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Abstract

Background

Numerous metabolomic studies have confirmed the pivotal role of metabolic abnormalities

in the development of idiopathic pulmonary fibrosis (IPF). Nevertheless, there is a lack of

evidence on the causal relationship between circulating metabolites and the risk of IPF.

Methods

The potential causality between 486 blood metabolites and IPF was determined through a

bidirectional two-sample Mendelian randomization (TSMR) analysis. A genome-wide asso-

ciation study (GWAS) involving 7,824 participants was performed to analyze metabolite

data, and a GWAS meta-analysis involving 6,257 IPF cases and 947,616 control European

subjects was conducted to analyze IPF data. The TSMR analysis was performed primarily

with the inverse variance weighted model, supplemented by weighted mode, MR-Egger

regression, and weighted median estimators. A battery of sensitivity analyses was per-

formed, including horizontal pleiotropy assessment, heterogeneity test, Steiger test, and

leave-one-out analysis. Furthermore, replication analysis and meta-analysis were con-

ducted with another GWAS dataset of IPF containing 4,125 IPF cases and 20,464 control

subjects. Mediation analyses were used to identify the mediating role of confounders in the

effect of metabolites on IPF.

Results

There were four metabolites associated with the elevated risk of IPF, namely glucose (odds

ratio [OR] = 2.49, 95% confidence interval [95%CI] = 1.13–5.49, P = 0.024), urea (OR =

6.24, 95% CI = 1.77–22.02, P = 0.004), guanosine (OR = 1.57, 95%CI = 1.07–2.30, P =

0.021), and ADpSGEGDFXAEGGGVR (OR = 1.70, 95%CI = 1.00–2.88, P = 0.0496). Of
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note, the effect of guanosine on IPF was found to be mediated by gastroesophageal reflux

disease. Reverse Mendelian randomization analysis displayed that IPF might slightly ele-

vate guanosine levels in the blood.

Conclusion

Conclusively, hyperglycemia may confer a promoting effect on IPF, highlighting that atten-

tion should be paid to the relationship between diabetes and IPF, not solely to the diagnosis

of diabetes. Additionally, urea, guanosine, and ADpSGEGDFXAEGGGVR also facilitate the

development of IPF. This study may provide a reference for analyzing the potential mecha-

nism of IPF and carry implications for the prevention and treatment of IPF.

Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disorder characterized by fibros-

ing interstitial pneumonia, dyspnea, lung dysfunction, and compromised quality of life [1],

which predominantly affects the elderly. Despite the existence of pharmacological interven-

tions such as pirfenidone and nintedanib, IPF is still a fatal disorder with a median survival of

only 3.8 years [2]. The risk of IPF can be elevated by several factors, such as chronic viral infec-

tions, cigarette smoking, exposure to diverse kinds of dust and fumes, and genetic susceptibil-

ity [3]. The comprehension of IPF pathogenesis has steadily evolved from an inflammation-

driven mechanism [4] to speculation highlighting aberrant alveolar epithelial cell activation

[5]. Nevertheless, the definite etiology of IPF is still ambiguous.

Metabolomics is an emergent and burgeoning high-throughput technique for the identifi-

cation of small molecules within biological samples, which creates a fresh avenue for discover-

ing disease mechanisms [6]. Metabolites are the downstream product of preceding genes and

proteins and reflect the current state of individuals. Of note, accumulating studies used meta-

bolomics to reveal potential alterations in metabolites, including lipids, amino acids, carbohy-

drates, and the tricarboxylic acid (TCA) cycle, in IPF patients or models [7–13]. However,

these studies yielded varying results. Additionally, some studies unveiled reverse causality

between metabolites and IPF, substantiating the impact of IPF on metabolite alterations. Yet,

it remains obscure whether the metabolites or metabolic status in the body affect IPF

susceptibility.

Recently, a plethora of genome-wide association studies (GWASs) have amalgamated meta-

bolomics with high-throughput genotyping to evaluate the impact of genetic variants on meta-

bolic traits, ultimately enabling the identification of multiple genetic loci linked to metabolic

traits [14]. As a statistical approach reminiscent of randomized controlled trials, Mendelian

randomization (MR) utilizes genetic variation to determine whether the association observed

between a risk factor and outcomes is indicative of the existence of a causal relationship [15,

16]. Although confounding bias and reverse causality are common limitations in observational

studies, they are less likely to appear in MR analyses since genotype formation precedes disease

onset [17]. Several MR analyses have confirmed the causal relationship between IPF and expo-

sures such as body mass index (BMI) [18], circulating proteins [19], comorbidities (including

gastroesophageal reflux disease (GERD) [20], hypothyroidism [21], venous thromboembolism

[22], chronic obstructive pulmonary disease [22], and diabetes [22]).

GWAS has recently been expanded to metabolic phenotyping, generating an atlas of geneti-

cally determined metabolites. Considering the uncertainty about the causality between blood
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metabolites and IPF, the current research assessed the causality between human blood metabo-

lites (486) and the risk of IPF with a bidirectional two-sample MR (TSMR) approach. Further,

stable results were selected through meta-analysis combined with sensitivity analysis to iden-

tify potential factors influencing IPF.

Methods

Study design and data sources

The current research was conducted with a bidirectional TSMR method (Fig 1).

GWAS data on blood metabolites were obtained from a GWAS by Shin et al. which

involved 7,824 participants, around 2.1 million single nucleotide polymorphisms (SNPs), and

TwinsUK and KORA cohorts (two European cohorts) [14]. The demographic data of both

cohorts is detailed in S1 Table. Genetic analysis was carried out with a subset of 486 metabo-

lites (S2 Table), including 309 known metabolites and 177 unknown metabolites [14]. Subse-

quently, 309 known metabolites were categorized into 8 metabolic clusters (carbohydrates,

lipids, amino acids, nucleotides, energy, peptides, vitamins, and xenobiotic metabolism).

The GWAS summary statistics of IPF were extracted from the latest and largest GWAS

meta-analysis (947,616 controls and 6,257 IPF cases from 9 biobanks; S3 Table) in the Global

Biobank Meta-Analysis Initiative (https://www.globalbiobankmeta.org/resources) developed

by Zhou et al. [23]. For the replication analysis, the GWAS data of IPF were acquired from a

meta-analysis involving 20,464 controls, 4,125 IPF cases, and 7,554,248 genetic variants [24].

This meta-analysis comprised 5 previous studies of IPF, including UK, Colorado, and Chicago

studies, as well as two independent studies (the Genentech study and the USA, UK, and Spain

[UUS] study).

Instrumental variables selection

The genetic variant used as an instrumental variable (IV) should fulfill the following three

assumptions [25]: (1) the variant is robustly associated with exposures; (2) the variant is inde-

pendent of potential confounders; (3) the variant may only affect the outcome through expo-

sures without any direct correlation with the outcome.

Fig 1. Overview of the current Mendelian randomization study. Reverse MR analysis used similar methods, except that the P-value threshold was set to

5 × 10−6 for filtering IVs. IV, instrumental variable; nIVs, number of instrumental variables; LD, linkage disequilibrium; MR-PRESSO, MR pleiotropy residual

sum, and outlier; IVW, inverse-variance weighted; WMo, weighted mode; WMe, weighted median estimator.

https://doi.org/10.1371/journal.pone.0300423.g001
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For each metabolite assessed, SNPs that exhibited significant associations at a threshold of

P< 1 × 10−5 were selected primarily to maintain an optimal balance between the strength and

quantity of IVs [26, 27]. Next, SNPs were clustered by eliminating linkage disequilibrium with

R2 > 0.001 within 10000 kb in the Phase 3 reference panel of the European 1000 Genomes

Project. Exposure-related SNPs were ruled out when they failed to match the obtained out-

come GWAS statistics. Palindromic SNPs with an intermediate allele frequency (minor allele

frequency> 0.42) were discarded when data were harmonized to align the allele of exposure-

and outcome-SNP. F-statistics were calculated with the formula in S4 Table, and an F-

statistic > 10 was used as a threshold for ensuring the power of IVs.

MR analyses and statistical methods

A TSMR analysis was conducted by including metabolites with more than three independent

IVs. First, the MR-pleiotropy residual sum and outlier test (distributions = 1000) was adopted

to exclude outlier SNPs [28]. Then, the MR analysis was carried out mainly with the inverse-

variance weighted (IVW) method. The consistency of direction was checked with the MR-Eg-

ger regression, weighted median estimator (WMe), and weighted mode (WMo).

The Cochran’s Q statistical analysis and MR-Egger intercept test were adopted to test het-

erogeneity and horizontal pleiotropy, respectively. For positive results, the leave-one-out sensi-

tivity analysis was performed to validate whether single SNPs were involved in the causal

relationship in the TSMR analysis (P< 0.05 for all but one), followed by the inference of causal

direction with the MR Steiger method [29]. To minimize potential confounders, the PhenoS-

canner database [30] were utilized to identify any associations (P = 5 × 10−8) with plausible

confounders for IVs of positive results.

‘TwoSampleMR 0.5.7’ and ‘MRPRESSO’ in R software-4.3.1 were adopted for TSMR

analyses. The code used for TSMR was provided in S1 Appendix. P-values were set at less

than 0.05 for statistical significance. A meta-analysis was conducted with the Review Man-

ager (version 5.3) random-effects IVW model to determine the robustness of statistically

significant results (PIVW < 0.05) with consistent direction across the aforementioned four

MR methods.

Mediation analysis

Given that IPF is known to be associated with various factors including BMI, smoking, and

GERD, two-step MR for mediation analysis was used to determine whether these factors medi-

ated the effect of metabolites on the risk of IPF. Initially, a TSMR analysis was conducted to

ascertain the causal relationship between positive metabolites and BMI, smoking, and GERD,

thus verifying the first assumption of MR for mediation analysis, that is, a causal relationship

existed between exposures and mediators. The causal relationship between positive metabo-

lites and BMI or GERD was analyzed with the database “ukb-b-19953” or “ebi-a-

GCST90000514” [31], and the causal relationship between positive metabolites and smoking

was analyzed with a GAWS on lifetime smoking index, which involved 462,690 individuals,

from the UK Biobank [32].

Subsequently, IVs were identified for the mediator substances to predict the impact of these

mediators on the risk of IPF. If evidence supported that circulating metabolites affect these

mediators, which in turn influence IPF, the "product of coefficients" method was utilized to

evaluate the indirect effects of circulating metabolites on the risk of IPF through these media-

tors [33]. The standard errors for these indirect effects were obtained with the delta method

[34].
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Reserve TSMR analysis

To determine the impact of IPF on blood metabolites, reverse MR analyses were conducted

with similar methods, except that IVs were filtered rigorously according to the threshold of

P = 5 × 10−6.

Results

IV selection

S5 and S7 Tables display the characteristics of the genetic IVs used in the TSMR analysis which

was performed to clarify the effect of blood metabolites on the risk of IPF. A total of 473 and

476 metabolites were yielded through the TSMR analyses performed with metabolite databases

and GWAS datasets from Zhou et al. and Allen et al., respectively, with more than three IVs

for each metabolite. The F statistics of all instrumental SNPs were greater than 10, illustrating

that IVs were adequately strong.

Primary MR and sensitivity analyses

In the MR analysis conducted with a metabolite GWAS and an IPF GWAS by Zhou et al. (S6

Table), 21 metabolites were tentatively determined by the IVW method to be substantially

related to IPF, among which the chemical compositions of 12 metabolites were identified.

Additionally, four MR methods (IVW, WMo, WMe, and MR-Egger regression) revealed that

8 metabolites had a consistent direction (Table 1, S1 Fig). The MR-Egger intercept test demon-

strated no horizontal pleiotropy. Meanwhile, no heterogeneity was detected by Cochran’s Q

statistical analysis, and no SNP-driven signals were found by the leave-one-out test (S2 Fig).

Table 1. MR and sensitivity analysis results of positive metabolites related to IPF.

Metabolites nSNP Methods P OR (95%CI) Intercept_P Q stat_P Steiger_P
IPF GWAS from Zhou et al.

pantothenate 20 IVW 0.044 0.52 (0.27–0.98) 0.844 0.205 < 0.001

guanosine 8 IVW 0.021 1.57 (1.07–2.30) 0.581 0.346 < 0.001

urea 8 IVW 0.004 6.24 (1.77–22.02) 0.349 0.298 < 0.001

serotonin (5HT) 13 IVW 0.004 0.46 (0.27–0.78) 0.826 0.489 < 0.001

glucose 31 IVW 0.024 2.49 (1.13–5.49) 0.328 0.737 < 0.001

caprylate (8:0) 35 IVW 0.026 1.83 (1.08–3.11) 0.720 0.496 < 0.001

ADpSGEGDFXAEGGGVR 5 IVW 0.0496 1.70 (1.00–2.88) 0.743 0.558 < 0.001

4-vinylphenol sulfate 8 IVW 0.015 1.90 (1.13–3.17) 0.576 0.132 < 0.001

IPF GWAS from Allen et al.

guanosine 11 IVW 0.045 1.60 (1.01–2.53) 0.612 0.817 < 0.001

phosphate 5 IVW 0.042 10.37 (1.09–98.60) 0.921 0.246 < 0.001

beta-hydroxyisovalerate 21 IVW 0.042 0.42 (0.18–0.97) 0.850 0.427 < 0.001

heme* 8 IVW 0.033 0.33 (0.12–0.92) 0.726 0.186 < 0.001

HWESASXX* 6 IVW 0.012 0.44 (0.23–0.83) 0.389 0.766 < 0.001

gamma-tocopherol 10 IVW 0.030 1.87 (1.06–3.31) 0.444 0.773 < 0.001

1-palmitoylglycerophosphoinositol* 10 IVW 0.005 2.91 (1.39–6.13) 0.255 0.379 < 0.001

2-tetradecenoyl carnitine 17 IVW 0.012 1.95 (1.16–3.29) 0.249 0.389 < 0.001

4-vinylphenol sulfate 7 IVW 0.008 0.48 (0.28–0.82) 0.687 0.500 < 0.001

IVW, inverse variance weighted; OR, odds ratio; CI, confidence interval; Intercept_P, P value of the intercept of MR-Egger regression; Q stat_P, P value of the Cochran’s

Q statistical analysis; Steiger_P, P value of the MR Steiger test.

https://doi.org/10.1371/journal.pone.0300423.t001
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In the MR analysis performed with GWAS datasets for metabolites and IPF from Allen

et al. (S8 Table), 9 metabolites (Table 1) were demonstrated as positive metabolites by the IVW

method and had a consistent direction across the four MR methods. The corresponding scatter

plots and leave-one-out test results of these nine metabolites are presented in S3 and S4 Figs,

respectively. The leave-one-out test for HWESASXX* exhibited that the overall analysis was

markedly influenced by the SNP-driven signal in ’rs2007084’. Accordingly, this metabolite was

not included as a robust result in the following meta-analysis.

Meta-analysis

A meta-analysis was performed on the 14 robust metabolites obtained with the IPF GWAS

data from Zhou et al. and Allen et al. to further validate our results. As depicted in Fig 2, there

were marked estimates in the meta-analyses of 5 metabolites. Specifically, susceptibility to IPF

was increased by higher levels of guanosine (odds ratio [OR] = 1.58, 95% confidence interval

[95%CI] = 1.18–2.12, P = 0.002), urea (OR = 4.53, 95%CI = 1.58–12.94, P = 0.005), glucose

(OR = 2.19, 95%CI = 1.15–4.16, P = 0.020), caprylate (8:0) (OR = 1.71, 95%CI = 1.07–2.73,

P = 0.030), and ADpSGEGDFXAEGGGVR (OR = 1.70, 95%CI = 1.14–2.53, P = 0.009).

No significant results were yielded for metabolites including pantothenate, serotonin (5HT),

4-vinylphenol sulfate, phosphate, beta-hydroxyisovalerate, heme*, gamma-tocopherol, 1-pal-

mitoylglycerophosphoinositol*, and 2-tetradecenoyl carnitine in the meta-analysis (S5 Fig).

Confounding analysis

Although sensitivity analyses showed no horizontal pleiotropy for 5 robust metabolites, the

secondary traits of metabolite-associated SNPs were further analyzed (S15 Table). With Phe-

noscanner, one glucose-related SNP (rs17616642) and two caprylate (8:0)-related SNPs

(rs1576171 and rs4858696) were excluded due to their correlation with BMI. Subsequent IVW

analysis reaffirmed the critical causal relationship between glucose and IPF (OR = 2.68, 95%

CI = 1.21−5.96, P = 0.016). Conversely, caprylate (8:0) was insignificant correlated with IPF

(IVW: OR = 1.59, 95% CI = 0.79−3.22, P = 0.194) after BMI-related IVs were excluded.

Mediation analysis

The preliminary TSMR analysis demonstrated that among the five metabolites with positive

results in the meta-analysis, only guanosine exerted a significant positive effect on GERD

(IVW: OR = 1.09, 95% CI = 1.00−1.17, P = 0.038). Next, the causal effect of GERD on IPF was

further assessed. In alignment with the metabolite analysis, IVs for GERD were selected with

the P-value threshold of 1 × 10−5 for analysis, which unraveled that GERD markedly enhanced

the risk of IPF (IVW: OR = 1.32, 95% CI = 1.19−1.48, P< 0.001). The results of analyses with

weighted median and MR-Egger corroborated the assumed directionality in the IVW MR

analysis. Finally, it was observed that the causal effect of guanosine on IPF via GERD was 0.023

(95%CI = 0.001−0.049), with a mediation proportion of 5% (Table 2).

Reserve TSMR analysis

The reserve TSMR analysis was utilized to delve into the effect of IPF on blood metabolites,

with P< 5 × 10−6 as a screening threshold of IVs for IPF. S9–S11 Tables respectively display

the impact of IPF on blood metabolites in the MR analysis conducted with IPF GWAS data

from Zhou et al., the results of the sensitivity analysis, and the characteristics of the used SNPs.

Additionally, S12–S14 Tables list the results obtained with IPF GWAS data from Allen et al.
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Fig 2. Significant positive causal relationship between metabolites and IPF identified in meta-analysis. The GWAS

by Zhou et al.: primary analysis of IPF; the GWAS by Allen et al.: replication analysis of IPF. CI, confidence interval.

https://doi.org/10.1371/journal.pone.0300423.g002

Table 2. The mediation effect of guanosine on IPF via GERD.

Mediator Total effect Direct effect A Direct effect B Mediation effect Mediation proportion (%)

Beta (95%CI) Beta (95%CI) Beta (95%CI) Beta (95%CI)

GERD 0.451 (0.067, 0.835) 0.082 (0.005, 0.159) 0.280 (0.171, 0.390) 0.023 (0.001, 0.049) 5

Note: “Total effect” indicates the effect of guanosine on IPF. “Direct effect A” represents the effect of guanosine on GERD, and “direct effect B” stands for the effect of

GERD on IPF. “Mediation effect” indicates the effect of guanosine on IPF via GERD. Total and direct effects (A and B) were estimated with IVW, and the mediation

effect was calculated with the delta method.

https://doi.org/10.1371/journal.pone.0300423.t002
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A total of 15 positive metabolites were identified through the preliminary screening (S6

Fig), among which 6 metabolites, including leucine, linoleate (18:2n6), guanosine, laurate

(12:0), 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), and 1,7-dimethylurate, still

showed positive results in meta-analysis. Nevertheless, ORs were extremely close to 1 in the

reverse MR analysis, highlighting a weak impact of IPF on blood metabolites.

Discussion

In the current research, a TSMR analysis was carried out to identify the causality between

blood metabolites (486) and IPF. The initial MR analysis was conducted with the IPF database

from Zhou et al., while the replication analysis was performed with the database from Allen

et al. In preliminary and replicated MR analyses, 8 and 9 positive metabolites were obtained,

respectively. After excluding duplicates and those that failed the sensitivity analysis, a total of

14 metabolites were included in the meta-analysis. Ultimately, 5 metabolites had positive

results in the meta-analysis. To be specific, higher levels of guanosine, urea, glucose, caprylate

(8:0), and ADpSGEGDFXAEGGGVR shared a causal association with the elevated risk of IPF.

For these 5 positive metabolites, the secondary traits of metabolite-associated SNPs were

further analyzed with Phenoscanner. After BMI-related SNPs were excluded, glucose was still

significantly correlated with IPF, as opposed to caprylate (8:0). Therefore, the positive effect of

caprylate (8:0) on IPF in the preliminary MR analysis might be confounded by BMI, which

was excluded from the robust results. In addition, the results of MR for mediation analysis

revealed that the promoting effect of guanosine on IPF was partly mediated by GERD, with a

mediation proportion of 5%. Reverse MR analysis results exhibited that IPF might also exert a

slightly elevating effect on guanosine levels in the blood.

Recently, metabolomic research has extensively displayed the perturbation of metabolic

pathways, such as lipids, amino acids, carbohydrates, and the TCA cycle, during IPF [35]. Nota-

bly, mounting studies have reported the pivotal involvement of glycolytic reprogramming in

IPF pathogenesis. For instance, the research by Xie et al. [9] elucidated that increased glycolysis

was an early and sustained event during myoblast differentiation and that pharmacological or

genetic interventions repressed the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,

6-biphosphatase 3 and diminished fibroblast activation in vitro, as well as substantially amelio-

rating PF in mice [9]. Compared to oxidative phosphorylation, glycolysis can produce higher

levels of lactate, which modulates histone modification, macrophage proliferation, and fibropro-

liferation, thereby perpetuating fibrosis [36, 37]. A recent study revealed that glucose transport-

ers (GLUTs) were amplified during the progression of fibrogenesis and strongly emphasized

the profibrotic role of upregulated GLUT1 and subsequently increased glucose uptake [38].

Hyperglycemia has been confirmed to provide more prerequisites for glycolysis. Nonetheless,

lactic acid levels exerted an insignificant effect on IPF in our study. Accordingly, further

research is warranted to discuss whether hyperglycemia drives PF by enhancing glycolysis.

The relationship between diabetes and IPF has been controversial. For example, a prior

meta-analysis, which involved nine case–control studies with 19,095 control subjects and

5,096 IPF patients, exhibited a positive association of diabetes with IPF (OR = 1.65, 95%

CI = 1.30–2.10, P< 0.0001) [39]. However, a prior MR study demonstrated no discernible

causal relationship between diabetes and IPF [22]. When the relationship between diabetes

and IPF was explored, potential biases stemming from blood glucose management in diabetic

patients may account for heterogeneity in outcomes. The phenotype of blood glucose can be

used to provide a more direct view of the relationship between diabetes and IPF. Therefore,

more clinical studies are needed to focus on the relationship between blood glucose and the

onset or prognosis of IPF, not solely on the diagnosis of diabetes.
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A multitude of studies have evidenced the alleviatory effect of the hypoglycemic drug met-

formin on IPF in mice [40–44]. Intriguingly, the effectiveness of metformin in the treatment

of IPF varies across clinical trials. For instance, a post hoc analysis unraveled no substantial dif-

ference in clinical efficacy between the combination of pirfenidone and metformin and pirfe-

nidone monotherapy, irrespective of diabetes in IPF patients [45]. On the contrary, a national

cohort study revealed that metformin had clinical advantages in IPF patients with diabetes

since it reduced overall mortality and hospitalization rates [46]. Considering our result that

hyperglycemia served as a factor elevating the risk of IPF, blood glucose management may

assume a role in lowering IPF prevalence, and more clinical trials are needed to validate this

result.

In addition, the present study also showed that the elevation in blood urea, guanosine, and

ADpSGEGDFXAEGGGVR was associated with an increased risk of IPF. Urea synthesis is an

imperative process of the ornithine cycle in the liver and functions as the paramount conduit

for the management of ammonia metabolism. Arginine is a key intermediate compound in the

ornithine cycle, and its metabolite proline is essential in promoting collagen accumulation

during fibrosis [47]. The study by Zhao et al. [11] unveiled that the metabolites of arginine,

including creatine, proline, putrescine, and spermidine, were upregulated in the lung tissues of

IPF patients. Similarly, our reverse MR analysis result also displayed an effect of IPF in upregu-

lating proline, but the significance of this effect was diminished in the meta-analysis. In addi-

tion, arginase-1, an enzyme implicated in the cleavage of arginine to generate proline,

ornithine, and urea, was found to be upregulated in models of bleomycin-stimulated PF [48].

In summary, the MR analysis exhibited the promoting effect of high urea levels on IPF, illus-

trating the potential involvement of ornithine cycle disturbance in IPF. Limited research has

been performed on the association of guanosine and ADpSGEGDFXAEGGGVR with IPF.

Our data elucidated that the upregulation of ADpSGEGDFXAEGGGVR conferred a slightly

elevating effect on IPF risk, with a P-value (0.0496) at the edge of the threshold value.

Several limitations exist in our study. First, it is imperative to be cautious in interpreting

and extrapolating the results of MR studies [49]. Further external validation should be per-

formed to confirm the results. Second, only GWAS data on individuals of European ancestry

were employed to minimize the source of variation. Accordingly, the generalization of our

results to other populations remains uncertain, which necessitates further exploration and vali-

dation in diverse ethnic backgrounds. Third, the accuracy and reliability of MR analysis results

are contingent on the quality and sample size of the database. Larger datasets can minimize

potential biases and enhance the robustness of our conclusions.

Conclusion

In conclusion, our MR results identified 4 metabolites that might elevate IPF risk, including glu-

cose, urea, guanosine, and ADpSGEGDFXAEGGGVR. Our results provide clues to mechanisms

behind the occurrence and development of IPF and may have implications for its treatment.
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