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Abstract

Introduction

Multiple Sclerosis (MS) is a chronic neurodegenerative disorder that affects the central ner-

vous system (CNS) and results in progressive clinical disability and cognitive decline. Cur-

rently, there are no specific imaging parameters available for the prediction of longitudinal

disability in MS patients. Magnetic resonance imaging (MRI) has linked imaging anomalies

to clinical and cognitive deficits in MS. In this study, we aimed to evaluate the effectiveness

of MRI in predicting disability, clinical progression, and cognitive decline in MS.

Methods

In this study, according to PRISMA guidelines, we comprehensively searched the Web of

Science, PubMed, and Embase databases to identify pertinent articles that employed con-

ventional MRI in the context of Relapsing-Remitting and progressive forms of MS. Following

a rigorous screening process, studies that met the predefined inclusion criteria were

selected for data extraction and evaluated for potential sources of bias.

Results

A total of 3028 records were retrieved from database searching. After a rigorous screening,

53 records met the criteria and were included in this study. Lesions and alterations in CNS

structures like white matter, gray matter, corpus callosum, thalamus, and spinal cord, may

be used to anticipate disability progression. Several prognostic factors associated with the

progression of MS, including presence of cortical lesions, changes in gray matter volume,

whole brain atrophy, the corpus callosum index, alterations in thalamic volume, and lesions

or alterations in cross-sectional area of the spinal cord. For cognitive impairment in MS

patients, reliable predictors include cortical gray matter volume, brain atrophy, lesion char-

acteristics (T2-lesion load, temporal, frontal, and cerebellar lesions), white matter lesion vol-

ume, thalamic volume, and corpus callosum density.
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Conclusion

This study indicates that MRI can be used to predict the cognitive decline, disability progres-

sion, and disease progression in MS patients over time.

Introduction

Multiple Sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system

(CNS) and leads to demyelination, axonal loss, and neurodegeneration. The disease is caused by

a complex interaction of environmental and genetic factors that are not yet fully understood

[1, 2]. MS presents with a wide range of symptoms including sensory disturbances, walking diffi-

culties, vision problems, intestinal and urinary dysfunction, cognitive and emotional

impairment, dizziness, vertigo, sexual problems, speech difficulties, seizures, and headaches

[3, 4]. MS is classified into four subgroups based on phenotype: clinically isolated syndrome

(CIS), relapsing-remitting MS (RRMS), secondary-progressive MS (SPMS), and primary-pro-

gressive MS (PPMS). RRMS is the most common form of the disease, affecting approximately

85% of patients at presentation. It is characterized by acute exacerbations followed by clinically

stable periods [5]. PPMS, on the other hand, presents with a slowly progressive reduction in neu-

rological function from the start without clinical relapses [6, 7]. Naturally, RRMS tends to con-

vert to SPMS which is an irreversible gradual disability progression [8]. In the past, nearly 10%

of RRMS patients progressed to SPMS in a 5-year period, 25% in 10 years, and 75% in 30 years.

However, with the advent of more treatment options and early diagnosis, the risk of SPMS con-

version has decreased to about 2%, 9%, and 27% in a 10-year, 15-year, and 20-year period,

respectively [9–11]. In addition to physical disability, impairment of cognitive function is also a

common manifestation of MS. Neuropsychological abnormalities are observed in 40–70% of MS

patients, and cognitive impairment is a predictor of disease progression [12]. MS in cognitively

impaired patients is more likely to progress in upcoming years [13]. The most common cogni-

tive impairments in MS include reduced speed of information processing and working memory,

which can disrupt data retention ability and short-term memory [14–17]. Unfortunately, the

underlying mechanisms of cognitive impairment in MS are not yet fully understood [18, 19].

Magnetic resonance imaging (MRI) plays a pivotal role in the detection, prognosis, and

evaluation of disease activity in MS [20–23]. Focal lesions, atrophies, and normal appearing tis-

sue damages are among the MS pathologies that can be detected using MRI [20]. White matter

lesions and deep gray matter atrophy typically arise in the early stages of the disease, while cor-

tical atrophy and demyelination emerge in later stages [24–27].

Features of MS lesions in the brain or spinal cord, including the presence of lesions or

changes in the size of certain CNS structures such as the thalamus, corpus callosum, cerebel-

lum, limbic system, and spinal cord are not addressed in the latest version of McDonald Crite-

ria (2017) [23] or in recent guidelines for determining disease progression or deciding for

escalation or change of treatment in MS disease. Considering this, here we aimed to evaluate

the potential of conventional MRI markers in predicting clinical disability, disease progression,

and cognitive decline in MS patients.

Methods and materials

Eligibility criteria

We included studies with the following criteria: [1] Definite diagnosis of MS based on the

revised McDonald’s criteria of 2017 [2, 23], Applied conventional MRI, and [3] Focused on
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evaluating the progression of disability or cognitive decline in MS patients. To ensure the qual-

ity of the data, we excluded various types of publications, including review articles, animal

studies, letters and commentaries, case reports, case series, book chapters, conference

abstracts, and non-English studies. Furthermore, the study only included research conducted

among patients with RRMS or progressive forms of the disease, while studies conducted

among patients with CIS were excluded. We excluded studies with the usage of AI (Deep

learning and Machine learning methods) in the prediction of course of disease.

Search strategy

We conducted this systematic review according to the guideline of preferred reporting items

for Systematic reviews and Meta-Analysis (PRISMA) [28]. Search was performed in PubMed,

Embase and Web of Science databases from 2010 until July 2023 to identify the relevant studies

using the keywords below:

("progressive multiple sclerosis" OR "Multiple Sclerosis, Chronic Progressive"[Mesh] OR "pro-
gressive MS" OR "primary progressive multiple sclerosis" OR "secondary progressive multiple
sclerosis" OR "primary progressive MS" OR "secondary progressive MS" OR PPMS OR SPMS)
AND ("relapsing remitting multiple sclerosis" OR "relapsing-remitting multiple sclerosis" OR
"relapsing-remitting MS" OR "relapsing/remitting multiple sclerosis" OR "relapsing/remitting
MS" OR "Multiple Sclerosis, Relapsing-Remitting"[Mesh] OR "relapsing-remitting MS" OR"re-
lapse-onset MS" OR "relapse-onset multiple sclerosis" OR RRMS) AND (MRI OR "magnetic
resonance imaging" OR "magnetic resonance imaging"[MeSH] OR imaging) AND (2010:2023
[pdat])

We made a slight adjustment to our search strategy to integrate with two other databases.

Initially, there were no restrictions on the type of studies, their location, or language. We

screened and extracted data from all studies conducted from 2010 to July 2023 using EndNote

software [29]. Flow diagram of the database searching and study selection according to the

PRISMA guideline is presented below in Fig 1.

Screening and data extraction

This stage was conducted in three distinct phases by two independent authors, namely K.A.A

and K.S. In the first phase, the titles and abstracts of the records were carefully screened to

determine their initial eligibility for inclusion in the study. In the event of any discrepancies,

the third and fourth authors, N.B.L and A.S, were consulted to resolve the issue by consensus.

In the second phase, the full text of the selected records was retrieved. Only those articles that

specifically studied MRI markers in relation to disability progression or cognitive decline in

RRMS or progressive forms of MS were included. In the third and final phase, relevant data

was extracted and recorded in a data collection table, which included important information

such as the demographic features of the study participants (year of study, number and studied

groups of participants, mean age, and disease duration), the imaging methodology used (field

strengths in Tesla and studied parameter), and the correlations of MRI markers with disability

progression and cognitive decline.

Data items

In this review, we aimed to assess any correlations of MRI markers with disability progression

and cognitive decline in RRMS and progressive forms of MS. These terms are defined as

follows:
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Disability: Disability progression in MS is a broad term referring to the worsening of physi-

cal, cognitive and emotional symptoms during the disease course. We mainly aimed at the

physical disability mostly measured by Expanded Disability Status Scale (EDSS) among

included studies. Depending on the affected area of CNS, physical disability progression can

manifest with different symptoms including muscle weakness, balance and coordination prob-

lems, fatigue, tremors and difficulty walking. In addition, Timed 25-Foot Walk (T25FWT) and

9-Hole Peg Test (9HPT) can be utilized to assess disability outcomes. The T25FWT assesses an

individual’s time to walk 25 feet as swiftly as possible while ensuring safety. Prolonged comple-

tion times indicate increased disability levels. Meanwhile, the 9HPT evaluates arm and hand

functionality, employing a small container with nine holes and pegs. Participants are

instructed to place and remove the pegs from the holes individually as rapidly as possible. Lon-

ger completion times signify higher disability.

Progression: The progression of MS refers to how the disease evolves and advances over

time. CIS and RRMS phenotypes tend to progress and convert to the progressive phenotypes

of MS.

Cognition: Cognitive decline, a representative of disability progression in MS, refers to the

progressive deterioration of cognitive functions, including memory, attention, information

processing speed, executive functions, and problem-solving abilities. It can significantly impact

daily functioning, work performance, and overall quality of life. Two commonly used cognitive

function assessment tools in studies are the Symbol Digit Modalities Test (SDMT) and the

Paced Auditory Serial Addition Test (PASAT). The SDMT evaluates processing speed and

attention by matching symbols with numbers within a time limit, while the PASAT measures

processing speed, flexibility, and working memory by requiring participants to add orally pre-

sented numbers in sequence.

Fig 1. PRISMA flow diagram of database searching and study selection.

https://doi.org/10.1371/journal.pone.0300415.g001
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Risk of bias assessment

In accordance with the PRISMA guidelines [28], the quality assessment of the studies

included in this systematic review was conducted using the Joanna Briggs Institute Critical

Appraisal tools (JBI) specifically designed for cross-sectional studies [30]. Two independent

authors (N.B.L and K.S) conducted the assessment by answering 11 questions that evaluate

different domains of the studies to ascertain their potential risk of bias. The questions could

be answered with ‘yes’, ‘no’ or ‘unclear’. Any discrepancies between the two reviewers were

discussed and resolved by achieving a consensus. The risk of bias for each individual study

was determined based on the following criteria: low risk of bias if 70% of answers scored yes,

moderate risk if 50 to 69% questions scored yes and high risk of bias if yes scores were below

49% [31].

Results

A total of 3028 articles were identified after conducting a thorough search of the database,

including 762 articles from PubMed, 498 from Web of Science, and 1768 from Embase. Fol-

lowing the elimination of duplicates, 1922 articles remained for title and abstract screening.

Subsequently, 639 articles were retrieved for a full text analysis, out of which 12 records were

not found. During the comprehensive full text screening, 579 articles were excluded for not

meeting the inclusion criteria. An additional five studies were found through other sources

and met the inclusion criteria, leading to a total of 53 studies being included in this review.

Correlating MRI markers in cortical lesions and gray matter alterations of MS patients were

assessed in fifteen studies, spinal cord alterations in twelve studies, corpus callosum alterations

in three studies, cerebellum alterations in six studies, thalamus alterations in eleven studies,

limbic system alterations in two studies, lesion atrophy in two studies, whole brain and white

matter lesion volume in nineteen studies.

MRI markers predicting the disability progression

Abnormalities in the gray matter, whether deep or cortical, including atrophy or lesion in the

cortex, can predict the progression of disability among patients with MS. Several studies have

shown a strong correlation between cortical lesion and EDSS score [32–38] with cortical lesion

volume being a predictor of neurologic disability progression during follow-up [35]. Gray mat-

ter atrophy has also been identified as a predictor of higher EDSS scores [34, 39, 40]. In addi-

tion, the ratio of gray matter (GM) to normal appearing white matter (NAWM) in recently

diagnosed RRMS patients can predict disability progression [41]. The deep gray matter has

been found to be a predictor of time-to-EDSS progression [42].

In white matter (WM), EDSS score was significantly correlated with WM lesion volume,

central atrophy, lesion probability in the periventricular WM at the left frontal horn and

around the posterior horns and with whole-brain volume particularly with widths of third and

lateral ventricle [32, 37, 43–45]. The presence of confluent lesions (in RRMS), higher number

of T2 lesions, lower baseline T2-lesion volume (T2LV), lower normalized brain volume

(NBV), higher percentage brain volume change (PBVC) between year 2 and baseline and pres-

ence of� 4 slowly expanding lesions (SELs) were defined as prognostic factors for EDSS wors-

ening and disability progression [46–48, 83].

In the corpus callosum, some indices, including corpus callosum index (CCI) and corpus

callosum lesion volume (CCLV), which indicate corpus callosum (CC) damage, were associ-

ated with disability progression and EDSS change [49, 50].
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Thalamic volume change especially in the anterior, ventral anterior, ventral lateral and pul-

vinar nuclei inversely correlated with EDSS [50–53]. Furthermore, the EDSS was negatively

associated with thalamic iron [54].

Spinal cord changes such as atrophy (GM and WM) or lesions were indicators of disability

and worsening EDSS. Some studies suggested that smaller cervical cross-sectional area

(CS-SCA), especially CSA-C2, loss of spinal cord volume (SCV), baseline annualized percent-

age upper cervical cord cross-sectional area change (aUCCA), and the number of spinal cord

segments affected by T2-lesions are all predictive factors for disability [34, 40, 55–60].

In all CNS structures, atrophied lesion volume was significantly associated with disability

progression [61].

MRI markers predicting the progression of disease

Cortical lesions and gray matter volume are two most significant determinants of a progressive

disease [34, 35]. Cortical lesions are more prevalent in SPMS subjects compared to RRMS sub-

jects [35] and higher baseline cortical lesions predicted conversion to SPMS [62]. Temporal

gray matter atrophy is faster in SPMS than RRMS [42]. The GM/NAWM ratio is a predictor of

SPMS conversion in recently diagnosed RRMS patients, implicating that GM and NAWM are

influenced differently regarding disease development since early stages of MS [41].

Some MS lesion characteristics and also atrophy of brain are among other key markers and

predictors of MS progression. Notably, iron rims serve as a representation of the chronic active

nature of MS lesions, indicating a more severe and damaging form of the disease [63]. In a

study, the only longitudinal MRI marker that was capable of distinguishing patients who dete-

riorated gradually from those who remained stable was brain atrophied T2-LV [64]. In another

9.1-year longitudinal study, the number and volume of T2 hyperintense lesions and lower

NBV were significantly associated with conversion to SPMS [47]. Higher annualized percent-

age ventricular volume change (aPVVC) during the first 2 years was observed in patients with

progressive disease compared to patients with no progression [65]. Central atrophy was associ-

ated with disease progression over 5.5 years in early RRMS [45]. One study showed that signif-

icant discriminative MRI atrophy measurements in RRMS vs SPMS are as followed: Index of

frontal atrophy, Index of EVANS, Huckman Index, Bicaudatus Index and Width of third ven-

tricle. For differentiating RRMS from SPMS; Remission-Progression Index formula can be

used [66]: Remission-Progression Index = (RAVLT 1–5 SUM + DSST)/Huckman Index.

The corpus callosum index is an important prognostic factor for the progression of MS. It

has been observed that individuals diagnosed with SPMS exhibit lower levels of CCI at the

time of diagnosis, while also experiencing a greater decline in annual CCI compared to those

with RRMS [67].

Deeper nuclei impairment, higher thalamic lesion volume and higher thalamic volume

reduction was seen in SPMS compared with the RRMS group [38, 51, 68]. Baseline volume

and the rate of annual volume loss of the ventral lateral nucleus were significant predicting fac-

tors of disease progression [53].

Spinal cord abnormalities including atrophy and lesion and gadolinium-enhancement at

disease onset and during disease are also predictors of MS progression and conversion to pro-

gressive forms [69]. SCV loss particularly cervical GM atrophy is a predicting factor for pro-

gression. Although, cervical CS-SCA, especially cross-sectional area of C2 (CSA-C2) is

significantly smaller in PMS compared to RRMS, but thoracic SCAs are not significantly dif-

ferent between types of MS [55–57, 60]. Reduction of UCCA over 24 months is seen on all MS

types and is higher in SPMS [59]. Patients who develop SPMS exhibit accelerated cord atrophy
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rates before conversion and decelerated rates after conversion [70]. Clusters of cord atrophy

are mainly found in the lateral and posterior cord segments [71].

Atrophy of the cerebellum, especially cerebellar posterior superior lobe atrophy was higher

in SPMS compared to RRMS [72–74]. Significantly higher volumes and numbers of cerebellar

cortical lesions were found in SPMS and PPMS compared to RRMS and CIS [75, 76]. Although

these changes manifest during the progression of the disease and may not be immediately

apparent at the onset of the condition, hence they may not be regarded as reliable predictors of

disease progression.

MRI markers predicting the cognitive decline

Cortical gray matter volume was an MRI predictor of cognitive decline [77]. But cortical lesion

(CL) volume and CL load were not significant predictors of neuropsychological outcomes, and

were only associated with impairing the more challenging cognitive tests such as Trail Making

Test (TMT-B) [32, 33].

Brain atrophy was correlated with verbal memory impairment and other neurocognitive

symptoms. Third ventricle width and bicaudatus ratio correlated mostly with the performed

cognitive tests particularly Symbol Digit Modalities Test (SDMT) [66]. In RRMS, atrophy of

WM was correlated with verbal memory performances [78].

Some MS lesion characteristics were predictors of cognitive impairment. Atrophied

T2-LV among PMS patients, was related to follow-up SDMT of cognitive tests [64].

T2-lesion load (T2-LL) was recognized as an important predictor of memory function, cog-

nitive efficiency and overall cognition [79]. Temporal, frontal and cerebellar hemispherical

lesions had correlations with SDMT test performance, and a small cluster in left parietal with

SDT. Inability of keeping recently learned information in memory was found to be corre-

lated with lesions in superior parietal and left frontopolar and with adjacent regions of amyg-

dalae and hippocampus [43]. White matter lesion volume (WMLV) was more strongly

correlated with the cognitive tests (Paced Auditory Serial Addition Test (PASAT) and

SDMT) compared to CL volume [32].

Decrease of thalamic volume was seen with a decrease in cognitive performance [52]. Nor-

malized thalamic volume and anterior thalamic radiation integrity were among the predictors

of cognitive decline [77, 79]. Both verbal and written parts of the SDMT test indicated moder-

ate to strong correlations with the volume of thalamus nuclear groups [51].

In a study, CC density was another independent predictor of brief visuospatial memory test

(BMVT) [49].

In RRMS, verbal memory performances correlated with atrophy of WM and left hippocam-

pus [78]. Worse SDMT scores correlated with smaller normalized volume of the hippocampus

and amygdala of each hemisphere and reduced R2t of the right hippocampus and amygdala,

while worse performance on the 2s PASAT correlated with reduced R2t of the left amygdala

[80]. The aforementioned alterations are indicative of cognitive impairment and therefore

warrant the attention of medical professionals to evaluate potential cognitive decline in

patients. However, it is important to note that these changes cannot be deemed as absolute pre-

dictors of cognitive impairment.

Lower cerebellar volumes, prominently posterior superior lobe (VI + Crus I) correlated

with scores of SDMT and PASAT [72]. But these changes occurred in parallel with cognitive

impairment and cannot predict it. An overview of included studies is shown in Table 1. We

tried to analyze Table 1 with an aim to classify the results according to the region assessed,

which ranged from cortical and gray matter, spinal cord, corpus callosum, cerebellum, thala-

mus, limbic system, lesion atrophy, brain volumetry, to lesions and white matter.
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Table 1. An overview of the literature regarding the studies with correlations of MRI markers with disability progression, progression of the disease and cognitive

decline in studies participants.

Study Demographic Features Imaging Methodology Correlations with MRI markers

Participants Mean Age ± SD

(years) or range

Mean Disease

Duration ± SD

(years) or range

F/S (T) Parameter Studied

Papadopoulou

et al.

2013—C/S**
[32]

65 CIS and RRMS 49.1 ± 1.85 17.4 ± 9.4 1.5 T Cortical Lesion volume Disability: Correlations between CL volume

and EDSS. (r = 0.206; p = 0.051)

Cognition: Assessment tools: SDMT, PASAT-

3.CL volume was not predictor of

neuropsychological outcomes. Subgroup

analysis in RRMS: CLV only correlated with

SDMT (r = -0.301, p = 0.019). In multiple

regression analysis: CL load had no

associations with any cognitive outcomes.

26 SPMS and PPMS

Matsushita et al.

2018—C/S

[33]

13 CL group (9

RRMS + 1 PPMS + 3

SPMS)

43.1 ± 10.1 13.8 ± 8.2 3 T Cortical Lesion Disability: Higher EDSS score in the CL

group (2.8 ± 1.8) compared to non-CL group

(0.5 ± 0.8); p = 0.009).

Progression: In the non-CL group, all six

patients had RRMS. In the CL group, 9 had

RRMS, 1 had PPMS and 3 had SPMS.

Cognition: No significant differences in the

MMSE1 score, RCPM2 score, RCPM time,

RBMT3 SPS4, RBMT SS5, TMT6-A, category

WF7 task performance, visuospatial

construction copying performance, letter WF

task performance, visuospatial construction

drawing performance and 1-s PASAT8, and

2-s PASAT between the CL and non-CL

groups. The z-score analysis of the TMT and

PASAT values were indicative of significant

performance deterioration in CL group.

6 non-CL Group (6

RRMS)

46.7 ± 9.4 16.7 ± 12.2

Haider et al.

2021—C

[34]

21 CIS 60.5 ± 7.1 30.7 ± 1 3 T Cortical Lesion Disability: Highest EDSS scores were

detected in 3 RRMS patients with cortical

lesions. Cortical lesion counts (β:

0.37, 95% CI: 0.23 to 0.508), cervical spinal

cord volume (β: –0.27, 95% CI: –0.421 to–

0.109), grey matter volume (β:– 0.26, 95%

CI:– 0.444 to– 0.074) collectively explained

60% (R2) of the variance of the EDSS In the

model including only cortical lesions, 43%

(R2) of the EDSS could be explained. Atrophy

of GM was more predictive for EDSS.

Progression: 30-year follow-up: the most

important differences in MRI markers

between SPMS and RRMS patients were the

number of cortical lesions (cortical lesions

had 88% specificity and 100% sensitivity), and

GMV which was lower in SPMS. No cortical

lesions detected in CIS, in 3 of 27 RRMS

patients and in all SPMS patients.

27 RRMS 60.6 ± 6.4 30.9 ± 1

15 SPMS 61.9 ± 6.7 30.8 ± 0.9

Treaba et al.

2019—C

[35]

20 RRMS 41.3 ± 10.5 6.0 ± 6.2 7 T Cortical Lesion Disability: Total CLV was identified as an

independent predicting factor for baseline

EDSS (β = 1.5, P = .001) and EDSS changes (β
= 0.5, P = 0.003) at follow-up (near 1.5 years).

Progression: Cortical lesion accumulation

was bigger in SPMS than RRMS (3.6 lesions/

year

± 4.2 vs 1.1 lesions/year ±
0.9, respectively; P = 0.03) and preferentially

localized in sulci.

11 SPMS 39.9 ± 8.5 19.9 ± 9.0

10 HC 39.9 ± 0.5

(Continued)
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Table 1. (Continued)

Study Demographic Features Imaging Methodology Correlations with MRI markers

Participants Mean Age ± SD

(years) or range

Mean Disease

Duration ± SD

(years) or range

F/S (T) Parameter Studied

Kalinin et al.

2020—C/S

[36]

ICL—Group (15

RRMS, 1 PPMS)

27 (25–36.5) * 15 (9–34.5) months * 3 T Intracortical lesions Disability: Patients with intracortical lesions

had higher EDSS scores (P = 0.02).

ICL+ Group (39

RRMS, 12 SPMS, 4

PPMS)

40 (32–53) * 77 (26–171) months

*

Calabrese et al.

2010—C/S

[37]

76 RRMS 34.2 4.8 1.5 T Cortical Lesion volume Disability: Baseline CLV correlated with

baseline EDSS (r = 0.36, p = 0.001) and EDSS

changes (r = 0.51, p = 0.001) over time. In

both patient groups, baseline CLV was

identified as an independent predicting factor

for EDSS worsening and GM volume change

at follow-up.

Progression: Baseline CLs were detected

more among SPMS (74.2%) than RRMS

(64.4%). During follow-up, 0.8 new CL/

patient/year in RRMS and 1.0 new CL/

patient/year in SPMS were seen (all non-

significant). Increase of CLV and number was

significantly higher in the 52 clinically

worsened patients compared to those who

remained stable.

31 SPMS 41.1 11.6

Scalfari et al.

2018—C

[62]

160 RRMS remained

RRMS

31.5 ± 10.6 7.8 ± 1.3 1.5 T Cortical lesions

number and thickness

Progression: Higher baseline cortical lesions

significantly correlated with the higher risk of

SPMS conversion (hazard ratio of 2.16 for 2

CLs, 4.79 for 5 CLs, and 12.3 for 7 CLs).
59 RRMS converted

to

SPMS

34.2 ± 7.6 8.2 ± 1.0

Louapre et al.

2018—C/S

[38]

10 Early RRMS 38.3 ± 10.5 2.8 ± 1.0 3 T—7

T

Cortical lesions volume Disability: EDSS correlated positively with

CLV (Adj R2 = 30%).

Progression: CLV was higher in SPMS

compared to other subgroups of MS.

Cognition: CLV was the most powerful,

independent predictor, explaining 40% of the

variance of SDMT.

18 RRMS 44.3 ± 7.6 11.4 ± 4.2

13 SPMS 45.5 ± 8.1 18.5 ± 8.4

17 HC 39.3 ± 8.8 NA

Pinter et al.

2015—C/S

[79]

17 CIS 33.1 ± 9.1 0.4 ± 0.8 3 T Cortical volume Cognition: In univariate analysis there was a

positive effect of NCV (βj = 0.39; p<0.05) on

overall cognition. Cognitive efficiency and

overall cognitive function were strongly

predicted by cortical volume.

47 RRMS 35.8 ± 10.5 9.0 ± 8.7

5 SPMS 41.8 ± 9.3 11.3 ± 6.0

Eijlers et al.

2018—C

[77]

168 Cognitively

Stable (144 RRMS,

15 SPMS, 9 PPMS)

46.7 ± 11.0 14.2 ± 8.3 3 T Cortical gray matter

volume

Cognition: Cortical GMV was defined as the

only significant MRI predictor of cognitive

decline in a whole-brain model (Nagelkerke

R2 = 0.22, P<0.001). WM integrity damage

was predictor of early RRMS cognitive

decline, while in late RRMS and progressive

MS, it was predicted by cortical atrophy.

66 Cognitively

Declining (38 RRMS,

18 SPMS, 10 PPMS)

49.7 ± 10.8 15.9± 8.4

60 HC 46.4 ± 9.9 NA

Burgetova et al.

2017—C/S

[54]

80 RRMS 46.9 ± 7.0 12.4 ± 10.7 1.5 T Iron in deep gray

matter

Disability: EDSS score was positively

associated with iron accumulation in the

putamen of RRMS and PPMS and caudate of

RRMS patients.

40 EDSS matched

RRMS

48.6 ± 7.0 13.2 ± 11.0

24 PPMS 47.4 ± 6.8 7.7 ± 3.3

20 HC 48.0 ± 7.3 NA
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Table 1. (Continued)

Study Demographic Features Imaging Methodology Correlations with MRI markers

Participants Mean Age ± SD

(years) or range

Mean Disease

Duration ± SD

(years) or range

F/S (T) Parameter Studied

Rocca et al.

2021—C/S

[39]

34 CIS 33.8 (19–50) 0.5 (0.08–3) 3 T Gray matter volume Disability: Lower NGMV (OR = 0.98, 95%

CI = 0.96–0.99, p = 0.008) and lower GMV in

the cerebellar network (OR = 0.40, 95%

CI = 0.19–0.85, p = 0.01) are independent

predictors of disability worsening

(AUC = 0.83).

226 RRMS 44.0 (18–70) 12.7 (0.1–37)

95 SPMS 54.3 (33–72) 21.5 (3–46)

43 PPMS 55.4 (27–77) 15.8 (2–45)

170 HC 40.0 (19–75) NA

Tsagkas et al.

2021—C

[40]

140 RRMS 43.8 ± 10.2 14.0 ± 8.7 1.5 T Atrophy of gray

matter

Disability: Higher baseline GM and GM

AVCR in SPMS were associated with higher

T25FWT deterioration (mean yearly decrease

of 1/T25fwt of -4.2 × 10–3±1.7 × 10–4;

p = 0.087). Lower baseline GMV in RRMS

was associated with higher D9HPT

deterioration (mean yearly increase of log

[D9HPT] of 0.012 ± 2.0× 10–3, p = 7.5 × 10–

7)

43 SPMS 55.0 ± 8.8 21.3 ± 9.2

Eshaghi et al.

2018—C

[42]

253 CIS 33.0 ± 8.0 0.4 ± 1.4 Various Cortical gray matter

and deep gray matter

volume

Disability: Time-to-EDSS progression was

predicted by DGM (hazard ratio = 0.73, 95%

CI: 0.65, 0.82; p<0.001): for every SD decrease

in baseline DGMV, there was a 27% higher

risk of presenting a shorter EDSS progression

time during follow-up.

Progression: Lowest volumes of DGM and

cortical GM at baseline were detected in

SPMS. DGM showed the

fastest annual rate of atrophy out of all

imaging markers, prominently in SPMS

(-1.45%) and RRMS (-1.34%)

compared to CIS (-0.88%) and HCs (-0.94%)

[p<0.01]. Temporal (- 1.21%) and parietal

(-1.24%) GM atrophy was

fastest in SPMS (All p values <0.05).

708 RRMS 38.2 ± 9.8 6.7 ± 7.3

128 SPMS 48.2 ± 9.8 15.6 ± 9.9

125 PPMS 48.5 ± 10.1 6.8 ±5.9

203 HC 38.7 ± 10.5 NA

Moccia et al.

2017—C

[41]

119 RRMS remained

RRMS

32.7 ± 7.4 4.2 ± 2.8 Various Gray: White

matter ratio

Disability: EDSS worsening was associated

with GM/ NAWM ratio (coefficient, 2.918;

95%CI, 4.739–1.097). Patients diagnosed with

a higher GM/ NAWM ratio had a 90% lower

rate of reaching EDSS 4.0 (hazard ratio, 0.111;

95% CI, 0.020–0.609) compared to patients

with lower GM/ NAWM ratio.

Progression: Higher baseline GM/NAWM

ratio associated with lower rate of converting

to SPMS (hazard ratio,

0.017; 95% CI, 0.001–0.203).

30 RRMS converted

to SPMS

34.2 ± 6.3 4.6 ± 2.7

Kearney et al.

2016—C/S

[81]

25 CIS 36.5 ± 9.0 0.4 ± 0.4 3 T Spinal Cord

Focal lesions

(GM & WM)

Disability: Lesion number per patient in both

the lateral column and expanding to gray

matter had independent associations with

disability (p < 0.001).

Progression: Percentage of patients with focal

lesions involving at least two WM columns

and expanding to

gray matter was higher in SPMS compared to

RRMS (p = 0.03) and PPMS (p = 0.015).

Diffuse abnormalities were

more common in both PPMS and SPMS,

compared with RRMS (OR 6.1 (p = 0.002) and

OR = 5.7 (p = 0.003),

respectively).

35 RRMS 38.7 ± 9.7 6.5 ± 5.2

30 PPMS 50.6 ± 9.9 10.4 ± 7.5

30 SPMS 51.1 ± 9.2 19.9 ± 11.5
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Table 1. (Continued)

Study Demographic Features Imaging Methodology Correlations with MRI markers

Participants Mean Age ± SD

(years) or range

Mean Disease

Duration ± SD

(years) or range

F/S (T) Parameter Studied

Kantarci et al.

2016—C

[82]

324 RIS remained

RRMS

38.6 (14–74) * NA Various Spinal cord lesions Progression: PPMS cases had more SC lesions

(100%) than CIS/MS cases (64%) and

asymptomatic cases (23%) within the follow-

up period (P = 0.005).
113 RIS converted to

CIS/M

32 (11–70) * NA

15 RIS converted to

PPMS

43.3 (20–66) * NA

Nakamura et al.

2020—C/S

[55]

111 RRMS 43.9 ± 12.7 13.8 ± 10.1 1.5 T- 3

T

Spinal cord area Disability: CS-SCA at all four levels was

negatively correlated with EDSS scores

(P < 0.0001 at C2/C3 and C3/C4, P = 0.0002

at T8/T9, and P = 0.002 at T9/T10). And FSS

for pyramidal symptoms (P = 0.0002 at C2/

C3, P < 0.0001 at C3/C4 and T8/T9, and

P = 0.0005 at T9/T10). Cervical CS-SCA was

more strongly correlated with EDSS

compared

to thoracic CS-SCA.

Progression: Cervical CS-SCA is smaller in

PMS than in RRMS (mean 57.0 vs 61.0 mm2,

P = 0.02 at C2/C3, and

mean 58.8 vs 63.4 mm2, P = 0.007 at C3/C4).

(As predictive factor).

29 Progressive MS 49.3 ± 12.2 16.6 ±8.7

Bernitsas et al.

2015—C/S

[56]

93 RRMS 39.3 ± 7.9 9.3 ± 3.3 3 T Cross sectional

area of cervical

cord at C2

vertebral level

Disability: There was a correlation between

CSA-C2 and EDSS (r = -0.75, P<0.0001).

CSA-C2 was a predictor of disability

independent of disease duration, and

phenotype. Sub-group analysis showed a

modest inverse relationship between the

CSA-C2 and EDSS in the RRMS (-0.38,

p = 0.0004) and progressive groups (0.4,

p = 0.0021)

Progression: CSA-C2 volume loss was more

prominent in PMS compared to RRMS

(68.6 ± 7.4mm2 vs. 87.3

±8.4 mm2, p<0.0001), consistent with the

neurological disability of both.

57 PMS 44.5 ± 8.3 14.4 ± 4.5

Bonacchi, et

al.

2020—C/S

[57]

58 RRMS 42.0 ± 10.0 8 (2–16) * 3 T Cervical spinal

cord

Disability: CSC GM-CSA is predictor of

EDSS in PMS (R2 = 0.44) and RRMS

(R2 = 0.51).

RRMS: EDSS is associated with CSC global

and regional normalized T2 lesion volume. (P

values ranged from 0.02 to 0.002, except for

the dorsal column, with P> 0.05)

PMS: EDSS is associated with CSC GM

(P = 0.003) and WM atrophy (P = 0.02).

Progression: CSC-GM atrophy (CSA <11.1

mm2) was defined as a precise predicting

factor for progressive

phenotype.

62 PMS 50.0 ± 10.0 18 (9–24) *
30 HC 43.0 ± 14.0 NA

Rocca et al.

2013—C/S

[71]

15 CIS 29.1 ± 7.7 0.04 (0.01-

0.08)

1.5 T Cervical spinal cord

atrophy and lesion

Disability: SC atrophy at C1/C2 had

correlations with the pyramidal FS score in

SPMS (r = −0.91, p<0.001 uncorrected) and

PPMS (r = −0.89, p<0.001 uncorrected) and

with EDSS in PPMS (r = −0.68, p<0.001

uncorrected).

Progression: PPMS had significant cord

atrophy.

15 RRMS 39.2 ± 11.4 4.3 (1–10)

15 PPMS 43.9 ± 7.0 22.6 (15–39)

13 SPMS 47.6 ± 8.7 16.8 (5–34)

19 BMS 43.9 ± 11.1 6.7 (1–14)

31 HC 39.9 ± 12.6 NA
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Table 1. (Continued)

Study Demographic Features Imaging Methodology Correlations with MRI markers

Participants Mean Age ± SD

(years) or range

Mean Disease

Duration ± SD

(years) or range

F/S (T) Parameter Studied

Tsagkas et al.

2018—C

[58]

180 RRMS 41.5 ± 10.1 11.4 ± 8.4 1.5 T Spinal cord volume

loss

Disability: SCV loss was a strong predictor of

EDSS score worsening (p <0.05). In RRMS

and SPMS, mean annual rate of spinal cord

volume loss was identified as the strongest

prediction factor of mean annual EDSS

alteration.

Progression: The mentioned predictive role

for spinal cord volume loss in the previous

column is stronger in

SPMS than RRMS.

51 SPMS 55.4 ± 7.6 191. ± 9.7

Tsagkas et al.

2019—C

[60]

12 PPMS 46.7 ± 6.6 8.6 ± 7.1 1.5 T Upper cervical Spinal

cord volume

Disability: Both PPMS and RRMS were

associated with average EDSS over years, but

only PPMS was associated with EDSS increase

over time.

Progression: Spinal cord volume loss was

higher in PPMS compared to SPMS

(p = 0.066) and RRMS (p < 0.01)

over time.

24 RRMS 48.2 ± 9.6 8.9 ± 5.9

24 SPMS 50.6 ± 7.4 12.3 ± 6.6

Lukas et al.

2015—C

[59]

256 RRMS 41.1 (35–48.1) * 8 (4–15) * 1.5 T Spinal cord atrophy

and lesion

Disability: Baseline aUCCA and the number

of SC segments affected by T2-lesions were

the most associated MRI markers indicative of

EDSS worsening.

Progression: All MS types had reduction of

UCCA over 2 years. The annualized

24-month reduction rate of

UCCA was higher in SPMS than in RRMS

(p = 0.019) but did not discriminate PPMS

from either RRMS or SPMS.

Baseline UCCA was lower in SPMS than

PPMS and RRMS. SC lesion numbers and SC

affected segment numbers

were higher in SPMS than PPMS and RRMS

(P� 0.01). (SPMS was worse than other

types).

73 SPMS 54.2 (48–59.4) * 18 (12.5–26) *
23 PPMS 49 (44.8–56) * 6 (4–13) *

Bischof et al.

2022—C

[70]

147 RRMS remained

stable

41 (18) * 5 (10) * 3 T Cervical cord area at

C1 level (C1A)

Disability: No association was found between

C1A atrophy rates and baseline EDSS during

the period of pre conversion (0.16%/year,0.50

to 0.17, p = 0.334).

Progression: Patients who converted to SPMS

indicated faster cord atrophy (-2.19% per

year) compared to their RRMS matches

(-0.88% per year) at least 4 years before

conversion. The rate of cord atrophy was

decreased after conversion (-1.63%/year,

p = 0.010). Each 1% faster spinal cord atrophy

rate was associated with 53% and 69% shorter

time to SPMS conversion and

silent progression, respectively.

159 RRMS with

silent progression

41 (13) * 6 (10) *

47 SPMS 47 (14) * 17 (14) *
80 HC 41 (18) * NA

Haider et al.

2021—C

[34]

21 CIS 60.5 ± 7.1 30.7 ± 1 3 T Cervical spinal cord

volume

Disability: Cervical cord volume was

associated with EDSS (β: –0.27, 95% CI: –

0.421 to –0.109).
27 RRMS 60.6 ± 6.4 30.9 ± 1

15 SPMS 61.9 ± 6.7 30.8 ± 0.9
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Table 1. (Continued)

Study Demographic Features Imaging Methodology Correlations with MRI markers

Participants Mean Age ± SD

(years) or range

Mean Disease

Duration ± SD

(years) or range

F/S (T) Parameter Studied

Tsagkas et al.

2021—C

[40]

140 RRMS 43.8 ± 10.2 14.0 ± 8.7 1.5 T Atrophy of spinal cord Disability: SPMS: Higher CSC AVCR was

associated with EDSS (Mean yearly increase of

log [EDSS]of 0.024 ± 5.2 × 10–3, p = 6.7 ×10–

5) and future T25FWT (Mean yearly decrease

of 1/T25fwt of-4.2 × 10–3 ± 1.7 × 10–4;

p = 0.087) worsening over time.

43 SPMS 55.0 ± 8.8 21.3 ± 9.2

Yaldizli et al.

2010—C

[67]

169 MS (145 RRMS,

24 SPMS)

42.0 ± 11.3 10.9 ± 8.8 1.5 T Corpus callosum index Disability: Corpus callosum index as a

correlate of brain atrophy, was associated with

disability progression. Although, it was not a

long-term independent predictor. CCI at

diagnosis was 0.345 ± 0.04 and correlated with

EDSS at diagnosis. After a follow-up of 7.1

±6.4 years, last EDSS correlated with CCI at

diagnosis and last MRI (p = 0.002; r = 0.283

and p<0.001; r = 0.301 respectively)

Progression: 24 patients had secondary

progression with lower corpus callosum index

values at diagnosis

compared to those remained unchanged

(0.308 ± 0.08 in SPMS vs.0.353 ± 0.06 in

RRMS, p = 0.003). Corpus

callosum index decrease in SPMS was two

times more than RRMS (p = 0.04).

Petracca et al.

2020—C/S

[49]

13 RRMS 46.8 ± 11.2 14.9 ± 8.5 3 T Streamline density and

focal lesions in corpus

callosum sub regions

Disability: Corpus callosum density was

identified as an independent predictor of

9-HPT (β = -0.327, p = 0.018), T25FWT (β =

-0.357, p = 0.021) and EDSS (β = -0.328,

p = 0.018). Corpus callosum damage was a

predictor of ambulation performance, global

disability and manual dexterity.

Progression: Streamline density decrease was

distinguished in SPMS in all Corpus callosum

sub-regions, in PPMS in posterior and mid-

posterior corpus callosum and in RRMS, only

in posterior corpus callosum.

Cognition: Corpus callosum density was

independent predictor of BVMT (β = 0.344,

p = 0.023).

20 SPMS 55.3 ± 8.4 23.0 ± 13.6

22 PPMS 52.3 ± 9.7 8.9 ± 5.2

24 HC 46.4 ± 10.5 NA

Uher et al.

2019—C

[50]

386 CIS 33.8 ± 9.0 3.0 ± 5.2 1.5 T Corpus callosum

volume

Disability: All patients with annualized

percent corpus callosum volume change (cut-

off < -0.39%) had higher EDSSAAC

(p� 0.001–0.035), except for CIS (p = 0.09–

0.29).

964 RRMS 35.3 ± 8.5 8.2 ± 6.5

63 SPMS 40.9 ± 9.1 12.6 ± 6.8

58 HC 37.5 ± 9.1 NA

D’ Ambrosio

et al.

2017—C/S

[72]

52 RRMS 43.3 ± 11.2 8.2 (0–34) * NA Cerebellar subregions Disability: Anterior cerebellar volume

(lobules I—V) was identified as an

independent predicting factor for EDSS and

9-HPT performance.

Progression: Lower cerebellar volumes were

observed in SPMS compared to BMS and

RRMS patients (total and anterior cerebellar

volume).

Cognition: Cognitive performance (SDMT

and PASAT scores) showed correlations with

lower cerebellar

volumes, prominently posterior lobe (lobules

VI—X).

20 BMS 42.6 ± 7.8 18.4 (15–26) *
23 SPMS 51.9 ± 9.1 19.6 (3–42) *
32 HC 39.6 ± 8.4 NA
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Table 1. (Continued)

Study Demographic Features Imaging Methodology Correlations with MRI markers

Participants Mean Age ± SD

(years) or range

Mean Disease

Duration ± SD

(years) or range

F/S (T) Parameter Studied

Parmar et al.

2022—C

[73]

125 RRMS 44.7 ± 10.9 14.5 ± 10.9 1.5 T Cerebellar volume Disability: In RRMS, cerebellar volumes

significantly predicted average EDSS,

T25FWT and 9HPT. Atrophy of motor-

related lobules (IV-VI + VIII) significantly

predicted future worsening of non-dominant

hand 9HPT.

Progression: SPMS patients showed faster

volume loss of posterior superior lobe

compared to RRMS.

Cognition: In RRMS, cerebellar volumes

predicted SDMT. In SPMS, the atrophy rate of

the posterior superior

lobe (VI + Crus I) predicted future PASAT

performance worsening.

38 SPMS 55.1 ± 8.8 21.5 ± 9.7

Varog˘lu et al.

2010—C/S

[74]

14 RRMS 29.0 ± 11.0 2.93 ± 2.95 1.5 T Cerebellar volume Disability: Cerebellum volume and EDSS

showed significant correlations in both RRMS

and SPMS.

Progression: The mean cerebellum volume

was decreased in all MS patients (RRMS and

SPMS together)

compared to controls (129. ± 4.79 cm3,

p = 0.004) and (153.4 ± 6.55 cm3, respectively;

p < 0.001). The mean

cerebellum volume in RRMS was higher

(137 ± 5.42 cm3) than SPMS (122 ± 4.34 cm3)

(p< 0.001).

13 SPMS 38.0 ± 11.0 8.61 ± 3.33

26 HC 33.0 ± 8.0 NA

Calabrese et al.

2010—C/S

[75]

38 CIS 37.0 ± 8.5 0.4 ± 0.4 NA Cerebellar cortical

lesions and volume

Disability: The CCV (β = -0.601, p<0.001)

and the cerebellar CL volume (β = 0.512,

p<0.001) were the best predictors of

cerebellar disability. CCV was identified as

independent predictor of EDSS (b = -0.339,

p = 0.011).

Progression: Lowest CCV values were

observed in PPMS. All MS subgroups had

high reduction in CCV, except

for CIS. Significantly higher number and

volume of cerebellar CL were observed in

SPMS and PPMS compared to RRMS and CIS

(p<0.001 for both comparisons).

35 RRMS 37.8 ± 7.5 6.8 ± 6.5

27 SPMS 43.6 ± 9.2 10.5 ± 7.4

25 PPMS 45.5 ± 6.2 8.4 ± 6.4

32 HC 35.9 ± 7.5 NA

Petracca et al.

2022—C

[83]

838 RRMS 37.7 ± 9.6 4.2 ± 5.5 NA Cerebellar lesions

number

Disability: Shorter 9HPT deterioration time

was associated with anterior cerebellar volume

(p = 0.0444) and higher cerebellar T2 lesions

volume (HR = 2.211, p = 0.0002). CDP

showed associations with volume and number

of cerebellar Gd+ lesions (p = 0.0389 and

p = 0.0223, respectively).

Favaretto et al.

2016—C/S

[76]

10 CIS 30.0 ± 7.2 0.9 ± 0.6 3 T Cerebellar cortical

lesions

Disability: Cerebellar CL number was highly

correlated with EDSS in both Double

Inversion Recovery (r = 0.69, p<0.0001) and

Phase Sensitive Inversion Recovery (r = 0.72,

p<0.0001).

Progression: CL was observed in 26 patients

by Double Inversion Recovery and in 31 by

Phase Sensitive

Inversion Recovery, and their number

increased from CIS/eRRMS to SPMS

(p = 0.001).

24 RRMS 40.9 ± 7.2 9.6 ± 7.0

6 SPMS 44.5 ± 9.8 20.2 ± 10.9
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Table 1. (Continued)

Study Demographic Features Imaging Methodology Correlations with MRI markers

Participants Mean Age ± SD

(years) or range

Mean Disease

Duration ± SD

(years) or range

F/S (T) Parameter Studied

Trufanov et al.

2021—C/S

[51]

40 RRMS 31.7 ± 5.9 2.3 ±1.5 3 T Thalamus nuclei

volumes

Disability: EDSS had a negative correlation

with the volumes of left pulvinar nuclei and

the medial nucleus of right pulvinar.

Progression: Significant differences were seen

between RRMS and SPMS, in volumes of left

side medial and lateral geniculate nuclei,

lateral dorsal and anterior ventral nuclei. MR-

morphometry of dominant deep thalamic

nuclei were considered as a key predictor of

MS progression.

Cognition: Both sections (verbal and written)

of the SMDT test showed moderate to strong

correlations with

the nuclei of thalamus, prominently with

those on left side (r > 0.4). Written section of

SDMT had the highest

correlation with the left ventral anterior

nucleus (r = 0.71).

28 SPMS 33.3 ±5.7 5.5 ±4.4

10 HC NA NA

Azevedo et al.

2018—C

[52]

520 MS (90 CIS, 392

RRMS, 38 SPMS)

42.7 ± 9.8 9.2 ± 8.6 3 T Thalamic volume Disability: Thalamic volume reduction

inversely associated with increase of EDSS (r

= -0.29, CI: -0.21, -0.37) p<0.01), 9-HPT (r =

-0.37, CI: -0.30, -0.45, p<0.01) and timed

25-FWT (r = -0.25, CI: -0.16, -.32, p<0.01).

Cognition: Thalamic volume reduction

associated with decrease of MSFC (r = 0.32,

CI: 0.24, 0.40, p<0.01) and

PASAT (r = 0.15, CI: 0.06, 0.23, p<0.01).

81 HC 41.1 ± 9.7 NA

Rocca et al.

2010—C/S

[68]

20 CIS 28.2 ± 4.9 NA 1.5 T Thalamic lesions

volume

Progression: SPMS patients has significantly

higher baseline mean T1 lesion volume and

higher change of

volume compared to RRMS (P < .001 and

.002, respectively).

34 RRMS 32.7 ± 8.4 7 (2–25) *
19 SPMS 40.5 ± 10.6 8 (3–23) *
13 HC 33.3 NA

Louapre et al.

2018—C/S

[38]

10 Early RRMS 38.3 ± 10.5 2.8 ± 1.0 3 T- 7 T Thalamic lesions

volume

Progression: Higher thalamic lesion volume

was observed in SPMS compared to RRMS

(0.16 cm3 vs 0.01 cm3). The most decreased

thalamic volume was found in SPMS subjects.

18 RRMS 44.3 ± 7.6 11.4 ± 4.2

13 SPMS 45.5 ± 8.1 18.5 ± 8.4

17 HC 39.3 ± 8.8 NA

Magon et al.

2020—C

[53]

179 RRMS 41.4 ± 10.2 11.3 ± 8.3 1.5 T Volume loss in

thalamic subnuclei

Disability: EDSS change was associated with

anterior and ventral anterior (in MS and

RRMS), and pulvinar (in MS) nucleus volume

loss. Annual rates of thalamus and ventral

lateral nucleus volume loss were predictive of

disability worsening.

Progression: Significant predictors of disease

progression were baseline volume and annual

rate of ventral

lateral nucleus volume loss. Every 1% increase

of the annual rate of volume loss was

associated with a 20%

higher risk of disease progression in the

following year.

50 SPMS 55.3 ± 7.7 18.7 ± 9.6

Burgetova et al.

2017—C/S

[54]

80 RRMS 46.9 ± 7.0 12.4 ± 10.7 1.5 T Thalamic iron content,

lesion load, brain

parenchymal fraction

Disability: EDSS was negatively associated

with thalamic iron.

Progression: RRMS patients had significantly

lower regional susceptibility in thalamus

compared to PPMS group

(P = 0.007).

40 EDSS matched

RRMS

48.6 ± 7.0 13.2 ± 11.0

24 PPMS 47.4 ± 6.8 7.7 ± 3.3

20 HC 48.0 ± 7.3 NA
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Table 1. (Continued)

Study Demographic Features Imaging Methodology Correlations with MRI markers

Participants Mean Age ± SD

(years) or range

Mean Disease

Duration ± SD

(years) or range

F/S (T) Parameter Studied

Tavazzi et al.

2020—C/S

[64]

20 CIS 42.6 ± 10.7 5.1 ± 5.7 3 T Thalamic volume Progression: RRMS patients had significantly

higher percentage of thalamic volume change

compared to PMS (- 6.6% vs -4.4%,

p = 0.029).

85 RRMS 44.6 ± 10.8 13.3 ± 8.9

42 PMS 56.1 ± 6.3 22.5 ± 10.5

Eijlers et al.

2018—C

[77]

168 Cognitively

Stable (144 RRMS,

15 SPMS, 9 PPMS)

46.77 ± 11.02 14.2 ± 8.3 3 T Thalamic radiations Cognition: Anterior thalamic radiation

integrity is as a significant predictor for

cognitive decline (Nagelkerke R2 = 0.35,

P<0.01).66 Cognitively

Declining (38 RRMS,

18 SPMS, 10 PPMS)

49.77 ± 10.80 15.9 ± 8.4

60 HC 46.45 ± 9.91 NA

Pinter et al.

2015—C/S

[79]

17 CIS 33.1 ± 9.1 0.4 ± 0.8 3 T Thalamic volume Cognition: Normalized thalamic volume

strongly predicted memory function in

patients.
47 RRMS 35.8 ± 10.5 9.0 ± 8.7

5 SPMS 41.8 ± 9.3 11.3 ± 6.0

Uher et al.

2019—C

[50]

386 CIS 33.8 ± 9.0 3.0 ± 5.2 1.5 T Thalamic volume Disability: Patients with thalamic volume loss

(cut-off < -0.56) had higher EDSSAAC

(p� 0.001–0.035).
964 RRMS 35.3 ± 8.5 8.2 ± 6.5

63 SPMS 40.9 ± 9.1 12.6 ± 6.8

58 HC 37.5 ± 9.1 NA

Tsagkas et al.

2021—C

[40]

140 RRMS 43.8 ± 10.2 14.0 ± 8.7 1.5 T Thalamic volume Disability: Lower baseline thalamic volumes

and higher future T25fwt deterioration were

significantly associated in RRMS patients

(mean yearly decrease of 1/T25fwt of

-6.4 × 10–4±3.6 ×10–4, p = 0.095).

43 SPMS 55.0 ± 8.8 21.3 ± 9.2

Sacco et al.

2015—C/S

[78]

26 Cognitively

Preserved RRMS

40.0 ± 5.8 12.0 ± 7.0 3 T Hippocampal volume Progression: Significant atrophy of both

hippocampus, WM and GM was observed in

RRMS compared to HC (p = 0.001).

Cognition: Atrophy of left hippocampus and

WM had correlations with verbal memory

performances in RRMS.

In the CI subgroup, verbal memory tests

significantly correlated with atrophy of left

hippocampus [LTS (r = 0.46;

p = 0.04), CLTR (r = 0.55; p = 0.01)].

20 Cognitively

impaired RRMS

39.1 ± 9.8 11.3 ± 6.1

25 HC 36.3 ± 9.2 NA

Wen et al.

2017—C/S

[80]

32 RRMS 54.2 ± 9.7 NA 3 T Limbic system volume

loss and tissue integrity

Disability: Reduced R2t of right amygdala

correlated with worse EDSS scores (r = -0.29,

p = 0.05).

Progression: Both hippocampus and

amygdala in SPMS had reduced R2t and NV

compared to HC, except R2t in left amygdala.

SPMS had reduced R2t of right amygdala and

NV of both hippocampi compared to RRMS.

PPMS patients had smaller NV in both

hippocampi.

Cognition: There was a moderate correlation

of reduced R2t of the right hippocampus and

amygdala with

deteriorated SDMT and in left amygdala with

worse performance on the 2s PASAT. Smaller

NV of hippocampus

and amygdala of each sides had moderate

correlation with worse SDMT.

32 SPMS 57.1 ± 9.5 NA

16 PPMS 55.3 ± 9.3 NA

31 HC 49.5 ± 15.9 NA
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Table 1. (Continued)

Study Demographic Features Imaging Methodology Correlations with MRI markers

Participants Mean Age ± SD

(years) or range

Mean Disease

Duration ± SD

(years) or range

F/S (T) Parameter Studied

Dwyer et al.

2018—C

[61]

18 CIS 44.8 ± 11.0 3.9 ± 3.8 3 T Atrophied lesion

volume

Disability: Atrophied lesion volume had

significant associations with disability

progression (EDSS change) and follow-up

9HPT in both RRMS and PMS.

Progression: Highest lesion atrophy was

observed in PMS patients (P = .02).

126 RRMS 43.8 ± 11.1 12.3 ± 8.4

48 PMS 55.5 ± 7.9 22.8 ± 10.3

Tavazzi et al.

2020—C/S

[64]

20 CIS 42.6 ± 10.7 5.1 ± 5.7 3 T Atrophied lesion

volume

Progression: Atrophied T2-LV of brain

predicted worsening over time (p = .007).

Cognition: In the progressive group,

atrophied T2-LV was associated with follow-

up SDMT (p = 0.003).

85 RRMS 44.6 ± 10.8 13.3 ± 8.9

42 PMS 56.1 ± 6.3 22.5 ± 10.5

Kizlaitienė et al.

2017—C/S

[66]

43 RRMS 33.6 ± 9.2 7.5 ± 5.7 1.5 T Brain atrophy (11

linear MRI measures

and 7 indexes)

Progression: Significant discriminative MRI

atrophy measurements higher in SPMS vs.

RRMS are as follows: Frontal atrophy Index,

EVANS index, Huckman Index, Bicaudatus

Index, Width of third ventricle

For differentiating RRMS from SPMS

Remission-Progression Index formula can be

used: Remission-Progression Index =

(RAVLT 1–5 SUM + DSST)/Huckman Index

Cognition: Brain atrophy had correlations

with impairment of verbal memory and other

neurocognitive

symptoms. Correlation was found in

bicaudatus ratio: with DSST and RAVLT1-5

SUM and width of the third

ventricle. Significant discriminative Cognitive

test results higher in RRMS vs. SPMS are as

followed:

RAVLT 1–5 SUM, DSST, DSB, FPT, ROCFT-

copy, LFT-D, LFT-A, LFT-S, CATflT, IST,

Story, WPA-1, WPA-2, TMTA and

TMTB tests

45 SPMS 47.8 ± 7.7 18.5 ± 7.6

Uher et al.

2019—C

[50]

386 CIS 33.8 ± 9.0 3.0 ± 5.2 1.5 T Whole brain volume,

gray matter volume

Disability: Patients with BVL (cut-off <

-0.34%), GMVL (cut-off< -0.49), had higher

EDSSAAC (p� 0.001–0.035), except for

GMVL cut-offs in the RRMS cohort

(p = 0.09–0.29).

964 RRMS 35.3 ± 8.5 8.2 ± 6.5

63 SPMS 40.9 ± 9.1 12.6 ± 6.8

58 HC 37.5 ± 9.1 NA

Ajitomi et al.

2022—C/S

[44]

69 RRMS 39.2 ± 8.3 8 (4.2–13.3) * 1.5 T Third & lateral

ventricle width, whole-

brain volume

Disability: EDSS had significant correlation

with whole-brain volume (rho = -0.52, p

<0.0001), Bicaudate ratio and width of third

and lateral ventricle (stronger).

16 PMS 46.9 ± 9.4 17.7 (9.3–25)

*

Lukas et al.

2010—C

[65]

25 MS (No

progression)

33 (28–38) * 1.4 (0.5–3.6) * 1 T Annualized percentage

ventricular volume

change

Disability: There was a correlation between

annual EDSS change over the 5.5-year follow-

up and aPVVC.

Progression: Patients having progression over

5.5 years had higher aPVVC within first 2

years compared with

non-progressive patients (4.76%/y) compared

with patients without progression (3.23%

/year, p = 0.02). Each 1%

increase in aPVVC every year, increases the

odds of progression 1.17 times.

29 MS (Progression) 39 (31–47) * 1.3 (0.5–3.3) *

(Continued)
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Table 1. (Continued)

Study Demographic Features Imaging Methodology Correlations with MRI markers

Participants Mean Age ± SD

(years) or range

Mean Disease

Duration ± SD

(years) or range

F/S (T) Parameter Studied

Rocca et al.

2013—C/S

[71]

15 CIS 29.1 ± 7.7 0.04 (0.01-

0.08) *
1.5 T Brain volume Progression: Compared to RRMS and BMS,

SPMS had lower NBV (p ranging from 0.03 to

<0.001). They also had lower NBV than

PPMS (p = 0.001).
15 RRMS 39.2 ± 11.4 4.3 (1–10) *
15 PPMS 43.9 ± 7.0 22.6 (15–39) *
13 SPMS 47.6 ± 8.7 16.8 (5–34) *
19 BMS 43.9 ± 11.1 6.7 (1–14) *
31 HC 39.9 ± 12.6 NA

Popescu et al.

2013—C

[45]

18 CIS 29 (24–34) * 0 (0–0) * 1 T- 1.5

T

Brain atrophy and

Lesion volume

Disability: Lesion volume change and central

atrophy were predictors of EDSS in all

patients and also predictors of EDSS and

MSSS in ROMS group. Lesion volume at 1

year was a predictor of EDSS in RRMS and

ROMS group. Baseline brain volume

predicted EDSS in the CIS group. Whole

brain atrophy was a predictor of EDSS and

MSSS

in PPMS group.

Progression: There was an association

between central atrophy and clinical

progression over 5.5 years, in early

RRMS.

97 RRMS 35 (29–40) * 5 (2–8) *
69 SPMS 46 (40–52) * 11 (8–17) *
77 PPMS 52 (47–58) * 10 (6–13) *

Moodie et al.

2012—C

[46]

84 MS (57 RRMS, 20

SPMS, 7 PPMS)

42.6 ± 8.6 NA 1.5 T Whole brain atrophy,

T2 & T1 lesions

volume

Disability: There was an association between

lower baseline T2LV and EDSS worsening.

Lower baseline MRI disease severity (for

MRDSS and other individual MRI markers)

predicted EDSS worsening.

Preziosa et al.

2022—C

[47]

39 RRMS remained

RRMS

36.1 ± 9.7 9.2 ± 5.4 3 T Slowly Expanding

Lesions

Disability: T2 hyperintense lesion volume,

lower NBV, presence of� 4SELs, a higher

proportion of lesions defined as SELs were

associated with EDSS progression at 9.1-year

follow-up. Higher PBVC between year 2 and

baseline was associated with EDSS score

worsening. Higher proportion of SELs among

baseline lesions was independent predictor of

EDSS worsening (C-index = 0.892).

Progression: T2 hyperintense lesion number

and volume and lower NBV had associations

with SPMS conversion

over 9.1 years.

13 RRMS converted

to SPMS

39.0 ± 9.5 11.7 ± 9.2

Pinter et al.

2015—C/S

[79]

17 CIS 33.1 ± 9.1 0.4 ± 0.8 3 T T2 lesion load Cognition: T2-LL was a negative predicting

factor for memory function, cognitive

efficiency (βj = -0.38; p <0.001) and overall

cognition (βj = -0.32; p < 0.001).

47 RRMS 35.8 ± 10.5 9.0 ± 8.7

5 SPMS 41.8 ± 9.3 11.3 ± 6.0

Filli et al.

2012—C/S

[84]

106 RRMS Center 1 43.1 ± 10.7 10 (12.3) * 1.5 T White matter lesion Progression: SPMS was associated with

higher regional probability of T1 (not T2)

hypointense lesions in the callosal body, the

corticospinal tract, and other tracts close to

lateral ventricles compared to RRMS

(p� 0.03).

103 RRMS Center 2 43.6 ± 9.3 8 (9) *
31 SPMS Center 1 53.4 ± 8.2 19 (14) *
31 SPMS Center 2 52.1 ± 7.4 19 (13) *

Kincses et al.

2011—C

[43]

26 CIS 36.0 ± 10.4 0.23 ± 5.5 3 T Lesion Probability

Mapping

Disability: EDSS had correlations with lesion

probability in the periventricular WM at left

frontal horn and around posterior horns.
89 RRMS 35.2 ± 9.4 6.68 ± 7.6

6 SPMS 43.0 ± 8.7 10.3 ± 7.4
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Table 1. (Continued)

Study Demographic Features Imaging Methodology Correlations with MRI markers

Participants Mean Age ± SD

(years) or range

Mean Disease

Duration ± SD

(years) or range

F/S (T) Parameter Studied

Mostert et al.

2010—C

[48]

96 RRMS 34 (27–41) * 2 (0–7) * 1 T- 1.5

T

T2 Lesion load and

number

Disability: T2 LL and T2 lesion number had

correlations with MSSS in RRMS.

Progression: Higher T2 lesions number and

load and confluent lesions increased disability

progression risk in RRMS.

35 SPMS 41 (32–49) * 10 (3–21) *
55 PPMS 48 (39–55) * 4 (2–9) *

Papadopoulo u

et al.

2013—C/S

[32]

65 CIS and RRMS 49.1 ± 1.85 17.4 ± 9.4 1.5 T White matter lesion

volume

Disability: WMLV correlated with EDSS (r =

.290, p = 0.005).

Cognition: WM lesion volume had stronger

correlations with

the cognitive tests (PASAT (r = −0.361,

p = 0.001), SDMT (r =

0.585, p<0.001)) compared to CL volume.

26 SPMS and PPMS

Calabrese et al.

2010—C/S

[37]

76 RRMS 34.2 4.8 1.5 T White matter lesion

volume

Disability: Baseline T2 WMLV independently

predicted EDSS progression in SPMS.31 SPMS 41.1 11.6

Louapre et al.

2018—C/S

[38]

10 Early RRMS 38.3 ± 10.5 2.8 ± 1.0 3 T- 7 T White matter lesion

volume

Progression: WMLV was higher in SPMS

than other MS subgroups (SPMS = 13.4 vs.

RRMS = 2.5 vs. early RR = 1.7).
18 RRMS 44.3 ± 7.6 11.4 ± 4.2

13 SPMS 45.5 ± 8.1 18.5 ± 8.4

17 HC 39.3 ± 8.8 NA

Enzinger et al.

2011—C/S

[85]

62 RRMS remained

RRMS

33.9 ± 8.7 5.7 ± 6.2 1.5 T Lesion load Progression: Converters to SPMS had

unchanged T2 lesion load and doubled T1

lesion load and black hole ratio from baseline

to follow-up compared to those who remained

RRMS.

22 RRMS converted

to SPMS

40.0 ± 9.4 8.5 ± 6.9

Sacco et al.

2015—C/S

[78]

26 Cognitively

Preserved RRMS

40.0 ± 5.8 12.0 ± 7.0 3 T White matter atrophy,

lesion load

Cognition: Atrophy of WM had correlations

with verbal memory performances in RRMS.

T2-LL and volume had correlations with

executive functions, processing speed, visuo-

spatial memory and sustained attention

performances. Verbal memory tests

significantly correlated with atrophy of WM

in cognitively impaired subgroup [LTS

(r = 0.46; p = 0.05), CLTR (r = 0.55; p = 0.01),

D-SRT (r = 0.45; p = 0.05)].

20 Cognitively

impaired RRMS

39.1 ± 9.8 11.3 ± 6.1

25 HC 36.3 ± 9.2 NA

Dal-Bianco et al.

2021—C

[63]

24 Iron rim lesion

group

36.6 (18–53.6) * 4.7 (0.9–28) * 7 T Iron rim lesions Progression: The interaction term

Time × IRL status was significant in SPMS

(P = 0.034) but not RRMS (P = 0.153),

implicating dissimilar volume dynamics of

IRLs compared to non-IRLs in SPMS.

9 non- iron rim

lesion group

31.0 (21–62.6) * 8.3 (1.1–32) *

(Continued)
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The evaluation of risk of bias was carried out for all the studies that were included in the

analysis. Out of the total 26 cohort and 27 cross-sectional studies, only one study was found to

have a high risk of bias [82], while the remaining studies were categorized as moderate or low.

The detailed results of the quality assessment of the included studies are presented in Tables 2

and 3.

Discussion

In recent years, MRI has emerged as a valuable tool for both the diagnosis and monitoring of

MS. Extensive research has been conducted to identify predictive imaging biomarkers for MS,

evaluating white and gray matter metrics to forecast disease progression. Despite being in use

for almost four decades, MRI techniques are still evolving, and novel and classic metrics are

being explored to improve the diagnostic process, treatment guidance, and prognosis. The sig-

nificant volume of high-quality research conducted in this field of MS has enabled us to

enhance our capability to correlate MRI scan outcomes with clinical evolution and pathologi-

cal studies, and derive much-needed prognosis biomarkers from these data.

In this comprehensive review, we provided an insight into the potential of MRI markers to

predict disability progression, disease progression, and cognitive decline in MS. The presence

of lesions and alterations in certain structures of the CNS, including white matter and gray

Table 1. (Continued)

Study Demographic Features Imaging Methodology Correlations with MRI markers

Participants Mean Age ± SD

(years) or range

Mean Disease

Duration ± SD

(years) or range

F/S (T) Parameter Studied

Tsagkas et al.

2021—C

[40]

140 RRMS 43.8 ± 10.2 14.0 ± 8.7 1.5 T Lesion load Disability: Higher lesion-load AAVC was

associated with higher EDSS progression and

for non-dominant hand, with higher

ND9HPT progression in SPMS. In RRMS,

higher lesion load AAVC was associated with

higher ND9HPT progression for non-

dominant hand. In SPMS, higher WM AVCR

was associated with higher T25fwt

progression and for nondominant hand, with

higher ND9HPT progression.

43 SPMS 55.0 ± 8.8 21.3 ± 9.2

* These values are presented as Median (Interquartile range) or Median (Range).

** Study designs are shown as C/S: cross-sectional and C: cohort studies.

F/S (T): Field strength in Tesla unit.

Scales and tests used for assessment of physical and cognitive disability and progression in MS patients: EDSS: Expanded Disability Status Scale; SDMT: Symbol

Digit Modalities Test; PASAT: Paced Auditory Serial Addition Test; MMSE: Mini-Mental State Examination; RCPM: Raven’s Colored Progressive Matrices; RBMT:

Rivermead Behavioral Memory Test; SPS: Standardized profile score; SS: Screening scores; TMT: Trail Making Test; WF: Word fluency; T25FWT: Timed 25-foot walk

test; 9HPT: Nine-hole peg test; BVMT: Brief Visuospatial Memory Test; EDSSAAC: Annualized absolute EDSS change; MSFC: Multiple Sclerosis Functional Composite;

MSSS: Multiple Sclerosis severity score; MRDSS: Magnetic resonance disease severity scale; RAVLT: Rey Auditory Verbal Learning Test; DSST: Digit Symbol

Substitution Test.

Abbreviations: SD: Standard deviation; MS: Multiple Sclerosis; MRI: Magnetic Resonance Imaging; CIS: Clinically isolated syndrome; BMS: Benign MS; ROMS:

Relapse-onset MS; RRMS: Relapsing-remitting MS; SPMS: Secondary progressive MS; PPMS: Primary progressive MS; PMS: Progressive MS; HC: Healthy controls; CL:

Cortical lesion; ICL: Intra-cortical lesion; GMV: Gray matter volume; WM: White matter; WMLV: White matter lesion volume; NGMV: Normalized gray matter

volume; AVCR: Annual volume change rate; DGM: Deep gray matter; NAWM: Normal appearing white matter; NV: Normalized volume; LV: Lesion volume; PVVC:

Percentage ventricular volume change; SEL: Slowly expanding lesion; NBV: Normalized brain volume; IRL: Iron rim lesion; CCV: Cerebellar cortical volume; CS-SCA:

Cross-sectional spinal cord area; CSA: Cross-sectional area; SC: Spinal cord; aUCCA: Annualized percentage upper cervical cord cross-sectional area change. PBVC:

percentage brain volume change.

https://doi.org/10.1371/journal.pone.0300415.t001
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matter, corpus callosum, thalamus, and spinal cord, have been found to have a significant

impact on disability progression in individuals with MS.

The progression and conversion of CIS or RRMS to progressive phenotypes of MS is a

major concern among physicians and patients alike. Prognostic factors for MS progression

have been identified, including various biomarkers and MRI parameters such as cortical

lesion, gray matter volume change, whole brain atrophy, corpus callosum index, thalamic vol-

ume change, and certain spinal cord markers, including the presence of lesions in spinal cord

or alterations in its cross-sectional area.

On the other hand, cognitive impairment is a significant and prevalent change that can

occur during the course of MS. Unfortunately, it has not been deemed a sign or symptom of

MS attacks or MS progression and has not been included in McDonald’s criteria until recently

Table 2. JBI risk of bias assessment for cohort studies.

Author, year Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 % Yes Risk

Haider et al., 2021 ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 91 Low

Treaba et al., 2019 ✓ ✓ ✓ ? ? ✕ ✓ ✓ ✓ ✓ ✓ 72 Low

Scalfari et al., 2018 ✓ ✓ ✓ ✓ ✓ ✕ ✓ ✓ ✓ ✓ ✓ 91 Low

Eijlers et al., 2018 ? ✓ ✓ ✓ ✓ ✕ ✓ ✓ ✕ ? ✓ 63 Moderate

Tsagkas et al., 2021 ✓ ✓ ✓ ? ? ✓ ✓ ✓ ✓ ✓ ✓ 81 Low

Eshaghi et al., 2018 ? ✓ ✓ ✓ ✓ ? ✓ ✓ ? ? ✓ 63 Moderate

Moccia et al., 2017 ✓ ✓ ✓ ✓ ✓ ✕ ✓ ✓ ✓ ✓ ✓ 91 Low

Kantarci et al., 2016 ✕ ? ✓ ? ? ✓ ✓ ✓ ? ? ✓ 45 High

Tsagkas et al., 2018 ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ ✓ ? ✓ 81 Low

Tsagkas et al., 2019 ✓ ✓ ✓ ✓ ✓ ✕ ✓ ✓ ✓ ✓ ✓ 91 Low

Lukas et al., 2015 ✕ ✓ ✓ ✓ ✓ ✕ ✓ ✕ ? ✕ ✓ 54 Moderate

Bischof et al., 2022 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100 Low

Yaldizli et al., 2010 ✓ ✓ ✓ ? ? ✕ ✓ ✓ ✓ ✓ ✓ 72 Low

Uher et al., 2019 ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ? ✓ 81 Low

Parmar et al., 2022 ✓ ✓ ✓ ? ? ✕ ✓ ✓ ✓ ✓ ✓ 72 Low

Petracca et al., 2022 ✓ ✓ ✓ ? ? ✕ ✓ ✓ ✓ ✓ ✓ 72 Low

Azevedo et al., 2018 ✓ ✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ✓ 91 Low

Magon et al., 2020 ✓ ✓ ✓ ✓ ? ? ✓ ✓ ✓ ✓ ✓ 81 Low

Dwyer et al., 2018 ✓ ✓ ✓ ✓ ✓ ✕ ✓ ? ? ✓ ✓ 72 Low

Lukas et al., 2010 ✓ ✓ ✓ ? ? ✕ ✓ ✓ ✓ ✓ ✓ 72 Low

Popescu et al., 2013 ? ✓ ✓ ? ? ✕ ✓ ✓ ✓ ✓ ✓ 63 Moderate

Moodie et al., 2012 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100 Low

Preziosa et al., 2022 ? ✓ ✓ ? ? ✕ ✓ ✓ ✓ ✓ ✓ 63 Moderate

Kincses et al., 2011 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100 Low

Mostert et al., 2010 ✓ ✓ ✓ ? ? ✓ ✓ ✓ ✓ ✓ ✓ 81 Low

Dal-Bianco et al., 2021 ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ 91 Low

Abbreviations: JBI: Joanna Briggs Institute, ‘✓’ indicates yes, ‘✕’ indicates no and ‘?’ indicates unclear.

Q1. Were the two groups similar and recruited from the same population? Q2. Were the exposures measured similarly to assign people to both exposed and unexposed

groups? Q3. Was the exposure measured in a valid and reliable way? Q4. Were the confounding factors identified? Q5. Were strategies to deal with confounding factors

stated? Q6. Were the groups/participants free of the outcome at the start of the study (or at the moment of exposure)? Q7. Were the outcomes measured in a valid and

reliable way? Q8. Was the follow up time reported and sufficient to be long enough for outcomes to occur? Q9. Was follow up complete, and if not, were the reasons to

loss to follow up described and explored? Q10. Were strategies to address incomplete follow uputilized? Q11. Was appropriate statistical analysis used?

Note: The risk of bias was ranked as high when the study reached up to 49% of “yes” scores, moderate when the study reached from 50 to 69% of “yes” scores, and low

when the study reached more than 70% of “yes” scores.

https://doi.org/10.1371/journal.pone.0300415.t002
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[23]. Despite its inevitability, cognitive impairment is often overlooked and not addressed with

proper treatment and prophylaxis. Therefore, it is crucial to recognize the importance of cog-

nitive impairment as a potential sign of disease progression and should be given the same level

of attention as physical disability.

Multiple MRI parameters have been investigated as probable biomarkers for MS. Among

these parameters, white matter lesions (WMLs) are a characteristic feature of MS, which are

usually detected by contrast-enhanced MRI. Recent research has revealed that GM abnormali-

ties manifest early in the course of the disease and predict both conversion to MS and the pro-

gressive accrual of disability [86]. Moreover, GM atrophy is more severe than WM atrophy in

the early stages of the disease [87]. Total brain volume measurements hold significant clinical

importance in MS diagnosis and monitoring. However, accurately measuring brain atrophy is

crucial for detecting changes over short periods of time, and this is challenging in MS patients

Table 3. JBI risk of bias assessment for cross-sectional studies.

Author, year Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 % Yes Risk

Papadopoulou et al., 2013 ✕ ✕ ✓ ✓ ? ? ✓ ✓ 50 Moderate

Louapre et al., 2018 ? ✓ ✓ ✓ ✓ ✓ ✓ ✓ 87 Low

Matsushita et al., 2018 ✕ ✓ ✓ ✓ ? ? ✓ ✓ 62 Moderate

Kalinin et al., 2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100 Low

Calabrese et al., 2010, (Ref 37) ? ? ✓ ✓ ? ? ✓ ✓ 50 Moderate

Pinter et al., 2015 ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 87 Low

Burgetova et al., 2017 ✓ ? ✓ ✓ ✓ ✓ ✓ ✓ 87 Low

Rocca et al., 2021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100 Low

Kearney et al., 2016 ✕ ? ✓ ✓ ? ? ✓ ✓ 50 Moderate

Nakamura et al., 2020 ✓ ✓ ✓ ✓ ? ? ✓ ✓ 75 Low

Bernitsas et al., 2015 ✕ ✓ ✓ ✓ ✕ ? ✓ ✓ 62 Moderate

Bonacchi, et al., 2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100 Low

Rocca et al., 2013 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100 Low

Petracca et al., 2020 ✕ ? ✓ ✓ ✕ ? ✓ ✓ 50 Moderate

D’ Ambrosio et al., 2017 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100 Low

Varog˘lu et al., 2010 ? ✕ ✓ ✓ ? ? ✓ ✓ 50 Moderate

Calabrese et al., 2010, (Ref 75) ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✓ 75 Low

Favaretto et al., 2016 ? ✕ ✓ ✓ ? ? ✓ ✓ 50 Moderate

Trufanov et al., 2021 ? ✓ ✓ ✓ ? ? ✓ ? 50 Moderate

Rocca et al., 2010 ✓ ✓ ✓ ✓ ? ✓ ✓ ✓ 87 Low

Tavazzi et al., 2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100 Low

Sacco et al., 2015 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100 Low

Wen et al., 2017 ✕ ? ✓ ✓ ✓ ✓ ✓ ✓ 75 Low

Kizlaitienė et al., 2017 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100 Low

Ajitomi et al., 2022 ✓ ✓ ✓ ✓ ? ? ✓ ✓ 75 Low

Filli et al., 2012 ✕ ✓ ✓ ✓ ? ? ✓ ✓ 62 Moderate

Enzinger et al., 2011 ✕ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 87 Low

Abbreviations: JBI: Joanna Briggs Institute, ‘✓’ indicates yes, ‘✕’ indicates no and ‘?’ indicates unclear.

Q1. Were the criteria for inclusion in the sample clearly defined? Q2. Were the study subjects and the setting described in detail? Q3. Was the exposure measured in a

valid and reliable way? Q4. Were objective, standard criteria used for measurement of the condition? Q5. Were the confounding factors identified? Q6. Were strategies

to deal with confounding factors stated? Q7. Were the outcomes measured in a valid and reliable way? Q8. Was appropriate statistical analysis used?

Note: The risk of bias was ranked as high when the study reached up to 49% of “yes” scores, moderate when the study reached from 50 to 69% of “yes” scores, and low

when the study reached more than 70% of “yes” scores.

https://doi.org/10.1371/journal.pone.0300415.t003
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compared to healthy individuals due to smaller brain volumes [88–90]. While volumetrics and

their derived measurements have shown promise as prognosis biomarkers for MS, the estima-

tion of total brain atrophy in MS patients is challenging and can only be achieved after several

years of longitudinal follow-up [91]. Therefore, utilizing brain atrophy as a prognosis bio-

marker at an individual level, particularly in the early stages of the disease, is difficult [92–95].

Furthermore, spinal cord volumetrics, especially in the cervical segment, have been found to

exhibit higher atrophy in MS patients than healthy controls. Additionally, the atrophy rate of

the spinal cord is higher than that of the total brain, and patients with PPMS experience more

atrophy than those with RRMS [96]. Cortical lesions have been shown to have better prognos-

tic value for clinical outcomes and disability progression than WMLs. Therefore, further

research on the diagnosis, monitoring, and treatment of MS should consider cortical lesions as

a valuable target [97–99].

Conclusion

This review provides evidence for the predictive potential of various MRI landmarks in MS.

Lesions and changes within CNS structures such as white matter, gray matter, corpus callo-

sum, thalamus, and spinal cord serve as potential indicators for predicting the progression of

disability. Various prognostic factors are linked to the progression of MS, encompassing the

presence of cortical lesions, alterations in gray matter volume, whole brain atrophy, the corpus

callosum index, changes in thalamic volume, and lesions or modifications in the cross-sec-

tional area of the spinal cord. Regarding cognitive impairment in individuals with MS,

dependable predictors include cortical gray matter volume, brain atrophy, characteristics of

lesions (such as T2-lesion load, temporal, frontal, and cerebellar lesions, volume of white mat-

ter lesions), thalamic volume, and density of the corpus callosum. Overall, MRI appears to be a

useful tool for predicting MS disability progression, progression of disease, and cognitive

decline.

Limitations and suggestions

MRI has been widely used to detect and monitor MS related abnormalities. However, its limi-

tations in predicting disease progression have been noted. Firstly, conventional MRI measures

may lack specificity in predicting disease progression. The lesions seen on MRI may not always

correlate with clinical symptoms or disease progression. Secondly, conventional MRI may not

detect early pathological changes in MS, especially in the absence of visible lesions. This can

limit its ability to predict disease progression accurately. MS is a complex disease with various

underlying mechanisms such as inflammation, neurodegeneration, and remyelination that

conventional MRI may not capture entirely, limiting its predictive value. Lastly, conventional

MRI primarily focuses on structural changes and may not fully reflect functional impairment

or disability progression in MS patients. Therefore, while MRI is useful in detecting MS-

related abnormalities, its limitations in predicting disease progression should be taken into

consideration. There are several ways to address these limitations. Advanced MRI techniques,

including Diffusion Tensor Imaging (DTI), Magnetization Transfer Imaging (MTI), and

Functional Magnetic Resonance Imaging (fMRI), offer precise measures of MS progression by

capturing microstructural changes, myelin content, and functional connectivity alterations.

Moreover, quantitative MRI measures, such as brain atrophy rates, lesion volumes, and mag-

netization transfer ratios, provide objective biomarkers when combined with clinical data.

Additionally, long-term follow-up studies with repeated MRI scans and clinical assessments

can identify imaging biomarkers that better correlate with disease progression. Furthermore,

combining conventional MRI with other modalities like Positron Emission Tomography
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(PET) or Optical Coherence Tomography (OCT) can offer a more comprehensive assessment

of MS pathology and improve predictive accuracy.
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doatrophy while on natalizumab therapy is due to white matter volume changes. Mult Scler. 2013; 19

(9):1175–81. https://doi.org/10.1177/1352458512473190 PMID: 23319072

94. Rocca MA, Battaglini M, Benedict RH, De Stefano N, Geurts JJ, Henry RG, et al. Brain MRI atrophy

quantification in MS: From methods to clinical application. Neurology. 2017; 88(4):403–13. https://doi.

org/10.1212/WNL.0000000000003542 PMID: 27986875

95. Barkhof F. Brain atrophy measurements should be used to guide therapy monitoring in MS—NO. Mult

Scler. 2016; 22(12):1524–6. https://doi.org/10.1177/1352458516649452 PMID: 27335096

96. Casserly C, Seyman EE, Alcaide-Leon P, Guenette M, Lyons C, Sankar S, et al. Spinal Cord Atrophy in

Multiple Sclerosis: A Systematic Review and Meta-Analysis. J Neuroimaging. 2018; 28(6):556–86.

https://doi.org/10.1111/jon.12553 PMID: 30102003

97. Rinaldi F, Calabrese M, Grossi P, Puthenparampil M, Perini P, Gallo P. Cortical lesions and cognitive

impairment in multiple sclerosis. Neurol Sci. 2010; 31(Suppl 2):S235–7. https://doi.org/10.1007/

s10072-010-0368-4 PMID: 20635113

98. Scalfari A, Neuhaus A, Degenhardt A, Rice GP, Muraro PA, Daumer M, et al. The natural history of mul-

tiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain. 2010; 133(Pt

7):1914–29. https://doi.org/10.1093/brain/awq118 PMID: 20534650

99. Calabrese M, Poretto V, Favaretto A, Alessio S, Bernardi V, Romualdi C, et al. Cortical lesion load asso-

ciates with progression of disability in multiple sclerosis. Brain. 2012; 135(Pt 10):2952–61. https://doi.

org/10.1093/brain/aws246 PMID: 23065788

PLOS ONE Magnetic resonance imaging predictors of multiple sclerosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0300415 April 16, 2024 29 / 29

https://doi.org/10.1177/1352458506071215
https://doi.org/10.1177/1352458506071215
http://www.ncbi.nlm.nih.gov/pubmed/17294610
https://doi.org/10.1038/sdata.2014.37
http://www.ncbi.nlm.nih.gov/pubmed/25977792
https://doi.org/10.1016/j.neuroimage.2016.07.035
http://www.ncbi.nlm.nih.gov/pubmed/27431758
https://doi.org/10.1590/0004-282X20170072
https://doi.org/10.1590/0004-282X20170072
http://www.ncbi.nlm.nih.gov/pubmed/28746434
https://doi.org/10.1177/1352458512473190
http://www.ncbi.nlm.nih.gov/pubmed/23319072
https://doi.org/10.1212/WNL.0000000000003542
https://doi.org/10.1212/WNL.0000000000003542
http://www.ncbi.nlm.nih.gov/pubmed/27986875
https://doi.org/10.1177/1352458516649452
http://www.ncbi.nlm.nih.gov/pubmed/27335096
https://doi.org/10.1111/jon.12553
http://www.ncbi.nlm.nih.gov/pubmed/30102003
https://doi.org/10.1007/s10072-010-0368-4
https://doi.org/10.1007/s10072-010-0368-4
http://www.ncbi.nlm.nih.gov/pubmed/20635113
https://doi.org/10.1093/brain/awq118
http://www.ncbi.nlm.nih.gov/pubmed/20534650
https://doi.org/10.1093/brain/aws246
https://doi.org/10.1093/brain/aws246
http://www.ncbi.nlm.nih.gov/pubmed/23065788
https://doi.org/10.1371/journal.pone.0300415

