-based encoder, Swin Transformer-based encoder, Feature Fusion decoder, and Deep Supervision module. The detailed composition of each

component is described in the following sections.

https://doi.org/10.1371/journal.pone.0301019.g001
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module [29], the CBAM module adds more affluent spatial attention, enhancing the valid

information in the features.

Due to the DECTNet having two encoders, the model parameters increase significantly. In

order to reduce the model parameters, we use the depth separable convolution [47] instead of

the traditional convolution in the C-encoder. In addition, we use a traditional convolution

with a step length of 2 and a convolution kernel size of 2 as the downsampling operation,

reducing the scale of the features while increasing its channels.

Swin Transformer-based encoder

The other encoder of the DECTNet consists of the Swin Transformer architecture, detailed in

Fig 3(a). Compared with the original ViT architecture, the Swin Transformer structure yields

hierarchical features essential for image segmentation. Fig 3(a) also shows the scale of features

through each stage of the ST-Encoder. The structure of Patch Merging blocks is identified with

the Swin Transformer [18].

Compared with image recognition, semantic segmentation needs more semantic details

and structured information, such as spatial context information. Therefore, using large steps

to initialize the image, just as in the traditional ViT method, results in the absence of semantic

information in raw images. Small-step convolution operation instead of this process improves

the performance of models for semantic segmentation tasks. Therefore, we designed the STP

block, as shown in Fig 3(b). It extracts low-dimensional features from the image using the

structure of small-step convolution of residual blocks. The purpose of the STP block is to

adjust the resolution and channels of low-dimensional features to provide features rich in

Fig 2. The detailed structure of the convolution encoder stage. This stage consists of the DenseConnection Block and the CBAM Block, which are

applied to sufficiently extract detailed information from the images.

https://doi.org/10.1371/journal.pone.0301019.g002
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detailed semantic information to ST-Encoder stages, thereby improving the segmentation per-

formance of the method.

The structure of the Swin Transformer Block is shown in Fig 3(c). Compared with the tradi-

tional ViT architecture, It utilizes a window-based self-attention module (W-MSA) and a

shifted window-based self-attention module (SW-MAS) to improve computational efficiency.

The W-MSA and the SW-MSA structures are described in [18]. In the Swin Transformer

Block, the procedure for processing the features can be formulated as follows:

ẑ1 ¼W-MSAðLNðz1� 1ÞÞ þ z1� 1 ð1Þ

z1 ¼ MLPðLNðẑ1ÞÞ þ ẑ1 ð2Þ

ẑ1þ1 ¼ SW-MSAðLNðz1ÞÞ þ z1 ð3Þ

z1þ1 ¼ MLPðLNðẑ1þ1ÞÞ þ ẑ1þ1 ð4Þ

where ẑ l and zl are the output features of the (S)W-MSA and the MLP module at layer l. Due

to the complementary and similarities between the W-MAS and the SW-MSA, even numbers

of Swin Transformer Block are required at each Swin Transformer encoder stage, which is

[2, 2, 6, 2] in the proposed DECTNet, just as shown in Fig 3(a).

Feature fusion decoder

Due to the dual encoder architecture of the DECTNet, the decoder is required to receive differ-

ent scale features from the skip connection. Therefore, we design a novel Feature Fusion

Decoder to suit the particular structure of the proposed method. As shown in Fig 1, similar to

the two encoders in the DECTNet, the proposed F-Decoder consists of several same structure

stages. In addition to the stage that processes the lowest resolution features, each decoder stage

Fig 3. Overview of the Swin Transformer-based encoder of the proposed DECTNet. (a) Components of the SwinTransformer-based encoder. It includes

scaling the features in the ST-Encoder. (b) Composition of the STP block (c) Two successive Swin Transformer Block. W-MSA and SW-MSA are multi-

head self-attention modules with regular and shifted windowing configurations.

https://doi.org/10.1371/journal.pone.0301019.g003
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receives three collections of features from the skip connections of the two encoder stages and

the prior stage in the F-decoder. Fig 4 illustrates the details of the composition of a F-Decoder

stage.

Fig 4 clearly shows that the stage of the F-decoder consists of a feature aggregation block

and a feature selection block. The role of the feature aggregation block is to unify the different

resolution features from different parts and adjust the redundant channels of the features. It

first connects the features from the ST-Encoder stage and the prior stage of the F-Decoder.

Then, it adjusts the channels and resolution by transposed convolution for the two combined

features and concatenates the features from the C-encoder stage with the combined features.

Finally, it adjusts the channels of the features by 1×1 convolution and batch normalization

operations to suit the feature selection block.

The purpose of the feature selection block is to reinforce the meaningful information about

the features from the feature aggregation block through the attention mechanism. It applies

the SE module [29] to add channel attention to the features, enhancing features that benefit

tasks and ignoring the tasks-irrelevant features. It should be noted that the initial stage of the

F-Decoder, that is, the intersection of the C-Encoder stage and the ST-Encoder stage, has only

two part features as inputs, which are from the C-Encoder stage and the ST-Encoder stage

since there are no features from the prior stage of F-Decoder.

Deep supervision and loss function

It demonstrates in [48, 49] that the deep supervision technique could accelerate the conver-

gence of the segmentation method and achieve better performance. For this reason, we intro-

duce a deep supervision module to supervise the output features of decoder stages. The detail

of the DS-Module is shown in Fig 5.

The structure of the DS-Module is quite simple. For the output features of a particular

decoder stage, the DS-Module consists of the Convolution, Batch Normalization, and UpSam-

ple operations, where transposed convolution is adopted to implement UpSample. For features

of different scales output from different stages, DS-Module first uses 1 × 1 convolution and

batch normalization to adjust the number of channels to the same. Then it uses transpose con-

volution to upsample feature size from different stages to label size, and the channels are

adjusted to classification quantity. Thus, the confidence maps produced by the F-Decoder and

DS-Module have identical resolutions.

Fig 4. The detailed structure of the feature fusion decoder stage. The stage has two components: the feature aggregation block and the feature selection

block, which are applied to integrate and select features.

https://doi.org/10.1371/journal.pone.0301019.g004
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Both the F-Decoder and the DS-Module output confidence maps with the same resolution,

and each confidence map generates a loss with the label during the training process. Therefore,

the loss function of the DECTNet can be defined as the sum of all losses between the prediction

confidence maps and the corresponding labels. It can be defined as:

Ltotal ¼
XK

k¼1

oklk ð5Þ

where K represents the quantity of prediction confidence maps, lk represents the loss calculated

by the kth prediction confidence map and segmentation mask, and ωk is the weight of the cor-

responding loss. In this paper, we apply Dice Loss and cross-entropy loss as the lk, which can

be defined as:

lðkÞ ¼ a � lðkÞce þ ð1 � aÞ � l
ðkÞ
Dice ð6Þ

In DECTNet, K and α are set to 4 and 0.5, respectively. l4 refers to the loss resulting from the

final confidence maps of the model against the ground truth. l1-l3 are the losses established

from the confidence maps output by the DS-Module. To ensure the dominance of l4 in overall

loss, we set ω4 as 0.7, and ω1-ω3 are all set to 0.1.

Experiment

Datasets

In this paper, we evaluate the segmentation performance of the proposed DECTNet in four

medical image segmentation tasks: skin lesion segmentation, Covid-19 lesion segmentation,

Fig 5. The detailed structure of the deep supervision module. The DS-Module converts different scale features of the F-decoder into the same scale

confidence maps.

https://doi.org/10.1371/journal.pone.0301019.g005
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polyp segmentation, and cardiac segmentation. For the skin lesion segmentation task, we uti-

lize the ISIC2017 dataset [50], collected from different leading clinical centers internationally

and acquired from different devices. This dataset includes 2000 images for training, 150 for

validation, and 600 for testing.

The QaTa-COV19 dataset [51] is employed for the Covid-19 lesion segmentation task, col-

lected by researchers from Qatar University and Tampere University. This dataset contains

9258 chest radiographs of COVID-19 lesions with manual annotation, which includes 7145

images in the training dataset and 2113 images in the test dataset. And we choose randomly

750 samples from the training dataset as the validation dataset.

Following [41], we adopt five public datasets in the polyp segmentation task: Kvasir [52],

CVC-ClinicDB [53], CVC-ColonDB [54], EndoScene [55], and ETIS [56]. The same split as

described in [57, 58] are adopted, i.e., 1450 training images are solely selected from Kvasir and

CVC-ClinicDB while 798 testing images are from all five datasets. In addition, we randomly

choose 10% of the training samples as the validation dataset.

The dataset for the cardiac segmentation task is provided by the Multi-Centre, Multi-Ven-

dor & Multi-Disease (M&Ms) Cardiac Image Segmentation Challenge [59], which was

acquired at six different clinical centers using MRI scanners from four vendors. The samples

are segmented by experienced clinicians from the respective institutions, including contours

for the left ventricle(LV) and right ventricle (RV), as well as for the left ventricular myocar-

dium (MYO). Due to the M&Ms dataset containing 3D samples, we convert the 3D voxel sam-

ples into 2D slices, in which the training dataset, validation dataset, and test dataset,

respectively, consist of 3518, 450, and 1024 images.

Implementing details and evaluation metrics

The implementation of the proposed DECTNet is based on the public PyTorch platform and

NVIDIA GeForce RTX 3090. During the training process, we adopt stochastic gradient

descent(SGD) as the optimizer to optimize our method, where the momentum and weight

decay are set to 0.9 and 0.0001, respectively. The initial learning rate is set to 0.004, and the

“poly” learning rate policy is adopted, which is the initial learning rate multiplied by

1 � iter
total iter

� �power
, where power is set to 0.9. In addition, The batch size and maximum epoch

are set to 16 and 100, respectively.

Since samples from different datasets have different scales and distributions, firstly, we uni-

formly resized the input samples as 224×224. Then we normalized the samples as zero mean

and unit variance, and finally, the random rotation and flip operations were adopted as the

data augmentation strategy. In DECTNet, the total number of training parameters is 12.6M,

with the initial channels of the convolution structure set to 32 and the initial channels of the

transformer structure set to 48. When the initial channels of the convolution structure are set

to 16 and the initial channels of the transformer structure are set to 24, the total number of

training parameters is reduced to 3.2M.

In order to adequately evaluate the performance of the proposed method, we employ eight

evaluation metrics in the four segmentation tasks, which are the Dice similarity coefficient

(DSC), Jaccard Index(Jacc), Accuracy(Accu), Sensitivity(Sens), Precision(Prec), Specificity

(Spec), Average symmetric surface distance(ASD) and Hausdorff distance (HD). The different

evaluation metrics are utilized for different segmentation tasks.

In addition, we compared the proposed DECTNet with seven other segmentation methods,

which are UNet [16], UNet++ [24], AttentionUNet [32], DeepLabV3+ [26], CENet [27],

TransUNet [37], TransFuse [41]. For a fair comparison, all the segmentation models are

trained from scratch.
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Results

Skin lesion segmentation

We first verify the effect of the proposed DECTNet in the skin lesion segmentation task. The

Dice, Jaccard, Accuracy, Sensitivity, Precision, and Specificity are adopted as the evaluation

metrics in this task. Table 1 shows the quantitative results of our model and other segmenta-

tion methods. Our model achieved the best performance in mean Dice, Jaccard, Accuracy, and

Sensitivity, which are 86.36%, 78.38%, 94.91%, and 84.46%, respectively. Compared to the best

results produced by other methods, the results obtained from DECTNet are enhanced by

0.70% on Dice(85.66%, CENet), 0.96% on Jaccard(77.42%, CENet), 0.81% on Accuracy

(94.10%, CENet) and 0.63% on Sensitivity(83.83%, Transfuse). Although our method does not

achieve the best results in Precision and Specificity, it remains competitive compared to other

methods.

Fig 6 gives several visual samples and segmentation masks produced by our and other

methods. The red curves in the figure are the contours of the ground truth corresponding to

the samples. For convenient contrast, we integrate ground truth contours with the samples

and the segmentation masks derived from the different methods. These samples show that the

segmentation masks of our approach are very close to the ground truth. In contrast with the

segmentation masks of other methods, our masks are a better fit for the lesions that need to be

selected.

Fig 7 depicts the Dice score of different approaches on the validation dataset during the

training process of the skin lesion segmentation task. For the convenience of observation, the

figure merely depicts the Dice score curves on the validation set for three segmentation mod-

els, which are UNet, TransUNet, and DECTNet, respectively. It is shown that the curve

acquired by our method is smoother and achieves a higher Dice score on the validation dataset

than UNet and TransUNet.

Covid-19 lesion segmentation

Then, we evaluate the performance of the proposed DECTNet in the Covid-19 lesion segmen-

tation task. The comparison experiment for the Covid-19 segmentation task is similar to the

skin lesion segmentation task. Table 2 and Fig 8 respectively indicate the corresponding quan-

tified results and visual comparisons of our model and seven other segmentation methods on

the Covid-19 lesion dataset. Similar to the results on the skin lesion dataset, our DECTNet is

Table 1. Result of comparisons with other methods in skin lesion segmentation task.

Metrics

Method Dice(%) Jaccard(%) Accuracy(%) Sensitivity(%) Precision(%) Specificity(%)

UNet 82.58(0.51) 73.40(0.61) 92.32(0.05) 81.33(0.30) 90.31(0.18) 96.44(0.19)

UNet++ 83.22(0.14) 74.22(0.33) 92.70(0.15) 81.39(0.64) 91.70(0.34) 97.38(0.23)

AttnUNet 82.94(0.67) 73.33(0.46) 92.40(0.25) 81.14(0.49) 90.19(0.21) 97.43(0.21)

DeepLabV3+ 83.06(0.47) 74.03(0.30) 92.71(0.21) 81.89(0.29) 90.92(0.50) 97.59(0.21)

CENet 85.66(0.31) 77.42(0.54) 94.10(0.21) 82.72(0.35) 91.97(0.41) 97.92(0.20)

TransUNet 84.50(0.56) 76.28(0.62) 93.02(0.14) 82.42(0.55) 92.97(0.24) 97.41(0.21)

TransFuse 85.22(0.27) 76.90(0.54) 93.67(0.11) 83.83(0.30) 92.01(0.33) 96.98(0.09)

DECTNet 86.36(0.38) 78.38(0.49) 94.91(0.13) 84.46(0.31) 92.40(0.36) 97.12(0.12)

The values are described as Mean(Standard deviation). Best results are in bold and suboptimal results are in underlined.

https://doi.org/10.1371/journal.pone.0301019.t001
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also able to obtain the best performance in terms of the mean Dice, Jaccard, Accuracy, and

Precision metrics in the Covid-19 dataset. Compared to UNet in Table 2, our approach

achieves significant gains in each evaluation metric, which intuitively demonstrates the effec-

tiveness of the diverse modules designed in DECTNet.

Fig 6. Visual comparison examples with other approaches in the skin lesion segmentation. The red contour refers to the ground truth, and different

segmentation masks are produced by different methods.

https://doi.org/10.1371/journal.pone.0301019.g006

Fig 7. Comparison of Dice score among different methods on the validation dataset in the skin lesion

segmentation task during the training process.

https://doi.org/10.1371/journal.pone.0301019.g007
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The components of Fig 8 are familiar to Fig 6. Compared with the masks from other seg-

mentation methods, our model obtains more accurate segmentation results on some compli-

cated boundary regions, and the segmentation masks closely match the shape and location of

the infected region delineated by the ground truth. Besides, Fig 9 is also similar to Fig 7. From

these curves, we observe that the Dice score of DECTNet consistently outperforms other mod-

els, which proves its better segmentation capability. However, compared with Fig 7, these

curves in Fig 9 have large fluctuations, which the different distribution between different data-

sets may cause.

Polyp segmentation

Further, we validate the segmentation performance of the proposed method in the polyp seg-

mentation task. As described in Section Experiments, this segmentation task contains five dif-

ferent polyp segmentation datasets. In order to explicitly represent the generalization

performance of different models, the evaluation metrics of different models on each polyp seg-

mentation dataset are displayed in Table 3. For the convenience of presentation, we adopt

Table 2. Result of comparisons with other methods in Covid-19 lesion segmentation task.

Metrics

Method Dice(%) Jaccard(%) Accuracy(%) Sensitivity(%) Precision(%) Specificity(%)

UNet 83.87(0.31) 72.92(0.67) 96.58(0.45) 87.04(0.86) 81.31(0.89) 97.65(0.12)

UNet++ 83.74(1.02) 72.71(0.81) 96.61(0.37) 85.58(0.75) 82.54(0.61) 97.87(0.55)

AttnUNet 83.68(0.67) 72.63(0.61) 96.53(0.25) 87.06(0.40) 81.03(0.52) 97.66(0.24)

DeepLabV3+ 84.43(0.85) 73.67(0.46) 96.75(0.21) 86.36(0.45) 82.95(0.95) 97.92(0.20)

CENet 84.62(0.73) 74.03(0.62) 96.75(0.45) 88.01(0.39) 81.90(0.66) 97.71(0.11)

TransUNet 85.49(1.02) 75.26(0.82) 96.96(0.50) 87.04(0.76) 84.33(0.44) 98.13(0.18)

TransFuse 85.18(0.85) 74.79(0.46) 96.80(0.17) 89.77(0.33) 85.54(0.72) 98.62(0.17)

DECTNet 87.99(0.37) 78.96(0.21) 97.50(0.46) 89.00(0.50) 87.27(0.63) 98.51(0.12)

The values are described as Mean(Standard deviation). Best results are in bold and suboptimal results are in underlined.

https://doi.org/10.1371/journal.pone.0301019.t002

Fig 8. Visual comparison examples with other approaches in the Covid-19 lesion segmentation. The red contour refers to the ground truth, and

different segmentation masks are produced by different methods.

https://doi.org/10.1371/journal.pone.0301019.g008
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Dice and Jaccard as the evaluation metrics. Table 3 shows that DECTNet achieves the highest

mean Dice and Jaccard in the four datasets except for the ETIS dataset, which also achieves the

suboptimal result. It proves that in comparison with other models, our DECTNet has

improved generalization performance in the polyp segmentation task.

Fig 10 visualizes some segmentation masks different models produce. Compared to other

counterparts, our method outlines the lesion regions more accurately and eliminates the back-

ground noise. Even in complicated samples, our model still generates a precise segmentation

mask. In addition, Fig 11 shows the Dice score curves of different models on the polyp seg-

mentation validation dataset. It can be seen that the Dice curve resulting from DECTNet has a

considerable advantage compared with the other two models, which proves our proposed

model has better generalization capability in the polyp segmentation task.

Fig 9. Comparison of Dice score among different methods on the validation dataset in the Covid-19 lesion

segmentation task during the training process.

https://doi.org/10.1371/journal.pone.0301019.g009

Table 3. Result of comparisons with other methods in polyp segmentation task.

Metrics

Kvasir ClinicDB ColonDB EndoScene ETIS

Method Dice(%) Jaccard(%) Dice(%) Jaccard(%) Dice(%) Jaccard(%) Dice(%) Jaccard(%) Dice(%) Jaccard(%)

UNet 84.21(0.46) 73.07(0.27) 88.99(0.53) 80.51(0.20) 65.87(0.68) 53.07(0.35) 79.51(0.49) 67.78(0.48) 50.42(0.85) 37.38(1.35)

UNet++ 78.03(0.52) 64.74(0.26) 86.68(0.49) 77.32(0.49) 58.88(0.31) 45.26(0.42) 75.41(0.88) 61.97(0.39) 48.91(0.58) 36.69(0.86)

AttenUNet 84.62(0.60) 73.69(0.56) 88.72(0.29) 80.16(0.42) 67.27(0.43) 54.01(0.42) 78.06(0.15) 66.05(0.72) 50.93(0.68) 38.42(1.03)

DeepLabV3+ 78.53(0.45) 65.36(0.90) 88.27(0.51) 79.47(0.30) 56.24(0.48) 42.09(0.69) 71.72(0.28) 59.55(0.53) 41.53(0.57) 29.27(1.24)

CENet 84.79(0.73) 74.05(0.69) 91.32(0.19) 84.12(0.16) 76.17(0.35) 65.19(0.56) 86.56(0.44) 76.67(0.35) 69.59(0.21) 55.25(0.55)

TransUNet 84.37(0.12) 73.73(0.25) 89.60(0.25) 81.63(0.43) 69.97(0.55) 57.41(0.61) 80.60(0.63) 68.85(0.59) 56.54(0.76) 44.64(1.01)

TransFuse 82.81(0.22) 71.13(0.31) 89.86(0.29) 81.73(0.56) 75.65(0.72) 63.11(0.86) 85.03(0.34) 74.83(0.41) 70.47(0.21) 56.15(0.41)

DECTNet 87.56(0.19) 78.90(0.32) 91.73(0.15) 84.81(0.29) 77.92(0.71) 67.97(0.51) 86.95(0.18) 77.09(0.34) 69.70(0.16) 55.68(0.33)

The values are described as Mean(Standard deviation). Best results are in bold and suboptimal results are in underlined.

https://doi.org/10.1371/journal.pone.0301019.t003
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Cardiac segmentation

We finally perform the comparison experiment of the DECTNet and other segmentation mod-

els in the cardiac segmentation task. Unlike the previous segmentation task based on binary

classification, cardiac segmentation is a multi-class segmentation task, including the left ventri-

cle, right ventricle, and myocardium. Table 4 gives the quantitative comparison results of dif-

ferent categories in the cardiac segmentation task. Following [59], the Dice, Jaccard, HD, and

ASD are adopted as the segmentation performance metrics in this task, where HD and ASD

Fig 10. Visual comparison examples with other approaches in the polyp segmentation. The red contour refers to the ground truth, and different

segmentation masks are produced by different methods.

https://doi.org/10.1371/journal.pone.0301019.g010

Fig 11. Comparison of Dice score among different methods on the validation dataset in the polyp segmentation

task during the training process.

https://doi.org/10.1371/journal.pone.0301019.g011
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are measured in pixels. And in Table 4, RV, MYO, and LV represent the right ventricle, myo-

cardium, and left ventricle, while p refers to pixel. Table 4 indicated that our model achieved

the best results in all evaluation metrics of LV segmentation and obtained the highest Dice,

Jaccard, and comparable surface-related performance in RV and MYO segmentation com-

pared with other methods. It demonstrated that our proposed DECTNet is effective for the

cardiac segmentation task.

Fig 12 also gives a few samples for visual comparison. Different from visual comparison

examples in preceding segmentation tasks, in Fig 12, the red, green, and blue regions respec-

tively correspond to the segmentation masks of the right ventricle, myocardium, and left ven-

tricle, where the segmentation masks in the “Original Image” are labeled with corresponding

ground truth. Compared with other segmentation masks, the superiority of segmentation

masks resulting from our method is in the region of the right ventricle(red). It is observed

from the visual samples that for the left ventricle(blue) and myocardium(green) regions, the

segmentation masks produced by different methods have little difference concerning the

ground truth. But for the cases of the right ventricle(red), our segmentation masks have tre-

mendous advantages compared with other masks. Our method enables us to distinguish the

target region more accurately.

As shown in Fig 13, we also validate the Dice scores of different segmentation models on

the validation dataset during training. Different from the previous three segmentation tasks,

we describe the mean Dice scores of the three categories(RV, MYO, LV) in Fig 13. It can be

shown that the Dice score of our model on the validation dataset still slightly outperforms

other segmentation models.

Ablation study

In order to investigate the effectiveness of the proposed model and its components, we evaluate

the DECTNet on skin lesion segmentation task and Covid-19 lesion segmentation task for

ablation study. In the ablation experiments, we primarily validate the effects of four modules:

the encoder module based on Convolution architecture, the encoder module based on Trans-

former architecture, the decoder module with feature integration and selection module, and

the deep supervision module. Tables 5 and 6, and Fig 14 respectively show the quantitative

Table 4. Result of comparisons with other methods in cardiac segmentation task.

Metrics

RV MYO LV

Method Dice(%) Jaccard(%) HD(p) ASD(p) Dice(%) Jaccard(%) HD(p) ASD(p) Dice(%) Jaccard(%) HD(p) ASD(p)

UNet 92.98(0.23) 87.08(0.36) 4.82(0.27) 0.29(0.05) 85.58(0.22) 74.98(0.35) 6.39(2.02) 0.32(0.09) 88.42(0.29) 79.72(0.40) 9.14(0.64) 0.33(0.05)

UNet++ 92.72(0.26) 86.71(0.41) 5.75(0.78) 0.30(0.3) 84.78(0.24) 73.87(0.42) 7.51(1.42) 0.47(0.19) 88.59(0.26) 79.97(0.44) 8.15(1.06) 0.33(0.07)

AttnUNet 92.04(0.30) 85.56(0.48) 4.47(0.24) 0.33(0.02) 83.87(0.19) 72.44(0.26) 7.23(1.23) 0.53(0.10) 87.31(0.19) 78.03(0.22) 8.92(1.05) 0.42(0.06)

DeepLabV3

+

91.94(0.44) 85.43(0.59) 6.83(0.76) 0.35(0.03) 83.72(0.51) 72.22(0.44) 9.68(1.29) 0.43(0.08) 85.98(0.49) 76.04(0.61) 9.81(1.36) 0.45(0.11)

CENet 93.06(0.26) 87.23(0.57) 4.04(0.78) 0.22(0.01) 84.66(0.58) 73.58(0.42) 5.27(0.40) 0.32(0.02) 88.55(0.61) 79.68(0.77) 7.01(0.85) 0.30(0.02)

TransUNet 93.15(0.19) 88.16(0.48) 4.55(0.70) 0.22(0.01) 86.58(0.55) 76.50(0.46) 6.52(0.89) 0.36(0.03) 89.52(0.45) 81.57(0.55) 6.16(0.57) 0.28(0.02)

TransFuse 92.76(0.31) 86.77(0.45) 3.54

(0.15)

0.19

(0.01)

84.41(0.56) 73.17(0.65) 4.62

(0.30)

0.31

(0.02)

88.01(0.66) 79.13(0.71) 5.91(0.32) 0.30(0.02)

DECTNet 93.80

(0.20)

88.65

(0.31)

3.83(0.21) 0.29(0.02) 87.12

(0.45)

77.51

(0.30)

5.14(0.52) 0.37(0.03) 90.17

(0.15)

82.57

(0.20)

5.47

(0.35)

0.22

(0.01)

The values are described as Mean(Standard deviation). Best results are in bold and suboptimal results are in underlined.

https://doi.org/10.1371/journal.pone.0301019.t004
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results and visual comparisons of the ablation experiments in two segmentation tasks. In

Tables 5 and 6, the “C-encoder + Sim decoder” refers to the combination of the CNN-based

encoder and the simple decoder based on UNet. The “T-encoder” refers to the encoder based

on Swin Transformer architecture. Different from the simple decoder in previous structures,

Fig 12. Visual comparison examples with other approaches in the cardiac segmentation. The red, green, and blue portions refer to the right ventricle,

the myocardium, and the left ventricle, respectively. Different segmentation masks are produced by different methods, where the masks in “Original Image”

refer to the ground truth.

https://doi.org/10.1371/journal.pone.0301019.g012

Fig 13. Comparison of Dice score among different methods on the validation dataset in the cardiac segmentation

task during the training process.

https://doi.org/10.1371/journal.pone.0301019.g013
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the decoder in the “Dual-encoder + Sim decoder” architecture adjusts the scales of feature

maps from different encoders with additional convolution layers. The “w/o DeepSup” struc-

ture indicates the DECTNet without the deep supervision module. Note that the segmentation

models containing the swim transformer structure are trained from scratch without pre-

trained parameters.

From Tables 5 and 6, it is observed that compared to the segmentation performance of

UNet, the evaluation metrics acquired by the “C-encoder + Sim decoder” model are enhanced,

which shows the capability of the designed module in the C-encoder structure. The segmenta-

tion performance of the “T-encoder + Sim decoder” model is significantly degraded, probably

due to insufficient training samples to make the Swin Transformer structure effective alone.

Nevertheless, the “Dual-encoder + Sim decoder” structure achieves superior segmentation per-

formance than the “C-encoder + Sim decoder” and “T-encoder + Sim decoder” structures,

which demonstrates that the Swin Transformer structure could capture the effective represen-

tations that are difficult to obtain with convolutional structures. In addition, the enhanced

capability of the “w/o DeepSup” and DECTNet structures demonstrate the benefits of the fea-

ture integration and selection module and the deep supervision module, respectively.

Increasing studies have been developed to improve the interpretability of segmentation

methods through CAM-like approaches [60, 61] to enhance the confidence of prediction

results of deep learning models. Following [61], we create the heat maps based on grad-CAM

[60] to visualize and interpret the segmentation results of the proposed DECTNet.

As shown in Fig 14, we take the heatmaps and segmentation masks for comparison. The (a)

refers to the samples and the corresponding labels from two segmentation datasets, where the

Table 5. Quantitative result of ablation study in skin lesion segmentation task.

Metrics

Method Dice(%) Jaccard(%) Accuracy(%) Sensitivity(%) Precision(%) Specificity(%)

UNet 82.58(0.51) 73.40(0.61) 92.32(0.05) 81.33(0.30) 90.31(0.18) 96.44(0.19)

C-encoder + Sim decoder 83.57(0.28) 73.53(0.37) 93.81(0.15) 84.68(0.34) 88.44(0.22) 97.50(0.20)

T-encoder + Sim decoder 74.23(1.16) 64.76(1.45) 89.90(0.29) 67.76(0.88) 91.53(0.44) 94.68(0.39)

Dual-encoder + Sim decoder 85.33(0.41) 75.24(0.22) 94.98(0.25) 83.48(0.81) 88.83(0.60) 97.49(0.15)

w/o DeepSup 86.05(0.42) 77.21(0.55) 94.79(0.18) 84.76(0.53) 89.44(0.59) 97.61(0.10)

DECTNet 86.36(0.38) 78.38(0.49) 94.91(0.13) 84.46(0.31) 92.40(0.36) 97.12(0.12)

The values are described as Mean(Standard deviation). Best results are in bold and suboptimal results are in underlined.

https://doi.org/10.1371/journal.pone.0301019.t005

Table 6. Quantitative result of ablation study in Covid-19 lesion segmentation task.

Metrics

Method Dice(%) Jaccard(%) Accuracy(%) Sensitivity(%) Precision(%) Specificity(%)

UNet 83.87(0.31) 72.92(0.67) 96.58(0.45) 87.04(0.86) 81.31(0.89) 97.65(0.12)

C-encoder + Sim decoder 84.15(0.48) 73.79(0.37) 97.11(0.21) 85.82(0.77) 85.18(0.70) 98.22(0.25)

T-encoder + Sim decode 73.27(1.56) 59.27(1.71) 95.44(0.60) 61.81(2.11) 83.55(0.66) 94.45(0.75)

Dual-encoder + Sim decoder 85.93(0.65) 75.84(0.50) 97.19(0.35) 87.89(0.69) 89.55(0.17) 98.88(0.13)

w/o DeepSup 86.29(0.71) 76.42(0.49) 97.20(0.44) 89.01(0.77) 86.26(0.44) 98.39(0.27)

DECTNet 87.99(0.37) 78.96(0.21) 97.50(0.46) 89.00(0.50) 87.27(0.63) 98.51(0.28)

The values are described as Mean(Standard deviation). Best results are in bold and suboptimal results are in underlined.

https://doi.org/10.1371/journal.pone.0301019.t006
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red regions represent labels. The (b) and (c) refer to the heatmaps and the corresponding seg-

mentation masks resulting from the “C-encoder + Sim decoder” structure. The resulting heat-

maps and segmentation masks produced by the DECTNet are represented by (d) and (e). As

can be obtained from Fig 14, compared with (b) and (c), (d) and (e) are better suited to the

Fig 14. Visual comparison samples in Ablation study. (a) refers to the original image and the corresponding ground truth, (b) and (c) refer to the heat

map and segmentation mask produced by “C-encoder + Sim decoder”, and (d) and (e) to the heat map and segmentation mask produced by the DECTNet.

https://doi.org/10.1371/journal.pone.0301019.g014
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corresponding label. It demonstrates that the designed modules for the DECTNet can precisely

and steadily extract targets for medical image segmentation tasks.

Discussion

To achieve better accurate and robust performance in the medical image segmentation

domain, we propose the DECTNet achieve this purpose. The DECTNet is a dual-encoder

method based on Convolution and Swin Transformer architecture. To efficiently acquire local

context information from images, we design the convolution encoder stage consisting of a

Dense Connection block and a CBAM block, where the Dense Connection block delivers

abundant semantic information, and the CBAM block utilizes spatial and channel attention

masks to enhance semantic features that are beneficial for specific segmentation tasks. Further-

more, we employ depth-separable convolution instead of traditional convolution in the convo-

lution encoder to reduce the model parameters. To better capture the global context

dependence of medical images, we design the Swin Transformer encoder in the proposed

DECTNet. Moreover, we incorporate the STP blocks in the Swin Transformer encoder for the

preliminary image processing to make the Swin Transformer structure suitable for semantic

segmentation tasks. Since different encoders yield different scale features, we design a feature

fusion decoder to integrate and select features considered significant for the segmentation

tasks. In addition, to accelerate the convergence and improve the segmentation performance

of the proposed method, we add a simple but effective deep supervision module to supervise

the decoder stage outputs.

To perform the performance of the proposed DECTNet, we evaluate the method on four

different medical image segmentation tasks to demonstrate its effectiveness and robustness.

The comparison experimental results corresponding to Tables 1–4 show that the DECTNet

achieves state-of-the-art results than other segmentation models. Figs 6, 8, 10 and 12 show

that our model has superior segmentation accuracy and generalization performance com-

pared to other segmentation models. To further prove the efficacy of each component of

the proposed DECTNet, we perform ablation studies on the skin lesion segmentation task

and the Covid-19 lesion segmentation task. The corresponding figures and tables of the

ablation experiments show that the dual encoder structure with convolution and Swin

Transformer architecture improves the model’s performance compared to a single struc-

ture encoder. Moreover, it is also seen that the feature fusion decoder and the deep supervi-

sion module also contribute to improving the performance of the proposed method. In

conclusion, compared with other state-of-the-art models, DECTNet is effective in improv-

ing the accuracy of image segmentation and obtaining a favorable generalization of the seg-

mentation method.

Compared to 2D segmentation networks such as DECTNet, 3D models allow direct pro-

cessing of 3D data, which enables the segmentation model to capture volume information

and efficiently understand more comprehensive spatial context representation. However,

due to the parameter redundancy in the dual encoder structure of the 2D DECTNet, we need

to reoptimize the model parameters to develop a robust and generalizable 3D DECTNet

method.

In contrast to the single-encoder segmentation network, the dual-encoder structure of

DECTNet increases the model complexity and requires additional annotation data to mitigate

the overfitting risks. Besides that, this complexity expands the number of hyperparameters,

making it more difficult and time-consuming to find the best hyperparameter configurations.

Future enhancements can be approached in two ways. On the one hand, leveraging transfer

learning, complex models are pre-trained on sufficiently large datasets and establish a more
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effective framework, which allows complex models to obtain more robust generic visual fea-

tures and diminishes the possibility of overfitting. On the other hand, based on the Trans-

former architecture, the model structures can be refined by developing a less parameterized

yet more efficient global feature extraction module, which aims to enhance the efficiency and

accuracy of the segmentation backbone.

Conclusion

In this paper, we propose a novel model with a dual encoder structure named DECTNet, for

medical image segmentation. We use the convolution encoder and Swin Transformer encoder

to extract local and global context information to obtain the significant hierarchical represen-

tation from medical images. Then, we design a feature fusion decoder to integrate and select

the representation acquired from the convolution and Swin Transformer encoders. Further,

We employ a deep supervision module to supervise the multi-scale features in the decoder

stages. Our method demonstrates significant advantages through the experiments compared

to the state-of-the-art methods on four public segmentation tasks.

Supporting information

S1 Fig. Some visual comparison samples in skin lesion segmentation task. The red portion

indicates segmentation maps generated by different models and corresponding ground truth.

(i) refer to the original images and the corresponding labels, (ii) and (iii) refer to the Grad-

CAM heatmaps and corresponding segmentation maps generated by DECTNet, (iv) and (v)

are generated by CENet, (vi) and (vii) are generated by TransUNet, and (viii) and (ix) are gen-

erated by UNet.

(TIF)

S2 Fig. Some visual comparison samples in Covid-19 lesion segmentation task. The red

portion indicates segmentation maps generated by different models and corresponding

ground truth. (i) refer to the original images and the corresponding labels, (ii) and (iii) refer to

the Grad-CAM heatmaps and corresponding segmentation maps generated by DECTNet, (iv)

and (v) are generated by CENet, (vi) and (vii) are generated by TransUNet, and (viii) and (ix)

are generated by UNet.

(TIF)

S3 Fig. Some visual comparison samples in polyp segmentation task. The red portion indi-

cates segmentation maps generated by different models and corresponding ground truth. (i)

refer to the original images and the corresponding labels, (ii) and (iii) refer to the Grad-CAM

heatmaps and corresponding segmentation maps generated by DECTNet, (iv) and (v) are gen-

erated by CENet, (vi) and (vii) are generated by TransUNet, and (viii) and (ix) are generated

by UNet.

(TIF)

S4 Fig. Some visual comparison samples in cardiac segmentation task. The red portion indi-

cates segmentation maps generated by different models and corresponding ground truth. (i)

refer to the original images and the corresponding labels, (ii) and (iii) refer to the Grad-CAM

heatmaps and corresponding segmentation maps generated by DECTNet, (iv) and (v) are gen-

erated by CENet, (vi) and (vii) are generated by TransUNet, and (viii) and (ix) are generated

by UNet.

(TIF)
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