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Abstract

Reverberation is the primary background interference of active sonar systems in shallow

water environments, affecting target position detection accuracy. Reverberation suppres-

sion is a signal processing technique used to improve the clarity and accuracy of echo by

eliminating the echoes, reverberations, and noise that occur during underwater propaga-

tion.This paper proposes an end-to-end network structure called the Reverberation Sup-

pression Network (RS-U-Net) to suppress the reverberation of underwater echo signals.

The proposed method effectively improves the signal-to-reverberation ratio (SRR) of the

echo signal, outperforming existing methods in the literature. The RS-U-Net architecture

uses sonar echo signal data as input, and a one-dimensional convolutional network (1D-

CNN) is used in the network to train and extract signal features to learn the main features.

The algorithm’s effectiveness is verified by the pool experiment echo data, which shows that

the filter can improve the detection of echo signals by about 10 dB. The weights of reverber-

ation suppression tasks are initialized with an auto-encoder, which effectively uses the train-

ing time and improves performance. By comparing with the experimental pool data, it is

found that the proposed method can improve the reverberation suppression by about 2 dB

compared with other excellent methods.

Introduction

In active sonar detection of underwater targets, the targets are often in a proud or buried state,

which means that the target echo will be accompanied by solid reverberation interference at

the receiving end of the sonar, which seriously affects the detection of underwater targets [1].

Reverberation is one of the most critical factors affecting sonar detection performance, espe-

cially in shallow seas. Reverberation is a random signal generated by the random scattering

and superposition of sound waves after encountering many uneven bodies in the undulating

sea surface, seabed, and seawater during propagation. The time-frequency reverberation char-

acteristics are related to the transmitting signal, which overlaps with the target echo in the time

domain and is coherent with that in the frequency domain [2]. Removing reverberation from
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the time or frequency domain independently is difficult. Therefore, effectively reducing the

interference of reverberation to target detection has always been a hot topic in underwater

acoustic signal processing.

The superimposition of active sonar forms ocean reverberation emission signals after being

scattered by many random scatterers and shattering ocean boundaries. However, due to the

rapid development of active sonar systems in recent years, the transmitted frequencies are

lower than before, and it has been possible to reduce the effects of reverberation effectively.

However, the transmission power is higher, so it can detect longer distances. Reverberation is

still the most important influencing factor inside the active sonar. Currently, there are many

studies on reverberation suppression for transmit signal adjustment. J.P. Costas proposed a

frequency hopping signal based on special frequency coding, with ideal Doppler time resolu-

tion and good reverberation suppression effect [3]; Henry Cox et al. Collins et al. comprehen-

sively analyzed the anti-reverberation characteristics of various Doppler-sensitive active sonar

signals using the Q function [4]; Ward S et al. detected low-Doppler target performance for

SFM signals. A detailed analysis was carried out [5].

The ocean reverberation and target echo signals are strongly correlated in the time domain.

The two frequency spectra overlap in the frequency domain, and ordinary matched filtering

methods cannot effectively find the target echo signal. To improve the performance of coher-

ent processing in reverberation, the reverberation statistical model can suppress the reverbera-

tion, whiten the non-Gaussian colored noise into Gaussian white noise, and then detect the

signal. Among them, the AR pre-whitening processing method is used to filter the reverbera-

tion into white noise under certain conditions to obtain a higher gain through matched filter-

ing and detect the target echo more effectively [6]; It realizes the detection of the time-

frequency expansion target, and The target detection performance is improved [7]; the princi-

pal component inversion algorithm is used to project the received signal into two subspaces

according to the power difference between different backgrounds, thereby realizing the separa-

tion of reverberation [8]; based on AR pre-whitening, the received signal is Performed bisec-

tion singular value decomposition to achieve a better effect of suppressing reverberation, using

the low-rank matrix decomposition method, the received signal is divided into two matrices, a

low-rank matrix, and a sparse matrix, to achieve reverberation separation [9].

In recent years, the in-depth development of artificial intelligence technology has brought

people hope of solving the reverberation problem. With the continuous development and

innovation of deep learning technology, a large number of neural network architectures with

good performance and robust stability have emerged, such as Generative Adversarial Net-

works (GAN) [10], Convolutional Neural Networks (CNN) [11, 12], Recurrent Neural net-

works (RNN) [13] and so on. These networks often have good performance in different fields.

They can solve problems that traditional methods could not solve in the past, attracting schol-

ars from various areas to devote themselves to deep learning research and combining deep

learning with their respective fields to provide new ideas for solving problems in their respec-

tive fields [14–16].

With the development of artificial intelligence (AI) technology, deep neural networks have

brought new research ideas to solve the shallow sea sonar reverberation problem.As a hot

research direction in the field of machine learning, the kernel function of the support vector

machine is used to detect the signal in the background of reverberation, this method improves

the recognition quality of the reverberation background, and its effect is better than the adap-

tive filtering algorithm [17]; Wu Ketong et al., used a support vector machine to estimate AR,

and the coefficient of the model realizes the function of accurately detecting the target signal

under the condition of low signal mixing ratio and low Doppler Pan Chengsheng et al. [18].

GAN has become a popular model in the field of deep learning due to its advantages of

PLOS ONE A construction method of reverberation suppression filter using an end-to-end network

PLOS ONE | https://doi.org/10.1371/journal.pone.0293365 October 24, 2023 2 / 21

Funding: Hao Zhang was supported in part by the

National Natural Science Foundation of China under

Grant 91938204ı̈41527901ı̈61701462. URL of the

funder website is ‘https://www.nsfc.gov.cn/’. NO,

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0293365
https://www.nsfc.gov.cn/


generating high-quality samples, learning unlabeled data, supporting multi-modal data and

innovation [19, 20]. In the field of underwater acoustic engineering, it is theoretically feasible

to use deep learning for active sonar reverberation suppression to solve the problem of rever-

beration suppression.

In this paper, a neural network, RS-U-Net, which can convolve signals, is constructed using

the end-to-end method. The end-to-end neural network is a deep learning model that can

directly learn the output from the input data. The end-to-end neural network is trained from

input to output. It does not need to extract intermediate features manually and relies on a

large enough data set and excellent model design to obtain better results than traditional meth-

ods. An end-to-end structure where data is no longer dependent on labels. Let the network dis-

cover the components, parse the elements, and restore and amplify the features. The proposed

RS-U-Net is a generated encoder-decoder model. The encoder analyzes and learns the rever-

beration and target echo features during reverberation processing. The decoder part restores

the learned features to the signal and generates a reverb suppression model. The target signal

initially hidden in the reverb is revealed.

Related work

This section introduces the implementation of RS-U-Net, and its parts are decomposed and

explained here. The general structure of the second section is shown in Fig 1.

Fig 1 presents the framework of the reverberation suppression discussed in the article. The

training dataset consists of both pool experiment data and simulation data. The generation of

reverberation signals, echo signals, and ocean noise signals is described in the Signal Genera-

tion section. Signal processing techniques are explained in the Signal Processing section (simi-

larly applied to pool experiment data). The construction of the end-to-end network structure

for generating a reverberation suppression model is explained in the RS-U-Network Construc-

tion section. The diagram utilizes two lines to connect each component. The black line repre-

sents the training data, while the red line represents the ideal representation of the suppressed

Fig 1. The overview of the reverberation supperssion framework.

https://doi.org/10.1371/journal.pone.0293365.g001
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signal, serving as the validation set. The parameters of the training set can be fine-tuned based

on the verification set to implement reverberation suppression models. Finally, the adjusted

parameter model is saved and tested using experimental data from the pool.

Underwater active sonar reverberation simulation

Underwater reverberation can be divided into three components: volume reverberation, sea

surface reverberation, and bottom reverberation. Sea surface reverberation and seabed rever-

beration are collectively referred to as interface reverberation.

A large amount of experimental data is required for network modeling, so sonar reverbera-

tion data will be simulated in this paper. Reverberation simulation is divided into three parts:

reverberation simulation, echo signal simulation, and environmental noise simulation.

The propagation of the reverberation signal is shown in Fig 2 below.

In Fig 2, Point M sends a non-directional signal for the ring energizer. The figure shows the

creation of the reverberation model. M is the transducer, the distance from M to the interface

xoy is h, and the transducer transmits signals at point M without directionality. The signal arri-

ves at the receiver as a spherical extension after reflection from the interface scatterer, at the

time t inside the ring of scatterers contributing to the reverberation. Over time, the ring gradu-

ally moves outward, and its area increases, and therefore the number of scatterers leading to

the reverberation increases [21].

Fig 2. Interface reverberation model.

https://doi.org/10.1371/journal.pone.0293365.g002
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The number of scatterers is assumed here. It is assumed that the number of scatterers gener-

ating reverberation on the i ring is N, and the scattering characteristic function Pi(t) at time t
is:

PiðtÞ ¼
XN

n¼1

A
r
e� jkrRin

1

r
e� ikr ð1Þ

Where the signal strength is A, the MA length is r, and the wave number is k, where k = 2πf/c, r
is the homeopathic frequency, the ocean sound speed is c, and the scattering coefficient of the

n scatterer is Rin ¼ ainejcin , 1� n� N. The reverberation at time t can be expressed as:

RðtÞ ¼ sðtÞ � PiðtÞ ð2Þ

In Eq 2, the emitted signal is s(t), the reverberation signal is R(t).
In Fig 3, the compliance of the generated signal is demonstrated. The envelope of the signal

obtained by simulation will conform to the Rayleigh distribution as shown in Fig 3(a), and the

data distribution will conform to the Gaussian distribution as shown in Fig 3(b).

The simulation of the reflected signal of the target body is added to the reverberation, and it

is assumed that the sonar has [1 � � �m � � � n] array of elements received [22]. The target echo

signal received by the m array element can be expressed as:

xmðtÞ ¼
Xp

i¼1

biSðt � tmiÞexp½WmiðtÞ þ 2pfdðtÞ � ðt � tmiÞ � ci� ð3Þ

where the Wmi(t) expression:

WmiðtÞ ¼ 2pf0ðt � tmiÞ �
2p

l
ðrm � eiÞ � pBðt � tmiÞ þ

pB
t
ðt � tmiÞ

2 ð4Þ

In Eqs 3 and 4, the coordinate of the m array element (xm, ym, zm) is represented by a vector

rm. The reference point O(0, 0, 0) of the receiving array element is a point (the geometric cen-

ter of the receiving array); p represents the number of bright spots of the target; bi represents

the reflection coefficient of the i-th bright spot; S(t) represent the envelope of the transmitted

signal; τmi represents the time delay experienced by the sound wave incident on the i bright

spot and then reflected the m array element; Wmi(t) represents the angular frequency change

of the sound wave irradiated to the i bright spot and then reflected to the m array element; fd(t)

Fig 3. Simulation results.

https://doi.org/10.1371/journal.pone.0293365.g003
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represents the Doppler shift; ψi represents the random phase shift of the i two-point echo, uni-

formly distributed between (0* 2π). B is the frequency modulation width (B = 0 is the CW

signal).τmi in Eqs 3 and 4 is expressed in detail as:

tmi ¼
2ri
c
� Dtmi ð5Þ

ri represents the distance from the i th bright spot to the matrix reference point; c is the speed

at which sound waves travel through water. Δτmi represents the delay of the plane wave from

the array element m to the reference point of the array. The above method will realize the con-

struction of a bright spot echo model.

In environmental noise simulation, the Marine environment has complex spatial and physi-

cal characteristics, and the noise level depends on mixing multiple noise sources. Due to the

spatiotemporal variability of ambient noise, it is not easy to describe it accurately. Megan Liu’s

team and Bosheng Liu et al., based on a large number of measured data and data statistics on

noise in shallow sea environment [23, 24], analyzed and obtained the empirical equation of

shallow sea noise spectrum:

NLð f Þ ¼ 10lg f � 1:7 þ 6Sþ 55 ð6Þ

NL represents noise spectrum level, f represents frequency, and S represents sea state level.

At a certain depth, the amplitude distribution of environmental noise meets the Gaussian dis-

tribution. Therefore, after calculating the spectrum of Marine environmental noise, Gaussian

noise can be used to approximate and simulate the time domain signal, generate a random

noise sequence of N(�) and exchange its frequency domain information by Fourier transforma-

tion, and obtain the frequency domain function R(�) of random noise. Then the inverse Fou-

rier transform of N(f) = NL(f) × R(f)is performed to obtain the time domain Marine ambient

noise sequence N(t), that is the simulated Marine ambient noise sequence with specific ampli-

tude distribution and spectral level curve requirements.

A series of factors, such as reverberation interference, environmental noise, bright spot

model, and Doppler compensation, are comprehensively considered, and each part is simu-

lated, and each element is superimposed to obtain the target echo signal, as shown in Fig 4:

Signal processing

Some processing is required for the reverberation signals before the network training is per-

formed. The generated signals must be processed in three steps: randomization of the target

echo signal, normalization of the input data, partitioning the training set, validation set, and

test set in a specific ratio. Some processing can make the network training converge faster and

improve accuracy.

(1).Random generation is required for the echo signal strength and position, and only the

diversity of input features can ensure the strong generalization ability of the generated model.

According to the sonar equation, the loss during the propagation of the active sonar signal can

be written as Eq 7.

2TL ¼ SL � ðNL � DI þ DTÞ þ TS ð7Þ

TL represents the propagation loss because the active sonar is bidirectional, so 2TL defines

its complete propagation loss; SL represents the sound source level; NL represents the noise

level; DI represents the directivity index; TS represents the target strength. The propagation

loss calculation formula can also be converted into the following distance-related empirical
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formula:

TL ¼ 16� lgðr=1000Þ þ 0:036� f 3=2 � ðr=1000Þ þ 60 ð8Þ

In Eq 8, f represents the frequency, and r represents the target distance. Substituting it into

Eq 7, the variation of the target reflection intensity concerning the motion position can be real-

ized. As shown in Eq 9:

SðtÞ ¼ RðtÞ þ 10TL=5 � xmðtÞ ð9Þ

(2).Normalize the data. The preprocessed data is constrained within a specific range, elimi-

nating the adverse effects of individual sample data, and the input signal data has a standard

dynamically adjusted range. Normalizing the data can accelerate the speed of gradient descent

in finding the optimal solution and may improve accuracy.

SðtÞ0 ¼
SðtÞ � minðSÞ

maxðSÞ � minðSÞ
� ðL1 � L2Þ þ L2 ð10Þ

Where S(t)0 is the data after normalization, and normalize S(t) to be between [L1, L2].

(3).The reverberation data set is divided reasonably, and the entire data is divided into

three sets: training set, validation set, and test set. The SðtÞ0 data is divided into a training set,

validation set, and test set according to the ratio of 80%, 10%, and 10%. By setting the verifica-

tion and test sets, the feature distribution is close to the training set, the analogy is compact,

and the accuracy or loss is closer to reality.

Fig 4. Active sonar echo simulation.

https://doi.org/10.1371/journal.pone.0293365.g004
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RS-U-Network construction

The sonar echo data after section 1.2 processing is [m, n], which means that there are m pieces

of test data, and each amount of test data has n points, which is represented as [s1, . . ., sn],
where si 2 [−1, 1] for i 2 {1, . . ., n}. Here, we input the data into the neural network structure

and perform feature extraction on the data, as shown in Fig 5.

The input time domain signal data, S, has a n × 147556 size. Similarly, the output data, S0,
also n × 147556 size. For n sonar signals to be suppressed, a one-dimensional convolution of

size 1 with n ×m filters is used for feature extraction, filling zeros before the convolution to

convert the feature stack of each sonar signal into a source prediction for each signal. By tanh

nonlinearity, obtain source signal estimates with values in the interval (−1, 1). In addition to

upsampling, data concatenation is used to preserve the original features. Thus, the feature

extraction and amplification of the initial sonar signal can be realized. This chapter introduces

reverberation suppression networks in four parts. The first part uses 1D-CNN to extract time

domain signal features, the second part is 1D Network Blocks, the third part is the realization

of data splicing in the network structure, and the fourth part will introduce the realization of

RS-U-Net model in detail.

Feature extraction by 1D-CNN

In recent years, with the development of computer hardware, CNN has gradually been applied

in various fields. 1D-CNN is very effective in processing time series data [25]. One-dimen-

sional convolution is chosen to process signal data rather than two-dimensional convolution

because one-dimensional convolution is more suitable for processing time series data, has

higher computational efficiency, and can retain time information and extract timing features

[26]. In this paper, 1D-CNN is used to extract and fuse the features of the input sonar signals,

as shown in Fig 6.

These convolution kernels slide along the time axis of the sonar signal to extract more

abstract and representative features from the sonar signal. The extracted features are combined

to obtain a new sequence feature as the input of the next CNN layer. Convolution kernel size =

[Sampling rate/frequency],where [�] indicates round down.The convolution kernel’s size equals

the number of points contained in a sinusoidal signal. As shown in Fig 6, four values can repre-

sent a sine wave, so the kernel size is set to 4. Convolution kernel size equal to a sine wave can

help us analyze the periodic features in the signal.

Further, by taking the current moment in Fig 6 as an example, the convolution operation

process could be expressed as “feature sequence� convolution kernel,” where “�” represents

Fig 5. Structure of RS-U-Net.

https://doi.org/10.1371/journal.pone.0293365.g005
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the convolution operation symbol. Therefore, after the convolution operation, the number of

extracted features was -0.47.

One-dimensional convolution is used to process time domain signals and can be used to

extract local features from time series data using the sliding window. This sliding window cap-

tures current patterns and trends in the time series to better understand how the data changes.

1D-CNN When dealing with time series, the same convolution check can perform convolution

operations on the entire sequence. This way of parameter sharing can significantly reduce the

number of parameters in the model, improve computational efficiency, and help prevent over-

fitting. 1D-CNN has translation invariance; for translation operations in a time series, the

result of the convolution operation does not change [27].

1D network block

This paper uses two types of blocks, the downsampling block and the upsampling block, to

obtain better sonar signal S(n) features. Since the two blocks are of the same form, only the

positions of the upsampling and downsampling are different. In Fig 7, only the downsampling

block is represented.

Fig 6. Feature extraction sequence of 1D-CNN.

https://doi.org/10.1371/journal.pone.0293365.g006

Fig 7. Network block.

https://doi.org/10.1371/journal.pone.0293365.g007
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In Fig 7, a network block consists of a convolution layer, a normalization layer, an activa-

tion layer, and a downsampling process. As shown in Fig 7(a) and 7(e), after one-dimensional

convolution processing (data convolution dimension is 1), the normalization layer is used to

re-normalize the data, and then the activation layer is used to process the results. The result

after convolution is shown in Fig 7(b). For places with strong signals, the representation of fea-

tures in the array after convolution is still strong, such as reverberation and target. Use down-

sampling to change the data length from m to m/2. (For up-sampling, use linear interpolation

to change the original length m to m to 2*m.) The purpose of downsampling is to reduce the

amount of computation, prevent overfitting, and increase the acceptable field so that the subse-

quent convolution kernel can learn more global information. After processing, Fig 7(c) is gen-

erated, the scale of the array is reduced, and more advanced features are extracted. The form

shown in Fig 7(d) is formed after multiple convolutions. After several training and iterations,

the feature map in Fig 7(e) formed by the final convolution is more prominent in the target’s

location, and the other features of the reverberation part disappear or are suppressed.

The diagram above shows the encoder structure. When the structure becomes a decoder,

the convolution is transformed into a transposed convolution, and downsampling becomes an

upsampling process.

Data concatenation

Extracting sonar signal features is challenging. It is crucial to design a deep network structure

to obtain more valuable recognition features from the dataset. However, as the network layers

accumulate, training deep networks becomes a labour-intensive task due to a common insur-

mountable problem. This problem can be addressed more effectively by incorporating the

UNet [28] approach, which optimizes data concatenation when transferring network parame-

ters. Fig 8 in the paper illustrates the implementation of this approach.

The input sonar signal feature x is propagated from the preceding layer and passed through

a series of Conv1D1 . . . Conv1Dn layers. The resulting data xn is obtained. Conv1Dy processes x
separately through an alternative pathway, producing the output Conv1Dy(x). The output xn�
Conv1Dy(x), known as Concat(x), is then obtained. This operation combines the current fea-

tures with the local ones, ensuring the original ones are preserved after multiple convolution

Fig 8. Data concatenation.

https://doi.org/10.1371/journal.pone.0293365.g008
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operations. The Decimate operation removes certain features at alternate time steps, reducing

the time resolution by half. The Upsample operation increases the time resolution by two-fold

using linear interpolation. The Concat(x) operation concatenates the current high-level fea-

tures with the corresponding local features x. The convolution operation in the alternative

pathway processes the data and generates the final output data. In Fig 8(a), the data concatena-

tion operation is equivalent to the� operation, representing the skip connection shown in Fig

8(b).

The following network construction will be built with network blocks. The U-net network

structure has the following characteristics. The network has l + n layers, and each layer is

labeled [1, . . ., l − 1, l, l + 1, . . ., l + n], where l − n = 1.

For stacked layers, when the input is x, the learned feature is recorded as H(xl−n)(echo sig-

nal feature). When l = 0, the cumulative layer only performs unit mapping at this time. Net-

work performance does not degrade, allowing the accumulation layer to learn new features

based on the input features, resulting in better performance.

A convolutional block of length l + n can be expressed as:

xlþn ¼ Fdðxl� n� 1;wl� n� 1Þ; n < 1

xlþn ¼ Fuðxlþn� 1;wlþn� 1Þ; n > 1

xl ¼ Fmðxl;wlÞ; n ¼ 1

:

8
><

>:
ð11Þ

xlþn ¼ Fðxlþn;wlþnÞ � Hðxl� nÞ ð12Þ

The convolution result can be expressed as x from k bocks and y block by continuous con-

volution iteration, where l + n from l − n − 1 to l + n − 1. The input and output of the l residual

unit of the formula are respectively represented in xl, and each residual unit generally contains

a multi-layer structure. Fd is the downsampling block function, Fu is the upsampling block

function, representing the learned residual, and h(xl) = xl depicts the identity mapping. The

learned features from shallow layer l to deep layer L are expressed as:

xL ¼ xl þ
XL� 1

i¼1

Fðxi;WiÞ ð13Þ

The network is symmetrical, as depicted in Fig 8(b). The first half employs downsampling,

while the second half employs upsampling. The network’s architecture impacts the data pro-

cessing length and the minimum distance for processing sonar signals, where d = 2 × 2n.

When the downsampling block has n layers, the number of input points is at least 9. A sym-

metric network structure with 9 layers is used in the experiments, resulting in a minimum of

29 = 512 input signal points. However, if only signal data with a length of 2048 is input, it will

output only 1 value after 9 downsampling operations, leading to a diminished feature repre-

sentation. To ensure adequate feature representation, the data signal length for training should

be at least d = 2 × 512 = 1024. The shortest detection distance for convolution is denoted as L
and can be computed using the following formula.

L ¼
d

2� Fs
� c ð14Þ

It can be known from the calculation that the detection distance of the processed active

sonar is 3.072m in the network built by the 9-layer downsampling block.
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The RS-U-Net model

RS-U-Net refers to a modification of the U-shaped network. It turns its most classic two-

dimensional convolution into a 1D-CNN that convolves specifically on signals, adding skip

connections on their original basis to make it more accurate for signal feature extraction, as

shown in Fig 9.

Fig 9 mainly shows its network structure’s propagation process and main characteristics.

The signal data S is directly input to the encoder layer X1
En, and the one-dimensional convolu-

tion operation is started. The RS-U-Net is specifically designed to handle sonar signals. The

role of the encoder is to convert the input sequence into a low-dimensional representation

capable of capturing the key features of the input sequence. The decoder converts the encoding

vector into a target sequence and dynamically generates content related to the target, as shown

in X3
De. The decoder directly receives feature maps from the scale encoder layer X3

En. Its data

size remains unchanged at 96 × 768. As the number of convolutional layers increases, the con-

volution of multiple neural networks may weaken data features, so the data crop structure is

adopted to reduce the loss of information, as shown in Fig 8. The convolution of multiple neu-

ral networks has the following problems. As the number of convolution layers increases, the

data features will be weakened, so the data clipping structure is used to reduce its partial disap-

pearance. The significance of using one-dimensional convolution here is that its convolution

direction is one-dimensional. This method is suitable for signal processing and feature

extraction.

In RS-U-Net, the convolution with a stride of 1 maintains the output length equal to the

input length. A downsampling method is employed to increase the receptive field of the origi-

nal data by [1/2]. The signal data SLm�B ¼ ½s1; s2; s3; s4; � � � ; sm� 3; sm� 2; sm� 1; sm� is downsampled

to [s1, s3, � � �, sn−2, sn]. After convolving the data to obtain its minimum scale, corresponding

upsampling [×2] is used along with interpolation to restore the data to its original scale. The

signal is transformed from Sn to S0n after processing, while the signal length remains

unchanged.

Regarding physical structure, the target echo signal may contain multiple highlight echoes

so that the target echo signal might be a multi-component signal. WVD suffers from severe

cross-term interference when dealing with multi-component signals. Cohe’s time-frequency

Fig 9. RS-U-Net.

https://doi.org/10.1371/journal.pone.0293365.g009
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distribution reduces the interference of cross terms to a certain extent by adding kernel func-

tions, but its applicability to different signals has significant differences. Therefore, STFT is

chosen as the joint time-frequency domain processing method for feature extraction of the

observed x(t). The RS-U-Net target will recover the clean target echo signal x(S) in the rever-

beration observation x(S0).

Experimental

In this section, the pool experiment data comparison demonstrates the RS-U-Net’s ability to

effectively reduce the active sonar signal’s reverberation component. The proposed method’s

effectiveness and accuracy are shown by comparing various network structures. Additionally,

we compared the proposed reverberation suppression method with other excellent methods to

demonstrate its effectiveness.

Experimental setup

This section describes the setup of the experiment. Experimental data were mainly obtained in

the anechoic pool. The leading equipment of the experiment was active sonar equipment and

cavity target object, and the main equipment of the experiment is shown in Fig 10 below.

A sonar detection system is used to acquire sonar signals with reverberation, as shown in

Fig 10(a). The sonar device is an irregular array composed of 30 oscillators, and the signal is

transmitted as a 30 kHz continuous wave sinusoidal signal. The sampling rate of the signal

echo is 250kHz, and the default underwater sound velocity during calculation is 1500m/s. The

experimental target of the equipment is shown in Fig 10(b). The experimental target is a cylin-

drical cavity with a diameter of 533 mm and a length of 1.5m. The sonar detection equipment

and the target are mounted on the driving and rotating experimental platform for easy move-

ment and rotation.

The active sonar equipment was fixed during the experiment, and the target was moved.

The main experimental methods are shown in Fig 11.

The experiment to obtain experimental data was mainly conducted in a pool with an

acoustic wedge of 13m × 8m × 8m. The acoustic wedge can reduce the acoustic signal reflec-

tion of the water bottom and the surrounding pool wall. During the experiment, the sonar

Fig 10. Experimental equipment.

https://doi.org/10.1371/journal.pone.0293365.g010
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detection equipment was fixed at a depth of 5m underwater, and the target object was

moved between 3 and 12m away from the sonar equipment. It was placed at a depth of 4m,

5m, and 6m, respectively, for the experiment. Signals from different angles were collected,

and the target object was rotated to simulate echoes of different intensities. When the

smaller surface faces the sonar device, a smaller intensity echo signal can be obtained; other-

wise, a stronger echo signal will be obtained. Detailed experiments and equipment are

shown in Fig 12.

During the experiment. In contrast, a depth adjustment experiment is carried out, the

translation distance of the equipment will also be tested, and the translation distance is about

1m about the position of the target body directly opposite. During the experiment, DC powers

were used to power the sonar equipment. The current clamp was used to judge whether the

piezoelectric ceramic module in the sonar equipment was usually started, and the spectrograph

displayed the results. In the experiment, the start of the computer sonar equipment and the

acquisition of signals are controlled. At the same time, another computer is connected to the

hydrophone to monitor the signal sent by the sonar equipment to see whether the signal gener-

ated by the experiment can meet the requirements of the experiment.

During the experiment, nine points were measured at different distances, and different

reflecting surfaces were tested at different points. The setup of the experiment is described in

detail above. Through the above experimental Settings, the effectiveness and credibility of the

method for different data are verified.

Experiment verification

In this section, the method proposed in this paper will be applied to the data obtained from the

above experiments to verify the effectiveness and advancement of the method. We will use

SRR to indicate the degree to which the signal is suppressed and use it as a standard for

Fig 11. Equipment and target experimental setup.

https://doi.org/10.1371/journal.pone.0293365.g011
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comparison with other methods. The SRR formula is expressed as follows:

SRR ¼ 10lgð
PSignal � Preverberation

Preverberation
Þ ð15Þ

In Eq 15, PSignal is the power of the activate sonar signal, the Preverberation is the power of the

reverberation signal, and PSignal − Preverberation is the power of the echo signal. SRR can be used

to indicate the degree of reverberation suppression.

The comparison experiment is carried out by setting parameters to verify that the selected

parameters are the best, as shown in Table 1.

For different network structures, the ability of signal features is other for learning. Network

structures are not only more profound, the better. Here, the network structures of 7, 8, and 9

layers were tested for comparison. At the same time, the loss is compared in two ways: mean

square error (MSE) and mean absolute error (MAE). Upsampling is compared in two ways:

linear interpolation and transposed convolution. Weight initialization is compared in yes and

no. The loss comparison diagram is shown in Fig 13.

Fig 12. Detailed experimental setup.

https://doi.org/10.1371/journal.pone.0293365.g012

Table 1. Comparison of different parameter settings.

Models Name Layers Loss Upsampling Weight Initialization

Model 1 8 MSE Linear Interpolation No

Model 2 9 MSE Linear Interpolation No

Model 3 9 MAE Transposed Convolution No

Model 4 9 MSE Linear Interpolation Yes

Model 5 10 MSE Linear Interpolation No

https://doi.org/10.1371/journal.pone.0293365.t001
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In Fig 13, the loss represents the error between the effect generated by the network and the

real expected. After comparative experiments, it is shown that although model 1 is similar to

model 3, its convergence speed is still weaker than when the network depth is 9 layers, its con-

vergence speed is the fastest, and its loss is the smallest. The experiment’s results continued to

converge, reaching around 0.001, and no longer changed.

Fig 14 shows the results of the influence of different network parameter Settings on the

degree of reverberation suppression during training. As the number of training increases, the

SRR of the validation set data increases from 6dB to 29dB, which is about 23dB better than the

signal-to-reverberation ratio before processing. Different models have different processing

Fig 13. Loss curve.

https://doi.org/10.1371/journal.pone.0293365.g013

Fig 14. SRR comparison.

https://doi.org/10.1371/journal.pone.0293365.g014
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capabilities for underwater acoustic signals. When the number of layers is 8, the reverberation

suppression efficiency is faster, and its reverberation suppression ability is reflected in the

SRR. The final reverberation suppression effect is about 3dB higher than the other methods.

The active sonar of the signal is subjected to reverberation suppression, and the process of

the signal during training is shown in Fig 15.

Fig 15(a) represents the original signal; it can be seen from the time-domain diagram that

the target is not evident in the reverberation background, and it can be seen from the spectrum

diagram that the target echo frequency is 30kHz. The position of the target echo cannot be

seen from the time-frequency diagram. In Fig 15(b)–15(e) are the results of the network’s con-

tinuous learning to suppress the signal, corresponding to the results after epoch 20, epoch 40,

epoch 60, and epoch 80, respectively. The figure shows the comparison of different stages. The

first is the comparison of the signal time domain diagram, the second is the echo signal fre-

quency domain diagram, and the third is the comparison of the signal time-frequency dia-

gram. Each row is rendered differently for the current state. In Fig 15(a), the original active

sonar signal echo is initially submerged in the superimposed signal of reverberation and noise,

which is difficult to show through the frequency domain and time-frequency diagram, as

shown in Fig 15. The process is shown in (b) and (c). After extracting features through RS-U-

Net, the information is constantly corrected and iterated. The echo signal needs to be cleaner,

and the 30kHz echo is masked. The target can be found on the time-frequency plot after the

Fig 15. Active sonar reverberation suppression change graph.

https://doi.org/10.1371/journal.pone.0293365.g015
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final iteration, as shown in Fig 15(d) and 15(e). When it arrives in Fig 15(e), the echo is already

a 30kHz signal. On the time-frequency spectrum, the echo shows strong signal characteristics,

and the position of the echo signal can also be seen through the time-frequency spectrum.

The comparison effect display diagram is shown in Fig 16. Here, we compare various excel-

lent classical reverberation suppression methods to demonstrate the effectiveness of RS-U-Net

in suppressing reverberation.

Fig 16(A) is the original data in the comparison chart. It is impossible to see the target echo

position very clearly. The target echo is masked. Fig 16(B) is a diagram showing the effect of

the autoregressive pre-whitener [29] reverberation suppression method. Fig 16(C) shows the

impact of the least mean square filter (LMS) [30]. It found that the reverberation part is sup-

pressed and reduced amplitude. Fig 16(D) is a diagram showing the effect of reverberation

suppression by adaptive fractional Fourier transform(FrFt) [31]. Fig 16(E) shows the impact of

Principal Component Inversion (PCI) reverberation suppression [32]. Fig 16(F) shows the

impact of the method RS-U-Net proposed in this paper. Compared to the excellent method,

the reverberation part is effectively suppressed, and the echo part is displayed.

The superiority of the method proposed in this paper can be seen through the comparison

chart, and its specific parameters are shown in Table 2. The comparison of the parameter

model size, reverberation power, echo power, SRR, and improved SRR between the existing

algorithm and the proposed method is given in the table.

Fig 16. Comparison of classical methods.

https://doi.org/10.1371/journal.pone.0293365.g016

Table 2. Experimental data comparison table.

Algorithms Params(M) Reverberation Power Echo Power SRR(dB) Imporve SRR(dB)

Original Data — 33.67 21.02 -2.05 0

Ar PreWhitener — 33.65 21.07 -2.03 0.02

LMS — 9.1 6.62 -1.38 0.67

FrFt — 10.94 15.06 1.38 3.43

PCI — 6.03 28.34 6.72 8.77

PCI-SVM — 6.15 29.17 6.76 8.81

Wave-U-Net 46.8 5.44 17.64 5.11 7.16

SEW-U-Net 50.4 2.16 11.95 7.43 9.48

RS-U-Net 38.7 2.77 17.74 8.06 10.11

https://doi.org/10.1371/journal.pone.0293365.t002
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In table algorithm comparison, the parameter Params represents the size of the parameter

model, and a smaller parameter model means that its processing speed is faster. Reverberation

Power represents the strength of Reverberation part, and Echo power represents the strength

of the Echo part. SRR can be obtained according to the calculation of Reverberation Power

and Echo power(Eq 15). Improve SRR is obtained by comparing SRR with original data. The

parameters on Imporve SRR can compare the effectiveness of both methods on reverberation

suppression.

Compared with classical algorithms, Ar PreWhitener and LMS have low improvement on

SRR, which are below 1dB. FrFt can improve by 3.43 dB, but the effect is still not as good as

PCI. PCI and PCI-SVM [33] methods are the best among the comparison methods, which

increase SRR from -2.05dB to about 6.7dB and suppress reverberation signal from 33.67 dB to

about 6. By interpreting the algorithm, the PCI-SVM method increases the adaptive selection

of rank, which can select the appropriate rank according to the signal. After many experi-

ments, the effect is best when the rank is 8. Compared with other U-shaped networks, this

paper chooses Wave-U-Net [34] and SEW-U-Net [35] for comparison, mainly applied and

audio separation. Experimental verification shows that it also has a specific effect on reverbera-

tion suppression. It can be seen from Params that the parameter model size of RS-U-Net is

38.7M, which is better than other models.

Moreover, by improving the SRR comparison, the proposed method can improve the sig-

nal up to 10.11dB. The RS-U-Net method proposed in this paper can suppress reverberation

and distinguish and reduce the suppression degree of the echo signal. Through SRR compar-

ison, the improvement amplitude of the signal reverberation ratio of these methods is

0.02dB, 0.67dB, 3.43dB, 8.77dB, 8.81dB, 7.16dB, 9.48dB, and 10.11dB, respectively. The

method proposed in this paper can effectively improve the signal-reverberation ratio and

realize the suppression of reverberation. Compared with other methods, it has certain

advantages.

Preliminary experiments have proved that the proposed method of reverberation suppres-

sion using RS-U-Net has certain superiority and rationality when constructing a 9-layer net-

work encoder. The signal quality is improved compared with excellent algorithms. The signal

quality is improved compared with excellent algorithms. The measured signal-to-reverbera-

tion ratio is improved by 10.11dB, proving the method’s effectiveness and superiority in sup-

pressing reverberation.

Conclusion

Reverberation suppression is an essential issue in an active sonar system. This paper presents a

method for reverberation suppression of sonar signals using an end-to-end neural network.

The proposed network uses one-dimensional convolution to effectively suppress the processed

sonar signal in this reverberation suppression network called RS-U-Net. The efficient suppres-

sion of RS-U-Net lies in its skip-connected network structure, and the signal features are no

longer easily lost after multi-layer convolution. The efficiency of the method proposed in this

paper can be proven in the comparison algorithm. The overall sonar reverberation signal can

be suppressed, and its SRR can be improved by about 10 dB.

After many experiments, it has been found that RS-U-Net has unique requirements for the

transmission pulse width. Different detection distances need to adjust the transmission pulse

width of the signal, but this is also the pulse width of RS-U-Net for echo signals.,the width is

not sensitive. Of course, this also has a particular relationship with the data set. In the following

research, its generalization ability will be increased, and it can also have an efficient processing

ability for signals with different pulse widths.

PLOS ONE A construction method of reverberation suppression filter using an end-to-end network

PLOS ONE | https://doi.org/10.1371/journal.pone.0293365 October 24, 2023 19 / 21

https://doi.org/10.1371/journal.pone.0293365


Supporting information

S1 File. All data files are available from the figshare database. (https://doi.org/10.6084/m9.

figshare.24151551).

(DOCX)

Author Contributions

Conceptualization: Xiao Chen, Yuan An.

Writing – original draft: Zhen Wang.

Writing – review & editing: Hao Zhang, Xiao Chen, Yuan An.

References
1. Jia H, Li X. Underwater reverberation suppression based on non-negative matrix factorisation. Journal

of Sound and Vibration. 2021; 506:116166. https://doi.org/10.1016/j.jsv.2021.116166

2. Yang B, Ma Z, Zhu L, Liu W. Experimental study on echo acquisition based on the correlation of low fre-

quency reverberation. In: INTER-NOISE and NOISE-CON Congress and Conference Proceedings.

vol. 261. Institute of Noise Control Engineering; 2020. p. 4053–4060.

3. Guan C, Zhou Z, Zeng X. Optimal waveform design using frequency-modulated pulse trains for active

sonar. Sensors. 2019; 19(19):4262. https://doi.org/10.3390/s19194262 PMID: 31575065

4. Cox H, Lai H. Geometric comb waveforms for reverberation suppression. In: Proceedings of 1994 28th

Asilomar Conference on Signals, Systems and Computers. vol. 2. IEEE; 1994. p. 1185–1189.

5. Ward S. The use of sinusoidal frequency modulated pulses for low-Doppler detection. In: MTS/IEEE

Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No. 01CH37295). vol. 4. IEEE;

2001. p. 2147–2151.

6. Ainslie M, Ainslie MA. The sonar equations revisited. Principles of Sonar Performance Modelling. 2010;

p. 573–633.

7. Yang Z, Zhou H, Tian Y, Zhao J. Improved CFAR Detection and Direction Finding on Time–Frequency

Plane With High-Frequency Radar. IEEE Geoscience and Remote Sensing Letters. 2021; 19:1–5.

8. Fu Q, Jing B, He P. Blind DOA estimation in a reverberant environment based on hybrid initialized multi-

channel deep 2-D convolutional NMF with feedback mechanism. IEEE Access. 2019; 7:179679–

179689. https://doi.org/10.1109/ACCESS.2019.2958955

9. Wright J, Ganesh A, Rao S, Peng Y, Ma Y. Robust principal component analysis: Exact recovery of cor-

rupted low-rank matrices via convex optimization. Advances in neural information processing systems.

2009; 22.

10. Ashraf H, Jeong Y, Lee CH. Underwater Ambient-Noise Removing GAN Based on Magnitude and

Phase Spectra. IEEE Access. 2021; 9:24513–24530. https://doi.org/10.1109/ACCESS.2021.3051263

11. Doan VS, Huynh-The T, Kim DS. Underwater acoustic target classification based on dense convolu-

tional neural network. IEEE Geoscience and Remote Sensing Letters. 2020;.

12. Zhu W, Yeh W, Cao L, Zhu Z, Chen D, Chen J, et al. Faster evolutionary convolutional neural networks

based on iSSO for lesion recognition in medical images. In: Basic & Clinical Pharmacology & Toxicol-

ogy. vol. 124. WILEY 111 RIVER ST, HOBOKEN 07030-5774, NJ USA; 2019. p. 329–329.

13. Wang Y, Zhang H, Xu L, Cao C, Gulliver TA. Adoption of hybrid time series neural network in the under-

water acoustic signal modulation identification. Journal of the Franklin Institute. 2020; 357(18):13906–

13922. https://doi.org/10.1016/j.jfranklin.2020.09.047

14. Sun L, Zhu W, Lu Q, Li A, Luo L, Chen J, et al. CellNet: An Improved Neural Architecture Search Method

for Coal and Gangue Classification. In: 2021 International Joint Conference on Neural Networks

(IJCNN). IEEE; 2021. p. 1–9.

15. Ruan W, Zhu W, Wang K, Lu Q, Yeh W, Luo L, et al. Vision-Tactile Fusion Based Detection of Deforma-

tion and Slippage of Deformable Objects During Grasping. In: International Conference on Cognitive

Systems and Signal Processing. Springer; 2022. p. 593–604.

16. Zhu W, Wang Q, Luo L, Zhang Y, Lu Q, Yeh WC, et al. CPAM: Cross Patch Attention Module for Com-

plex Texture Tile Block Defect Detection. Applied Sciences. 2022; 12(23):11959. https://doi.org/10.

3390/app122311959

PLOS ONE A construction method of reverberation suppression filter using an end-to-end network

PLOS ONE | https://doi.org/10.1371/journal.pone.0293365 October 24, 2023 20 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0293365.s001
https://doi.org/10.6084/m9.figshare.24151551
https://doi.org/10.6084/m9.figshare.24151551
https://doi.org/10.1016/j.jsv.2021.116166
https://doi.org/10.3390/s19194262
http://www.ncbi.nlm.nih.gov/pubmed/31575065
https://doi.org/10.1109/ACCESS.2019.2958955
https://doi.org/10.1109/ACCESS.2021.3051263
https://doi.org/10.1016/j.jfranklin.2020.09.047
https://doi.org/10.3390/app122311959
https://doi.org/10.3390/app122311959
https://doi.org/10.1371/journal.pone.0293365


17. Zhu G, Sun H. Improved support vectors machine for signal detection in non-reverberation. In: 2008

IEEE Ultrasonics Symposium. IEEE; 2008. p. 1508–1511.

18. Wu K, Cen F, Cai H. SVR-based approach to improve active sonar detection in reverberation. In: 2008

IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational

Intelligence). IEEE; 2008. p. 563–568.

19. Zhan F, Zhu H, Lu S. Spatial fusion gan for image synthesis. In: Proceedings of the IEEE/CVF confer-

ence on computer vision and pattern recognition; 2019. p. 3653–3662.

20. Dong HW, Yang YH. Convolutional generative adversarial networks with binary neurons for polyphonic

music generation. arXiv preprint arXiv:180409399. 2018;.

21. Sun Q, Wang H, Shen X, Ning W, Fu X. Research on the statistical modeling and simulation for inter-

face reverberation. IEEE. 2010;.

22. Hodges RP. Underwater acoustics: Analysis, design and performance of sonar. John Wiley & Sons;

2011.

23. Meng’an L. Underwater Acoustic Engineering. Zhejiang science and technology publishing house;

2003.

24. Liu Bosheng CW Huang Yiwang. Principles of underwater acoustics. China, SCIENCE PRESS; 2019.

25. Yao D, Li B, Liu H, Yang J, Jia L. Remaining useful life prediction of roller bearings based on improved

1D-CNN and simple recurrent unit. Measurement. 2021; 175:109166. https://doi.org/10.1016/j.

measurement.2021.109166

26. Huang S, Tang J, Dai J, Wang Y. Signal status recognition based on 1DCNN and its feature extraction

mechanism analysis. Sensors. 2019; 19(9):2018. https://doi.org/10.3390/s19092018 PMID: 31035732

27. Kim J, Kang H, Kang P. Time-series anomaly detection with stacked Transformer representations and

1D convolutional network. Engineering Applications of Artificial Intelligence. 2023; 120:105964. https://

doi.org/10.1016/j.engappai.2023.105964

28. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation.

In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International

Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer; 2015. p. 234–

241.

29. Li W, Ma X, Zhu Y, Yang J, Hou C. Detection in reverberation using space time adaptive prewhiteners.

The journal of the acoustical society of America. 2008; 124(4):EL236–EL242. https://doi.org/10.1121/1.

2963187 PMID: 19062792

30. Kim KM, Lee C, Youn DH. Adaptive processing technique for enhanced CFAR detecting performance

in active sonar systems. IEEE Transactions on Aerospace and Electronic Systems. 2000; 36(2):693–

700. https://doi.org/10.1109/7.845261

31. Yu G, Sun J, Li X. A signal enhancement method based on the reverberation statistical information.

EURASIP Journal on Advances in Signal Processing. 2022; 2022(1):1–13. https://doi.org/10.1186/

s13634-022-00902-2

32. Zhu Y, Yang K, Duan R, Wu F. Sparse spatial spectral estimation with heavy sea bottom reverberation

in the fractional Fourier domain. Applied Acoustics. 2020; 160:107132. https://doi.org/10.1016/j.

apacoust.2019.107132

33. Wang M, Wu S, Guo S, Peng D. Study on an anti-reverberation method based on PCI-SVM. Applied

Acoustics. 2021; 182:108189. https://doi.org/10.1016/j.apacoust.2021.108189

34. Stoller D, Ewert S, Dixon S. Wave-u-net: A multi-scale neural network for end-to-end audio source sep-

aration. arXiv preprint arXiv:180603185. 2018;.

35. Guimarães HR, Nagano H, Silva DW. Monaural speech enhancement through deep wave-U-net.

Expert Systems with Applications. 2020; 158:113582. https://doi.org/10.1016/j.eswa.2020.113582

PLOS ONE A construction method of reverberation suppression filter using an end-to-end network

PLOS ONE | https://doi.org/10.1371/journal.pone.0293365 October 24, 2023 21 / 21

https://doi.org/10.1016/j.measurement.2021.109166
https://doi.org/10.1016/j.measurement.2021.109166
https://doi.org/10.3390/s19092018
http://www.ncbi.nlm.nih.gov/pubmed/31035732
https://doi.org/10.1016/j.engappai.2023.105964
https://doi.org/10.1016/j.engappai.2023.105964
https://doi.org/10.1121/1.2963187
https://doi.org/10.1121/1.2963187
http://www.ncbi.nlm.nih.gov/pubmed/19062792
https://doi.org/10.1109/7.845261
https://doi.org/10.1186/s13634-022-00902-2
https://doi.org/10.1186/s13634-022-00902-2
https://doi.org/10.1016/j.apacoust.2019.107132
https://doi.org/10.1016/j.apacoust.2019.107132
https://doi.org/10.1016/j.apacoust.2021.108189
https://doi.org/10.1016/j.eswa.2020.113582
https://doi.org/10.1371/journal.pone.0293365

