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Abstract

Machine learning (ML) algorithms can handle complex genomic data and identify predictive

patterns that may not be apparent through traditional statistical methods. They become pop-

ular tools for medical applications including prediction, diagnosis or treatment of complex

diseases like rheumatoid arthritis (RA). RA is an autoimmune disease in which genetic fac-

tors play a major role. Among the most important genetic factors predisposing to the devel-

opment of this disease and serving as genetic markers are HLA-DRB and non-HLA genes

single nucleotide polymorphisms (SNPs). Another marker of RA is the presence of anticitrul-

linated peptide antibodies (ACPA) which is correlated with severity of RA. We use genetic

data of SNPs in four non-HLA genes (PTPN22, STAT4, TRAF1, CD40 and PADI4) to pre-

dict the occurrence of ACPA positive RA in the Polish population. This work is a comprehen-

sive comparative analysis, wherein we assess and juxtapose various ML classifiers. Our

evaluation encompasses a range of models, including logistic regression, k-nearest neigh-

bors, naïve Bayes, decision tree, boosted trees, multilayer perceptron, and support vector

machines. The top-performing models demonstrated closely matched levels of accuracy,

each distinguished by its particular strengths. Among these, we highly recommend the use

of a decision tree as the foremost choice, given its exceptional performance and interpret-

ability. The sensitivity and specificity of the ML models is about 70% that are satisfying. In

addition, we introduce a novel feature importance estimation method characterized by its

transparent interpretability and global optimality. This method allows us to thoroughly

explore all conceivable combinations of polymorphisms, enabling us to pinpoint those pos-

sessing the highest predictive power. Taken together, these findings suggest that non-HLA
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SNPs allow to determine the group of individuals more prone to develop RA rheumatoid

arthritis and further implement more precise preventive approach.

1 Introduction

Artificial Intelligence (AI), particularly Machine Learning (ML), have become increasingly

popular tools for medical applications including prediction of diseases, diagnosis or treatment

based on presence of specific markers. Application of ML can be useful for analysis autoimmu-

nology diseases like rheumatoid arthritis (RA).

RA is a complex, chronic disease with a range of symptoms and underlying factors, making

it difficult to accurately diagnose or predict. Interplay between genetic, environmental factors

and autoimmunity triggers [1] is supposed to lead to the development of inflammation that

begins in the synovial membrane of the joints and then spreads to other tissues, leading to sys-

temic inflammation in patients with RA. This process is preceded by the appearance of RA-

specific antibodies directed against various antigens including anticitrullinated peptide. The

presence of anticitrullinated peptide antibodies (ACPA) is one of the factors that not only pre-

cedes the onset of RA, but also leads to the more aggressive course of the disease including

joint damage, increased disease activity, and worse functional outcomes [2].

The most common genetic risk factors for the development of RA are certain variants in

HLA–DRB1 loci called shared epitopes [3]. Also single nucleotide polymorphisms (SNPs) in

non-HLA genes (PTPN22, TRAF1, STAT4, PADI4 and CD40) are linked to an increased risk

of development of RA. PTPN22 encodes the protein tyrosine phosphatase non-receptor type

22 that plays a crucial role in the regulation of T cell activation and signaling. TRAF1 and

STAT 4 are responsible for immune cell activation [4] whereas PADI4 is responsible for con-

verting arginine to citrulline and forming citrullinated peptides being autoantigens. The CD40

gene encodes a protein responsible for the regulation of the immune response and communi-

cation between various immune cells. Genetic variation in two of these five genes has been

linked with ACPA RA [4, 5].

1.1 Related work

The multifactorial nature of the RA is one of the reasons why ML and AI are suitable tools for

the analysis of diagnosis and treatment of RA. ML models can help identify patterns in patient

data, including genetic data that can be difficult for humans to discern, leading to more accu-

rate and early diagnosis. ML can help predict the progression of the disease, allowing clinicians

to personalize treatment plans based on the specific needs of a patient.

There are many studies that demonstrate the effectiveness of ML in the diagnosis and prog-

nosis of RA. For example, the ML model described in [6] shows promise in guiding treatment

decisions in clinical practice, based primarily on clinical profiles with additional genetic infor-

mation. In this work, Gaussian process regression effectively remapped the feature space and

identified subpopulations that do not respond well to anti-TNF treatments. In [7], ML meth-

ods such as logistic regression, random forest, support vector machine, gradient tree boosting,

and extreme gradient boosting are used for genomic prediction of RA and systemic erythema-

tous lupus. They were able to differentiate these two diseases with robust performance based

on genetic variations in HLA-DQA1, HLA-DQB1, and HLA-DRB1.

ML models developed in [8] allowed predicting the response of patients with RA to tumor

necrosis factor inhibitors exclusively using data available in the clinical routine. The authors

compared the performances of multiple models such as linear regression, random forest,

PLOS ONE Machine learning-based prediction of rheumatoid arthritis with development of ACPA autoantibodies

PLOS ONE | https://doi.org/10.1371/journal.pone.0300717 March 22, 2024 2 / 16

Funding: National Science Center (NCN, Poland),

grant number UMO-2017/25/B/NZ6/01358. The

funders (National Science Center) had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0300717


XGBoost and CatBoost. In [9], ML methods were considered feasible to predict flares after

reducing disease modifying antirheumatic drugs in patients with RA in sustained remission.

Four basic ML models were trained (logistic regression, k-nearest neighbors, naïve Bayes clas-

sifier, and random forests), and their predictions were additionally combined to train an

ensemble learning method, a stacking meta-classifier model to predict the individual flare

probability. The current status and future perspectives of using AI and ML in RA based on a

detailed review of the literature are presented in [10].

1.2 Contribution

This work explores the association of five SNPs in non-HLA genes PADI4 (rs2240340),

STAT4 (rs7574865), CD40 (rs4810485), PTPN22 (rs2476601), and TRAF1 (rs3761847) with

RA development. The results of this study will greatly contribute to better prediction the

occurrence of ACPA positive RA in the Polish population.

This is the first work evaluating the feasibility of ML models in predicting ACPA-positive

RA. It makes significant contributions to the current research in several ways:

1. Bridging a Gap in Genetic Markers for RA: The research investigates specific polymor-

phisms within non-HLA genes (PTPN22, STAT4, TRAF1, CD40, PADI4) to predict the

aggressive progression of RA. This is crucial as identifying these genetic markers can lead to

early detection and more personalized treatment strategies.

2. Evaluating ML Algorithms for RA Prediction: Various ML algorithms are assessed and

compared for their effectiveness in predicting RA based on genetic data. The algorithms

include logistic regression, k-nearest neighbors, naïve Bayes, decision trees, boosted trees,

multilayer perceptrons, and support vector machines. This comparative analysis aims to

determine which ML models are most effective for this purpose.

3. Feature Importance and Optimal Polymorphism Combinations: The study introduces a

novel feature importance estimation method that enables the exploration of all possible

combinations of polymorphisms. This approach aims to identify those with the highest pre-

dictive accuracy for RA, providing a clear and globally optimal interpretation of the genetic

data.

The subsequent sections of this work are structured as follows. Section 2 briefly describes

the medical and genetic methodology. In Section 3, we provide an in-depth exploration of the

ML models employed in our study. Section 4 combines the experimental study with a compre-

hensive discussion. Finally, Section 5 summarizes the key findings of our research and presents

suggestions for future directions.

2 Patients and methods

2.1 Patients

The study group included 78 patients with RA anti-citrullinated antibodies positive (ACPA+)

selected from patients of the Department of Rheumatology, Medical University of Lodz and

the outpatient clinic. All patients were diagnosed with RA according to EULAR/ACR 2010

diagnostic. The control group of 78 volunteers was recruited from patients without any symp-

toms of chronic inflammatory condition who were consulted in outpatients clinic or hospital-

ized, as well as from a group of potential marrow donors.

This cohort study was approved by the Institutional Bioethics Committee of the Medical

University of Lodz (no. RNN/07/18/KE, approved date: 16 January 2018; Participant consent:

written; The study did not include minors; We do not report a retrospective study of medical
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records or archived samples). The study group included 78 patients with RA (63 women and

15 men; mean age 60.00±13.08 years). Mean disease duration time was 10.65±10.23 years. All

patients were anti-citrullinated peptide antibodies positive (mean concentration 215.57

±398.65 RU/ml) and 88.46% were rheumatoid factor positive (mean concentration 189.50

±360.40 IU/ml). Level of inflammatory markers (CRP 16.12±22.76 mg/l; ERS 26.50±23.03

mm/h) were determined. Two thirds of patients during the qualification for the study was

treated with disease modifying drug (methotrexate 43.6sulfasalazine 5.1%; leflunomide 12.8%;

hydroxychloroquine 2.6%) in addition 55.3% took glucocorticosteroids. The control group

included 78 volunteers without any autoimmunological and inflammatory diseases. This

group included 50 women and 28 men in mean age 35.72±10.55 years. Table 1 characterizes

both groups.

2.2 Genotyping

Genomic DNA (gDNA) was isolated from peripheral blood (K3EDTA tubes) collected from

patients and controls by using GeneMatrix Blood DNA purification Kit (EURx) according to

the manufacturer protocol. Genotypes were determined by Taqman SNP Genotyping Assay

(Thermo Fisher Scienific) and HOT FIREPol1 Probe qPCR Mix (Solis). Analysis was made in

Bio-Rad CFX96 system (BioRad) according to the manufacturer protocol. The analyzed SNPs

are presented in Table 2. They are treated as features (inputs) in the ML models.

3 Machine learning models

From ML point of view, the problem is to classify patients and controls into one of two classes

(RA/healthy) based on v1-v5 SNPs in non-HLA genes. In the preliminary experiments, we

tested several ML models to select the most accurate ones for further study. They included:

logistic regression (LR), k-nearest neighbors (kNN), naïve Bayes (NB), decision tree (DT),

boosted trees (BT), multilayer perceptron (MLP), and support vector machine (SVM). Note

that kNN, NB, DT, and BT can work with nominal features such as our genetic data (see v1-v5

in Table 2) but other models work only with numerical data. For them, nominal values were

Table 1. Clinical characteristic of the studied group.

RA PATIENTS CONTROL

N = 78 N = 78

Sex F 63; M15 F 50; M28

AGE [years] 60.00±13.08 35.72±10.55

Disease duration [years] 10.65±10.23 -

Remission [DAS28<2.6] yes 11; no 60; no data 7 -

CRP [mg/l] 16.12±22.76 -

ERS [MM/H] 26.50±23.03 -

RF [IU/ml] 189.50±360.40 -

ACPA [RU/ML] 215.57±398.65 -

Treatment Methotrexate 34/78 -

Sulfasalazine 4/78

Leflunomide 10/78

Hydroxychloroquine 2/78

GCS 43/78

where: CRP—c-reactive protein; ESR—eosinophil sedimentation rate; RF—rheumatoid factor; ACPA—anti-citrulinated peptide antibodies.

https://doi.org/10.1371/journal.pone.0300717.t001
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converted to numeric dummy variables. Since each feature v1-v5 takes one of three values, the

binary variables encoding each of them are 3-bit long.

Based on the results reported in Section 3, the four most accurate models were selected: NB,

DT, BT, and SVM. These models operate on different principles and techniques, with each

having its own strengths and weaknesses. They are characterized below. The following nota-

tions were adopted:

• x = [v1, . . ., v5] denotes a sample (patient),

• y 2 {−1, 1} represents a class: healthy (−1) or RA (1),

• N is a number of samples (156 in our case) and

• n is a number of features (5 in our case).

3.1 Naïve bayes

NB classifier is a probabilistic algorithm that calculates the probability of each class based on

the input features. It then assigns the sample to the class with the highest probability. It

assumes that all features are independent of each other. The NB algorithm is computationally

efficient and can handle a large number of predictors, making it a popular algorithm in many

applications.

In our case, for nominal features and two classes, the NB decision rule (maximum a posteri-

ori decision rule) is as follows:

ŷ ¼ argmax
y2f� 1;1g

PðyÞ
Yn

j¼1

PðvjjyÞ ð1Þ

where P(y) is the prior probability that a class index is y and P(vj|y) is a conditional probability

of vj given class y.

In the NB classifier, each feature/class combination is treated as a separate, independent

multinomial random variable. This allows us to estimate the complex multivariate distribution

P(x|y) using the product of univariate distributions P(vj|y), due to the “naive” assumption of

conditional independence between every pair of features given the value of the class variable.

This simplification is helpful in addressing the curse of dimensionality and reduces the

computational complexity of the model, making it faster to train and apply. Despite its

Table 2. Basic information of the five selected SNPs in non-HLA genes.

Symbol Gene.SNP1 Chr2 Positions3 Allele Assay ID4

v1 PADI4.rs2240340 1 17336144 C/T C__16176717_10

v2 TRAF1.rs3761847 9 120927961 A/G C___2783640_10

v3 STAT4.rs7574865 2 191099907 G/T C__29882391_10

v4 CD40.rs4810485 20 46119308 G/T C___1260190_10

v5 PTPN22.rs2476601 1 113834946 A/G C__16021387_20

1 according to dbSNP database;
2 chromosome;
3 chromosome position according to the Genome Reference Consortium Human Build 38;
4 related to Thermo Fisher Scienific.

https://doi.org/10.1371/journal.pone.0300717.t002
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oversimplified assumptions, the NB classifier has been successful in many real-world scenar-

ios. However, its performance may be affected by the quality of the data and the presence of

irrelevant or correlated features, among other factors.

3.2 Decision tree

DT classifier is a non-parametric algorithm that partitions the feature space recursively into

smaller and smaller regions by selecting the feature that provides the most information gain at

each node. It is interpretable and can handle both numerical and categorical data.

We use the CART (classification and regression tree) implementation of DT [11]. DT con-

struction is a process of recursively partitioning a dataset into subsets, based on the values of

the features. It involves selecting the best feature to split the data at each node based on some

impurity measure, such as Gini index or entropy, and then repeating the process recursively

until some stopping criterion is met, such as reaching a predefined maximal number of splits

or achieving a minimum number of samples in each leaf node. The resulting tree can then be

used to make predictions for new samples by traversing the tree from the root node to one of

the leaf nodes that corresponds to the predicted class. The tree can be interpreted as a set of

simple rules that can be easily understood by humans.

The decision rule of DT can be expressed as follows:

ŷ ¼
X

l2L

labelðlÞIðx 2 lÞ ð2Þ

where L is a set of leaves, label(l) is a function, which assigns a label to leaf l based on the subset

of samples that reached that leaf (typically the label is a majority class), and I(x 2 l) returns 1

when sample x reaches leaf l and 0 otherwise.

DT is a powerful yet conceptually simple approach. It partitions the feature space into a set

of rectangles and fits a simple model in each one. In our case, this model is represented by

function label. A single tree fully describes the partition of the feature space. The decision

boundary in DT is composed of segments that are parallel to the coordinate axes, which char-

acterizes this method. The tree representation is popular among medical scientists, possibly

because it emulates the way a doctor thinks.

3.3 Boosted trees

There are several variations of boosted DTs, each with its own set of characteristics. In our

study, we made a deliberate choice of algorithm, guided by the preliminary optimization pro-

cedure outlined in Section 4.1. Our selection led us to the Gentle Adaptive Boosting (GAB)

algorithm, as proposed in [12].

In GAB, a base learner (DT) is iteratively trained on the data, with each subsequent iteration

focusing more on the samples that were misclassified by the previous models. The algorithm

assigns higher weights to these samples, so the subsequent base learners are more likely to cor-

rectly classify them. GAB is a powerful and robust algorithm for ensemble learning, with a soft

weighting scheme that can lead to more stable learning in noisy or overlapping datasets.

GAB starts with equal weights (w = 1/N) for all training samples. At the successive M steps,

it fits regression models fm(x), m = 1, .., M (regression trees in our case) by weighted least-

squares of y to x. The minimized error at step m is
PN

i¼1
wm

i ðyi � fmðxiÞÞ
2
, where wm

i is a weight

of the i-th sample at the m-th step. The weights are updated as follows: wmþ1
i ¼

wm
i expð� yifmðxÞÞ and then normalized. The final decision of tha GAB classifier is as follows
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[12]:

ŷ ¼ sign

 
XM

m¼1

fmðxÞ

!

¼ sign

 
XM

m¼1

X

l2Lm

labelðlÞIðx 2 lÞ

!

ð3Þ

where Lm is a set of leaves of the m-th tree.

3.4 Support vector machine

SVM is a linear classifier that finds the hyperplane that maximizes the margin between the

classes. It can also handle nonlinear data by transforming the data into a higher-dimensional

space using kernel functions. It is powerful and performs well on a wide range of classification

tasks.

The decision rule of SVM is expressed as follows:

ŷ ¼ sign

 
XN

i¼1

aiyikðxi; xÞ þ b

!

ð4Þ

where αi 2 [0, C] are Lagrange multipliers which are positive for support vectors and zero for

other training samples, b is a parameter, and k(xi, x) is a kernel function, e.g. Gaussian-type

kernel kðxi; xÞ ¼ exp � kxi � xk
2

s2

� �
.

Parameter C, also known as the box constraint, is the penalty/regularization parameter of

the error term. It plays a key role in the SVM algorithm because it controls the trade-off

between maximizing the margin and minimizing the classification error on the training data.

A higher value of C results in a narrower margin and fewer misclassifications, which may lead

to overfitting. The second key hyperparameter is a kernel width parameter, σ in Gaussian ker-

nel. It determines the shape of the decision boundary. A lower value of σ leads to a more com-

plex decision boundary and overfitting.

4 Experimental study

In this section, we evaluate the effectiveness of our proposed ML models in predicting RA

based on non-HLA gene polymorphisms. Initially, we compare the performance of seven dif-

ferent ML models and select the top four performing ones for further testing. Finally, we iden-

tify the most important features that contribute to the prediction of RA using these models.

To gain insight into the input genetic data, we plotted the empirical distributions of the fea-

tures in both classes, RA and healthy, as shown in Fig 1. These distributions represent the con-

ditional probabilities P(vj|y), which are used by the NB classifier to determine the sample class,

as described in Eq (1).

4.1 Optimisation, training and evaluation setup

To optimize the hyperparameters of the ML models, we employed Bayesian optimization com-

bined with 5-fold cross-validation. This approach allows for efficient exploration of the hyper-

parameter space and helps to avoid overfitting on the training data. The hyperparameter

exploration ranges were as follows:

• LR has no hyperparameters.

• kNN: Number of neighbors k was searched among integers log-scaled in the range [1, N/2];

Distance metric: due to nominal features, the Hamming distance was used.
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• NB: Due to nominal features, a variant of NB with multivariate multinomial distribution was

selected, where each predictor/class combination is a separate, independent multinomial

random variable.

• DT: Maximum number of splits was searched among integers log-scaled in the range [1, N
− 1]; Split criterion was searched among Gini’s diversity index and cross entropy.

• BT: Ensemble method was searched among AdaBoost, LogitBoost (adaptive logistic regres-

sion), GAB, and Random Forest; Maximum number of splits was searched among integers

log-scaled in the range [1, N − 1]; Number of learners was searched among integers log-

scaled in the range [10, 500]; Learning rate was searched among real values log-scaled in the

range [0.001, 1]; Number of features to sample was searched among integers in the range [1,

n], where n is the number of features.

• MLP: Number of fully connected layers was searched among 1, 2, and 3 layers; Layer size

was searched among integers log-scaled in the range [1, 300]; Activation was searched

among ReLU, Tanh, None, and Sigmoid; Regularization strength was searched among real

values log-scaled in the range [0.00001/n, 100000/n].

• SVM: Kernel function was searched among Gaussian, Linear, Quadratic, and Cubic;

Box constraint level was searched among positive values log-scaled in the range [0.001,

1000]; Width parameter was searched among positive values log-scaled in the range [0.001,

1000].

The optimal values of hyperparameters are shown in Table 3.

The ML models were evaluated using leave-one-out cross-validation. In the preliminary

tests, we compare all the models and select the most accurate. Then, we evaluate these selected

Fig 1. Association of RA with the frequency of SNPs in PTPN22 (rs2476601), PADI4 (rs2240340), TRAF1

(rs3761847), STAT4 (rs7574865), and CD40 (rs4810485) genes.

https://doi.org/10.1371/journal.pone.0300717.g001
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models more precisely using the following metrics:

Accuracy : Acc ¼ ðTP þ TNÞ=N ð5Þ

Precision : Prec ¼ TP=ðTP þ FPÞ ð6Þ

Sensitivity : Sens ¼ TP=ðTP þ FNÞ ð7Þ

Specificity : Spec ¼ TN=ðTN þ FPÞ ð8Þ

F1 score : F1 ¼ ð2TPÞ=ð2TP þ FPþ FNÞ ð9Þ

where TP, FP, FN and TN denote true positive, false positive, false negative and true negative,

respectively.

All algorithms were implemented in Matlab 2022b and run on a ten-core CPU (Intel i7-

6950x, 3.0 GHz, 48 GB RAM, Windows 10 Pro).

4.2 Results

Table 4 shows accuracy of the models, their training times and predictive speeds. The table

highlights that two models achieved both the highest accuracy and the lowest training time:

NB and SVM. This indicates that these models are particularly efficient in their ability to accu-

rately classify data while also requiring relatively little time to train. Slightly worse in terms of

accuracy were BT, DT and MLP. A distance-based classifier, kNN, is clearly worse in terms of

accuracy than other models. Taking into account the results from Table 4, we selected four

models for further research: NB, DT, BT and SVM.

Table 5 presents a comparative analysis of model performances assessed through leave-one-

out cross-validation. Notably, all models exhibit very similar accuracy. To rigorously examine

Table 3. Hyperparameters of the ML models.

Model Hyperparameters

LR -

kNN k = 1, distance metric: Hamming

NB A variant for conditional multivariate multinomial distribution for features was selected

DT Split criterion: cross entropy, maximum number of splits: 47

BT Ensemble method: GAB, maximum number of splits: 150, number of trees: M = 10, number of features to

sample: 5, learning rate: 0.01

MLP Number of fully connected layers: 3, activation: ReLU, number of nodes in each layer: 10, iteration limit:

1000

SVM Kernel function: Gaussian, width parameter: σ = 0.56, Box constraint level: C = 1

https://doi.org/10.1371/journal.pone.0300717.t003

Table 4. Results of preliminary experiments.

Model LR kNN NB DT BT MLP SVM

Accuracy 0.654 0.59 0.699 0.673 0.679 0.673 0.699

Training time 5.78 4.61 2.71 4.23 6.2 18.98 2.71

Prediction speed 640 520 700 920 360 810 1100

where: training time in seconds and prediction speed in obs/sec.

https://doi.org/10.1371/journal.pone.0300717.t004
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the hypothesis that the predictions from each model have equivalent accuracy in predicting

true class labels, we employ a mid-p-value McNemar test. This test, recommended by Dietter-

ich [13], is particularly suitable when data is limited, and each algorithm can only be evaluated

once. The results of the test affirm that, at the 1% significance level, all models yield statistically

indistinguishable results.

Sensitivity and specificity stand as pivotal metrics in gauging the accuracy of a diagnostic

tool, providing healthcare providers with insights into its effectiveness. In our findings, we

achieved an approximate 70% sensitivity and specificity, indicating that this percentage of

patients were correctly diagnosed (sensitivity), or controls were correctly identified with nega-

tive results (specificity).

DT is the most interpretable of the models tested, as it is shown in Fig 2. The extensive

structure of the tree highlights the complexity of the task, as the model requires numerous

decision rules to accurately classify the data. Despite its complexity, decision trees are often

favored for their interpretability and transparency, as they allow for a clear understanding of

the decision-making process used by the model.

4.2.1 Imbalanced data. Our dataset exhibits a balanced distribution, where the “RA” and

“healthy” classes are equivalent in terms of sample count. However, it is crucial to recognize

that imbalanced datasets can introduce bias into model performance assessments. Many ML

algorithms are optimized to maximize overall accuracy, which can be misleading in scenarios

where class distributions are skewed. In such cases, a model may achieve seemingly high

Table 5. Comparison of ML model performances.

Model TP FP FN TN Acc Prec Sens Spec F1

NB 52 22 26 56 0.6923 0.7027 0.6667 0.7179 0.6842

DT 56 25 22 53 0.6987 0.6914 0.7179 0.6795 0.7044

BT 53 23 25 55 0.6923 0.6974 0.6795 0.7051 0.6883

SVM 61 30 17 48 0.6987 0.6703 0.7821 0.6154 0.7219

https://doi.org/10.1371/journal.pone.0300717.t005

Fig 2. DT model.

https://doi.org/10.1371/journal.pone.0300717.g002
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accuracy by predominantly predicting the majority class, while its performance on the minor-

ity class suffers.

To comprehensively evaluate our models’ performance on imbalanced data, we consider

two imbalance ratios. Specifically, we vary the ratio of “healthy” samples (the majority class) to

“RA” samples (the minority class) to be either 2 or 10. For each configuration, we conduct 50

model training iterations, drawing either 39 or 8 samples from a pool of 78 “RA” samples,

while keeping the “healthy” class constant.

Tables 6 and 7 present a comparative analysis of the results. The critical metrics are sensitiv-

ity, which reflects the accuracy of classifying “RA” samples, and specificity, which corresponds

to the accuracy of classifying “healthy” samples.

As depicted in Table 6, when considering an imbalance ratio of 2, the overall accuracy

remains relatively stable compared to the balanced scenario. However, the Sens metric reveals

a significant decline in the recognition accuracy of the “RA” class. Among the algorithms we

examined, BT exhibits the smallest reduction, approximately 30%, while SVM shows the most

substantial decrease at 76%. When the imbalance ratio increases to 10 (as shown in Table 7),

the degradation in accuracy for the “RA” class becomes much more pronounced, ranging

from 78% for BT to a substantial 97% for SVM.

Our findings align with prior research, reinforcing the idea that ensemble methods like BT

can effectively enhance performance on imbalanced data by combining multiple weak learners

to form a strong learner. Such methods often outperform individual models, especially when

dealing with highly skewed class distributions.

It is worth noting that DT emerges as the second-best performing model for imbalanced

data. In the case of an imbalance ratio of 2, its quality metrics closely resemble those of BT.

However, when the imbalance ratio increases to 10, DT’s sensitivity is nearly half that of BT

but still more than twice as high as those of NB and SVM.

4.2.2 Feature importance. To identify the most important features, we ran the models

using all possible combinations of features, as shown in Fig 3. It is worth noting that in this

study, we evaluate feature importance in the context of applied models and consider features

not individually, but in groups. This approach allowed us to assess the interrelationships

between features and their collective impact on classification accuracy. By evaluating features

in this way, we can gain insights into which combinations of features are most useful for pre-

dicting the target variable, and use this information to optimize model performance.

Table 6. Comparison of ML model performances for imbalanced data (imbalance ratio = 2).

Model TP FP FN TN Acc Prec Sens Spec F1

NB 13.44 7.32 25.56 70.68 0.7190 0.6480 0.3446 0.9062 0.4469

DT 17.66 13.50 21.34 64.50 0.7022 0.5657 0.4528 0.8269 0.4999

BT 18.46 16.28 20.54 61.72 0.6853 0.5305 0.4733 0.7913 0.4992

SVM 7.32 10.46 31.68 67.54 0.6398 0.4015 0.1877 0.8659 0.2543

https://doi.org/10.1371/journal.pone.0300717.t006

Table 7. Comparison of ML model performances for imbalanced data (imbalance ratio = 10).

Model TP FP FN TN Acc Prec Sens Spec F1

NB 0.30 0.48 7.70 77.52 0.9049 - 0.0375 0.9938 0.0582

DT 0.64 1.90 7.36 76.10 0.8923 0.2252 0.0800 0.9756 0.1095

BT 1.20 4.18 6.80 73.82 0.8723 0.1977 0.1500 0.9464 0.1675

SVM 0.20 2.50 7.80 75.50 0.8802 0.0600 0.0250 0.9679 0.0347

https://doi.org/10.1371/journal.pone.0300717.t007
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While using all features can generally result in high accuracy for all models, there are certain

feature combinations that can improve the performance of some models beyond an accuracy

of 0.7. For example, feature combination v1v3v4v5 was particularly effective for NB (this case

is visualized with a confusion matrix in Fig 4), while v1v2v3v4 was found to be important for

DT. Additionally, feature combination v1v3v4 was found to be useful for both DT and BT. It is

Fig 3. Accuracy of the models for different combinations of input features.

https://doi.org/10.1371/journal.pone.0300717.g003

Fig 4. Confusion matrix for NB with features v1v3v4v5.

https://doi.org/10.1371/journal.pone.0300717.g004
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important to note that the feature combination v2v3v5 resulted in the significantly lower accu-

racy, below 0.5, for all models except DT.

To evaluate the predictive power of individual features, we estimated their importance

scores by calculating the average accuracy of the classifier across all feature combinations that

include the respective feature. The results are presented in Fig 5. For comparison, we also

included the results obtained using three popular feature importance estimation methods

based on chi2, minimum redundancy maximum relevance algorithm (MRMR) and random

forest. Chi2 is a statistical method that evaluates the independence between features and the

target variable based on the chi-squared test. MRMR, on the other hand, finds an optimal set

of features that is mutually and maximally dissimilar while effectively representing the

response variable [14]. Feature importance estimation using random forest involves evaluating

the contribution of each feature in the predictive accuracy of the random forest classifier. The

importance of a feature is determined by measuring the decrease in the model’s accuracy

when that feature is randomly permuted or shuffled while keeping the rest of the data

unchanged.

The feature importance scores obtained using different methods, as presented in Fig 5,

reveal significant differences. Our method ranks the features in the following order of impor-

tance: v1, v4, v3, v5, and v2 (for DT the order is different: v3, v1, v4, v5, and v2). In contrast,

the order given by chi2 is v3, v1, v5, v4, and v2, MRMR ranks the features as v3, v5, v1, and v2/

v4 (with v2 and v4 having the same score), while random forest ranks the features as v1, v3, v4,

v2, and v5.

4.3 Discussion

Rheumatoid arthritis is a chronic disease of not fully elucidated pathogenesis in which both

genetic background and environmental risk factors play role [1]. Creating a prediction model

Fig 5. Feature importance.

https://doi.org/10.1371/journal.pone.0300717.g005
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based on genetic polymorphisms would enable to extract the group more susceptible to devel-

opment of this disabling disease. As some environmental factors are already known and

proven like exposure to cigarette smoke, this group could be the target of primary prevention.

In this study, we focused on analyzing a homogeneous group of ACPA+ RA patients in

terms of non-HLA genetic factors that may indicate a potential risk in the development of the

disease. Our proposed ML models achieved a sensitivity and specificity of approximately 70%,

depending on the specific model used. In mathematical models for medical use, especially for

disease risk assessment, the sensitivity and specificity of the model at the level of about 70% is

satisfactory, although not perfect. There is no similar study in the literature to compare, but

the criteria for the diagnosis of some rheumatic diseases have similar values of sensitivity and

specificity. The best example is the current EULAR/ACR 2010 criteria for the diagnosis of RA,

whose sensitivity and specificity are estimated at 73.5 and 71.4%, respectively [15]. Despite

such relatively low values, they set the diagnostic standard for this common rheumatic disease.

As a golden standard according to the ACR/EULAR 2010 RA classification criteria, RF,

ACPA, ESR, and CRP can be used as biomarkers for diagnosis of RA. However RF and ACPA

have lack optimal sensitivity, and ESR and CRP have limited specificity [10], ACPA as the

most common marker achieved 67% (sensitivity) and 95% (specificity) based on The DerSi-

monian–Laird random-effects method [16]. However, the ethiology of RA is an interplay

between genetic, environmental factors and autoimmunity triggers and it is unlikely to bear

single biomarker to diagnose or predict the disease [17]. The combination of biomarkers from

various fields seems to be an adequate strategy for future analysis. ML methods can effectively

handle such complex data and identify predictive patterns that may not be apparent through

traditional statistical methods. Early detection of RA and identification of patients at risk for

developing severe disease can allow for early intervention and more personalized treatment

approaches, improving patient outcomes and reducing healthcare costs.

In the experimental part of our study, we evaluated several ML classifiers and identified the

most accurate ones. We found that the selected models showed very similar levels of accuracy,

but each had its unique strengths. Specifically, we found that DT is the most interpretable.

The feature importance score determined by our method has clear interpretation unlike the

scores determined by comparative methods (chi2 and MRMR). It expresses an average accu-

racy of the classifier when a given feature is included as input, providing insight into its predic-

tive power. Note, that the comparative methods used are filter-type methods, which evaluate

features without considering the context of the applied classifier. Our proposed method is

globally optimal as it evaluates all possible combinations of features in the context of a given

classifier. A limitation of this approach lies in the number of features. When dealing with a

large number of features, the search space can become too vast to efficiently find the optimal

feature subset. In these cases, wrapper-type methods of feature selection can be more suitable.

These methods include sequential forward and backward selection, genetic algorithms, or

tournament searching [18].

5 Conclusion

Using ML for predicting RA with ACPA autoantibodies based on non-HLA gene polymor-

phisms would potentially enable to determine the group of individuals more prone to develop

rheumatoid arthritis and further implement more precise preventive methods like smoking

cessation. Our research has character and have some limitations including small size of the

study group or the omission of analysis of environmental factors, such as smoking, which is a

strong risk factor for RA.
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Our findings suggest that ML algorithms can effectively handle complex genomic data and

identify predictive patterns for RA. The identification of genetic markers for RA can have

important clinical implications, including early diagnosis and personalized treatment plan-

ning. We identified the most accurate ML classifiers and found that each had its unique

strengths, with decision tree being the most interpretable. Our proposed method of feature

importance estimation has a clear interpretation and is globally optimal, but the limitation of

the approach lies in the number of features.

Future studies will focus on incorporating additional input variables, both genetic and non-

genetic, in order to improve the performance of ML models for RA prediction.
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