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Abstract

Brain machine interfaces (BMI) connect brains directly to the outside world, bypassing natu-

ral neural systems and actuators. Neuronal-activity-to-motion transformation algorithms

allow applications such as control of prosthetics or computer cursors. These algorithms lie

within a spectrum between bio-mimetic control and bio-feedback control. The bio-mimetic

approach relies on increasingly complex algorithms to decode neural activity by mimicking

the natural neural system and actuator relationship while focusing on machine learning: the

supervised fitting of decoder parameters. On the other hand, the bio-feedback approach

uses simple algorithms and relies primarily on user learning, which may take some time, but

can facilitate control of novel, non-biological appendages. An increasing amount of work

has focused on the arguably more successful bio-mimetic approach. However, as chronic

recordings have become more accessible and utilization of novel appendages such as com-

puter cursors have become more universal, users can more easily spend time learning in a

bio-feedback control paradigm. We believe a simple approach which leverages user learn-

ing and few assumptions will provide users with good control ability. To test the feasibility of

this idea, we implemented a simple firing-rate-to-motion correspondence rule, assigned

groups of neurons to virtual “directional keys” for control of a 2D cursor. Though not strictly

required, to facilitate initial control, we selected neurons with similar preferred directions for

each group. The groups of neurons were kept the same across multiple recording sessions

to allow learning. Two Rhesus monkeys used this BMI to perform a center-out cursor move-

ment task. After about a week of training, monkeys performed the task better and neuronal

signal patterns changed on a group basis, indicating learning. While our experiments did not

compare this bio-feedback BMI to bio-mimetic BMIs, the results demonstrate the feasibility

of our control paradigm and paves the way for further research in multi-dimensional bio-

feedback BMIs.
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Introduction

Brain machine interfaces (BMI), or brain computer interfaces (BCI), connect brains to

machines or computers. Here we focus on a subset of such systems which use intracortical

neuronal recordings from invasive electrodes implanted into cortex. Such systems can control

robotic arms [1–4], cursors on computers [5–8] or tablets [9], exoskeletons [10], and paralyzed

limbs via functional electrical stimulation [11–14]. Some early work related to invasive BMI

recorded from single or a few neurons [1, 15, 16] and depended on learning by the user to con-

trol the activity of recorded neurons. Thanks to the development of electrode array hardware,

chronic neuronal ensemble recordings have become viable [17], motivating more complex

decoding methods.

These methods hold various assumptions to leverage multi-channel neural activity to offer

intuitive and higher dimensional control: the population vector algorithm [18] assumes neuro-

nal tuning can be described by preferred directions; linear filters (including the discrete Wie-

ner filter) allow asymmetrical preferred direction distributions but assume linear tuning [19–

21]; Kalman filters [22, 23] assume a state-space Markovian model with linear state transitions

and linear tuning. More recent methods acknowledge the stochasticity of neuronal firing and

the complexity of the cortical-musculature pathway and of the dynamics-to-kinematics rela-

tionship: particle filters [24], recurrent neural networks [25–27], support vector regression [25,

28, 29], autoregressive moving average [30], kernel autoregressive moving average [31],

unscented Kalman filters [6], specialized Bayesian filters [22, 32, 33], and point process filters

[34–36]. They utilize complex algorithms to mimic, in a supervised-learning approach, the

natural relationship between motor cortical activity and end-effector movement, i.e. neural

tuning. The approach is based on the belief that movement intentions can be accurately

decoded after the decoder parameters are fitted using data recorded from actual limb move-

ments or some reasonable substitute (when these are not available). The primary advantage of

this bio-mimetic approach is intuitive and immediate control: after a brief period of model fit-

ting and user orientation, the BMI system “plugs in”, bypassing the existing motor system.

While this kind of BMI decoder may have good initial performance, research [37–40] has

found that, after practicing with neural control, users can perform better when feed-back

learning is available (the work of [37] suggests focus on proprioceptive feedback).

However, the increasingly complex and often non-linear transformations used in bio-

mimetic decoders may hamper, in the long-run, the ability of the user to learn these systems

[41]: users’ trial-and-error strategy might work well for a simple neuronal activity to end-effec-

tor movement relationship, but not as well for complex or non-linear decoders which may

include probabilistic tuning models, deep neural networks, or models that mimic the physical

properties of limbs.

On the other hand, technical improvements in the stability of chronic recordings make the

bio-feedback BMI paradigm increasingly feasible. A novel appendage may not need complex

bio-mimetic neural tuning; humans may learn to use it from scratch, similar to how infants

learn to control their limbs. To test the feasibility of this approach, we tasked monkeys to learn

to control a cursor via a relatively simple control system by trial and error. Such a system may

have lower initial accuracy when compared to state-of-the-artbio-mimetic BMIs, but after

long-term user learning, it may offer competitive control accuracy. Compared to the bio-

mimetic approach, there is much less work in this area [11, 42–45].

We are interested in simple control rules with simple assumptions, like the early work of

Fetz [1] and Kennedy et al. [16]. Inspired by the four directional keys on a computer keyboard,

used daily by many people to control a novel end-effector (the computer cursor), we designed

and implemented an algorithm, called group weight, which sums spike counts within groups
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of neurons and converts the sums to cursor speed by multiplying with coefficients (weights).

We use the summed firing rates of groups of neurons, since firing rates of individual neurons

are variable [41]. Our algorithm does not require the sophisticated parameter estimation

efforts of bio-mimetic BMI decoder training; however, analysis of neuronal tuning (preferred

directions) can help us choose neuron groups so that neurons between groups are less likely to

fire together, which helps facilitate separate control of two dimensions initially. In this first

step in testing the feasibility of this approach, we do not compare against state-of-the-art bio-

mimetic decoders here, nor attempt to solve the plethora of issues related to long-term BMI

control, but rather focus on demonstrating the ability of BMI users to learn to use our bio-

feedback control system. We also aim to demonstrate control of multiple dimensions simulta-

neously; here as an initial step, we aim for two-dimensional control.

We conducted experiments with two Rhesus monkeys to demonstrate the ability to simulta-

neously control two dimensions and ability to improve performance with learning. They mon-

keys were able to control the 2D cursor. Our analyses show task performance significantly

improved over approximately one week of practice. The trajectories become straighter, consis-

tent with learning. We analyzed group-wise neural ensemble activities across the training

period and found that variability in the output-potent direction increased, supporting the pres-

ence of learning to use this algorithm on a group level. We then analyzed individual neuron’s

tuning properties and found their preferred direction (PD) changed in ways that were suitable

for the algorithm, indicating the neurons’ contribution to learning the new algorithm.

Even though our experiments here were not of sufficient length to allow monkeys to gain

high-accuracy control, our study demonstrates the feasibility of the group weight method and

suggests it warrants further investigation, both as an approach in designing BMIs and as a tool

to study neural changes during learning.

Materials and methods

Algorithm design

Group weight algorithm design. The group weight algorithm converts neurons’ firing

rates to the velocity of the cursor using a simple transformation. For 2D control, the conver-

sion relies on four groups corresponding to up, down, left, and right movement, with a pair of

opposing groups per dimension similar to natural flexor and extensor muscles. Firing rates of

neurons in a group are summed and normalized to obtain an action value. For each dimen-

sion, we use the net action value, the positive direction action value minus the negative direc-

tion action value, to drive the cursor:

ak ¼ maxð
ð
Xnk

i¼1
friÞ � mk

dk
þ c; 0Þ ð1Þ

vx ¼ w a1 � a2ð Þ ð2Þ

vy ¼ w a3 � a4ð Þ ð3Þ

Here, ak denotes the action value, the normalized group firing rate, of group k; nk is the neuron

count in this group; fri is the firing rate of the i-th neuron (Hz); μk, δk are mean and standard

deviation of the group’s summed firing rate, respectively; and c and w are constant values set

by the experimenter (we here use 1 and 0.375, respectively). See section Normalization method

for details on how the normalization parameters μk and δk were set. In Eq 2, vx is the x-axis

velocity of cursor (units of screen cm/s, limited to within ±15cm/s), which is computed as the
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difference between the 1st and the 2nd action value (similarly for vy, the y-axis velocity). The

four groups control two dimensions of cursor movement on the computer screen (Fig 1a). The

normalization aims to avoid imbalance in action value between opposing groups and handles

changes in neuronal firing rate due to recording instability. Firing rates were computed using

a 5-bin moving average of the binned spike count, with each bin 100ms in duration and non-

overlapping.

Neuron grouping. Our neuron inclusion criteria were: neurons should have long-term

stable recordings and their directional encoding should be relatively strong. The stability of a

neuron’s signal was judged by the number of days the neuron was recorded. If a neuron was

recorded for more than 5 days, we regard it as stable. We assigned neurons to groups by their

preferred direction (PD). PDs were calculated from data where in the monkey used its contra-

lateral hand to control the cursor via a joystick. The data was collected in a center-out cursor

movement task before brain control sessions. The joystick position was mapped in a one-to-

Fig 1. Bio-feedback BMI paradigm, array implantation, and neuronal signals. a. Schematic illustration of groups.

The summed and normalized firing rate of each group of 4 neurons provides an action value. Four action values

correspond to four opposing directions in two dimensions of cursor speed. b. Grouping neurons by preferred

direction. We divide the 2D space of linear velocity encoding model coefficients (b1, b2 in Eq 4) into four quadrants,

corresponding to each direction. We select neurons based on their preferred directions, encoding strength, and signal

stability. Inset shows the same data plotted on a larger range so that all recorded neurons are visible. c. We implanted

Utah microelectrode arrays into primary motor cortex hand representational area. Photo shows surgery for Monkey T.

A: anterior, L: lateral. d. Sample spike waveforms 44 days after implantation for Monkey T. Waveforms of different

colors indicate different units (for visualization only, we did not sort units for group weight control), and waveform

thickness represents plus and minus one-half standard deviation. Panels are placed according to positions on the Utah

array (wire bundle at bottom). Color shading per channel indicates group assignment. e. Experimental task. The

monkey sat before a screen displaying the brain-controlled cursor (green dot) and task target (white ring) and uses

brain activity to control the cursor. After moving the cursor into the target, the monkey receives a water reward.

https://doi.org/10.1371/journal.pone.0286742.g001
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one manner to the cursor location on the screen. We used a linear regression (Eq 4, the b vari-

ables are fitted coefficients) to calculate each neuron’s prefer direction vector (b1, b2).

fr ¼ b0 þ b1vx þ b2vy ð4Þ

We plot all neurons’ PDs in Fig 1b. We separate neurons according to their preferred direc-

tions into four groups by dividing the 2D space of coefficients into four equal-angled sectors,

with divisions at 1/4π, 3/4π, 5/4π, and 7/4π radians (angle from origin). For each group, we

selected the most strongly tuned neurons (largest magnitude of (b1, b2) vector) that had PDs

within or nearby its sector. We wanted to use a large number of neurons, so as to mitigate indi-

vidual neuronal variability; however, here we had to limit the number of neurons in each

group because recordings were unstable, and including all recorded neurons would mean

some neurons were likely to drop out during the course of the experiments, affecting the

group’s firing rate sum’s distribution. We also wanted to avoid weakly tuned neurons, which

are likely to have wrong estimates for PD, and when two or more such neurons with common

variation are placed in different groups, their activity only contributes to the output-null space.

Thus, in the experiments here, we used 4 neurons per group, a number that is not too high so

that losing a neuron was highly probable, and not too low so that losing a neuron would cause

a large control ability drop. Note that, while we used PD information to set the groups, this

information was not used in subsequent brain control. One may ask why bother with a bio-

feedback approach that requires PD estimation, which is an important concept in bio-mimetic

control. The reason we used PD-based grouping is that monkeys would not participate in the

experiment if initial performance was too poor. This is a quirk of animal experiments which is

not expected to occur with highly-motivated human users in a clinical environment. Using

groups chosen by PDs provided sufficient initial control for the animals to continue trying,

though still too poor to complete the task well. In clinical practice, groups can be chosen by

other approaches which do not need training data, such as singular value decomposition of the

firing rate covariance matrix [46].

Normalization method. The normalization constants were calculated using data from 5

to 10 minutes of pre-experiment, performed before each session. We sum each group’s firing

rates during the pre-experiment and calculate each group’s summed firing rate average (μ) and

standard deviation (σ). Then we use these values for group firing rate normalization (Eq 1).

During the pre-experiment, monkeys performed brain control of cursor via group weight,

using normalization constants from the previous session. For the first session, normalization

constants were calculated from data recorded while the monkey was idle.

Animals, surgery, and data recording. Surgical and recording methods were similar to

our previous study [47]. All surgical and experimental procedures were in compliance with the

United States National Institutes of Health Guide for the Care and Use of Laboratory Animals

and were approved by the Institutional Animal Care and Use Committee of Beijing Normal

University. Two adult male Rhesus monkeys (Macaca mulatta), weighing 7.9kg (Monkey T)

and 8.1kg (Monkey K), were used in this research. They were implanted with Utah electrode

arrays (96 channels, electrode length: 1.5mm. Blackrock Microsystems, USA) in their primary

motor cortex (Fig 1c) approximately 15mm lateral of midline. Surgeries were performed

under sterile conditions with isoflurane (2%) anesthesia according to standard Utah array

implantation procedures. We began to collect 44 days after implantation (Monkey T) (sample

unit waveforms shown in Fig 1d) and data 283 days after implantation (Monkey K). Monkeys

previously had some practice (3 weeks for Monkey T, approximately 2 weeks for Monkey K)

with the bio-feedback BMI before the collection of data presented here. This was necessary for

the monkeys to become acquainted with BMI control and for development and debugging of
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our control software. We recorded extracellular signals using a 128-channel Omniplex A

recording system (Plexon Inc, USA). For spike detection, we used threshold-crossings with

threshold set to 5 standard deviations of the voltage. We used such a high threshold to obtain

recordings with high signal quality, as only the largest 1 or 2 units would be detected. We did

not use spike sorting in these experiments, so as to simplify correspondence of signals across

days [48]. In this text, we refer to these unsorted units as neurons. Since such multi-units have

firing rates which are sums of firing rates of individual neurons, and our algorithm sums firing

rates in groups, this means the groups likely contain more single-units than 4.

Animals were housed and fed in accordance with the United States National Institutes of

Health (NIH) Guide for the Care and Use of Laboratory Animals. Cage sizes exceeded NIH

Guide standards, and cages were equipped with water dispensers and food receptacles. Ani-

mals were solo caged, and cages were kept in a temperature, humidity, air quality, air freshness,

air pressure, light, and sound-controlled room, with less than 20 animals total. Animals were

fed dry primate feed three times daily and fresh fruit (or dried fruit if water restricted) once

daily. Animals were given unrestricted water during days not partaking in experiments and a

measured quantity of water sufficient to meet survival needs during days partaking in experi-

ments. Animal health was observed during feeding by animal care staff and prior to experi-

ments by experimenters. Animal weight was measured regularly or before every experiment.

Health was assessed by animal appearance (especially at implant locations), presence of abnor-

mal behavior, body weight, and appearance of waste. Cages were cleaned once daily. Enrich-

ment was provided via television. Isoflurane (2%) anesthesia was provided during surgery and

ibuprofen analgesia was provided after surgery. After the study, Utah array implants were

removed from both animals under anesthesia, and they were transferred to another primate

research group at the same institution.

Task design. The two monkeys were trained to perform center-out reaching tasks (Fig

1e), both via a hand-controlled joystick held in the hand contralateral to the implant. In the

center-out task, the monkey had to move the dot cursor into the ring target to obtain a water

reward. Targets appeared at screen center and then at peripheral locations, so that sequential

movements toward the target resulted in center-out movements. After monkeys were aqua-

tinted with the task, the joystick was removed. During experiments, monkeys sat in a primate

chair and faced a computer screen showing the task stimuli (approximately 0.75m away).

Their heads were fixed but hands were free to move. The task differed slightly between the two

monkeys. For Monkey K, the center and peripheral targets appeared alternately without delay,

with peripheral targets appearing at random angles (uniform distribution in 0–360˚), so that

movements formed a center-out-and-back series. For Monkey T, only peripheral targets were

shown, and cursor position was reset to the center after each trial, so movements were only

outwards. These peripheral targets appeared at only four possible places, right (0˚), up (90˚),

left (180˚), and down (270˚). These changes were made to facilitate analysis of learning. Addi-

tionally, we added a short, random duration (5.5–10 seconds in the first 14 sessions, and 2.5–5

seconds thereafter) delay period or freeze time to the task sequence before the movement

toward each peripheral target. Monkey T could see the peripheral target and cursor, but was

unable to move the cursor during the delay period. This allowed us to analyze Monkey T’s neu-

ronal activity both during movement and during preparation. Other minor differences are

given in S1 Table of the supplementary information. Trials were limited to 10–15 seconds in

duration (first three sessions used 10s and remaining sessions used 15s, both excluding freeze

time). If monkeys did not reach the target during that time, the trial failed. The hold time for

targets was 200 milliseconds.

Experiment design. Prior to the experiments reported here, Monkey T had previous

experience with group weight control: this consisted of 6 days, during which different groups
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were used compared to the data reported here, in which Monkey T did not learn to control.

This was followed by 5 days with similar groups as the data reported here, during which Mon-

key T did not learn to control because of distraction by the presence of the joystick. Then we

removed the joystick and gave Monkey T 6 days of consecutive practice, in which it did not

have obvious improvement. We report here data from 8 consecutive days of practice that hap-

pened 20 days after the previous block, during which Monkey T showed improvement in task

performance. Prior to the experiments reported here, Monkey K had previous experience with

the group weight control paradigm on a different 2D behavioral task (16 days), but could not

learn to control during that time. This monkey also had approximately two weeks of practice

with brain-controlled center-out task using group weight, but did not learn to control during

that time: in the first week (4 days), the monkey used different neuron groups than in the data

reported here. In the second week (6 days), groups were similar but not exactly the same as the

groups reported here. After these two weeks of training, there was a 3-week-pause before the

collection of data reported here, which consists of 6 consecutive days of practice in which

Monkey K showed improvements in task performance. Both monkeys had two practice ses-

sions each day, with each session about 30 minutes in duration. Monkey T’s sessions were con-

secutive, whereas Monkey K’s training sessions were conducted separately in the morning and

afternoon. Monkey T’s total trials per session ranged from 100 to 200; Monkey K’s total trials

per session ranged from 150 to 400; differences were due to different task settings (see Task

design). Since failed trials generally lasted longer than successful trials, each session’s total trial

count would increase as the monkey learned to control. Before each bio-feedback control ses-

sion, there was a 5 to 10-minute long pre-experiment portion during which we collected data

to calculate the normalization constants (see Normalization method).

Data analysis

Calculation of random baseline for success rate. To verify that the success rates we

observed were not due to chance, we asked what the chance rate will be if neural activity is

independent from visual cue. To achieve the independency, we calculated the baseline success

rates by random shuffling neural activities of 10-ms bins during cursor movement portions of

sessions. Then, we fed the shuffled neural data into an offline simulation of our algorithm and

center-out task (with the same set of task parameters). The task design is the same as the online

version, except that we fix all trial durations to 10s. Failure to reach the target and hold within

10s was recorded as a failed trial. For Monkey K, whose cursor was not moved to the center

automatically after each trial, we move the simulated cursor to the center of the last target, as if

it had reached the last target. We average the success rates obtained in this manner across ses-

sions for each monkey. Due to differences in task design between monkeys, the baseline values

were different between monkeys.

Results

Task performance

Overall performance. Over approximately one week of training, monkeys’ task perfor-

mance improved steadily (Fig 2a). The number of successfully finished trials increased (logistic

regression R2 values MT:0.604, MK: 0.622; slope t-test p-values MT: 0.0004, MK: 0.0023) and

the trial success rate increased (logistic regression R2 values MT:0.578, MK: 0.705; slope t-test

p-values MT, MK<0.001). Monkey T’s success rate improved from 22% to 98%, while Monkey

K improved from 12% to 80%. We obtained random baseline success rates by shuffling the

neural data offline and reconstructing the control paradigm and task in MATLAB (see meth-

ods). Both monkeys’ success rates were far better than the random baseline values, which were
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12% for Monkey T and 2% for Monkey K, indicating that the monkeys participated in the task

and performed better than chance. Task success rate for targets in each direction significantly

increased (Fig 2b). Together, these trends indicated that both monkeys successfully learned to

use our group weight control paradigm.

Trajectories occupancy. The improvement in task performance can be seen in the cur-

sor trajectory occupancy maps (Fig 3). Here we only show Monkey T’s data, since Monkey

K’s task has targets at many angles instead of just four. We segment the training into 4 stages

(rows), with 4 sessions each, and separate by target direction (columns). We plot cursor tra-

jectories (in screen space) in each panel, including both successful and failed trials. Early in

the training, trajectories span almost the whole screen (Fig 3, 1st row) and occupy similar

regions for different targets. The trajectories for the upward target are relatively more com-

pact in space, indicating the monkey can move in this direction well in the early stage. As

the monkey practices (row 2 and 3), the cursor trajectories each column become more com-

pact in space. The monkey learns to move the cursor to the right half of the screen. In the

late stage (row 4), movements towards each target can be seen. The trajectories show that

the monkey is able to repeat existing cursor movement patterns, and create new ones: simi-

lar cursor trajectories repeat across trials (e.g. up target) and new trajectories are created

(e.g. right and down). Patterns that existed at the beginning are refined earlier (e.g. up). New

Fig 2. Monkey task performance. a. Trial count and trial success rate. X-axis indicates the session index (two sessions

per day), and y-axis indicates the trial count (total: brown, successful: yellow) and trial success rate (black dots). Success

rate data were fitted with a logistic function (black curve). Success rate was always greater than shuffled baseline (grey

line). The number of successful trials and the success rate for both monkeys significantly increased with session,

indicating that both monkeys could learn the group weight control paradigm. b. Success rate changes for each direction.

The task of Monkey T had four possible targets; thus, we separate trials according to target. The success rate for each

target increased through learning, with up and left learned early in training, whereas right and down were learned later.

The task of Monkey K is not categorical, so here we divide target angles into four angular bins. Monkey K’s success rates

of different directions also increase at different times in the training period.

https://doi.org/10.1371/journal.pone.0286742.g002
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patterns need long term trial and error to learn and become refined later (e.g. right and

down).

Trajectory straightness. We analyzed the straightness of cursor trajectories, a quantitative

indicator of control ability. To measure straightness, we define the “trajectory score” as the

length of the cursor trajectory during a successful trial divided by the length from the start

point to the target center. A smaller value indicates a straighter trajectory. We separated trials

according to the target direction (four quarters of the angular space, similar to those used in

PD grouping: right, up, left and down). We found that both monkeys’ trajectories became

straighter after learning. Monkey T’s trajectory score (Fig 4 upper) decreased in three direc-

tions (right: regression trend-line R2 = 0.08, slope t-test p< 10−10; up: R2 = 0.03, p< 10−4;

down: R2 = 0.13, p< 10−10) indicating that control quality improved for these three directions.

Although, the trajectories for left direction trials became slightly more curved (R2 = 0.01,

p< 0.05, Fig 4 upper row 3rd panel), this was affected by high trajectory score trials in the late

practice period and do not reflect performance decreases in this direction. For Monkey K, tra-

jectories become straighter in three directions (right: regression trend-line R2 = 0.01, slope t-

Fig 3. Cursor trajectories clustered through time. We plot Monkey T’s cursor trajectories from all trials (unit: cm,

screen space), with sessions separated into 4 stages and trials separated by target direction. We mark targets with grey

shading. In early sessions, the cursor covered similar areas for all four directions. Through learning, trajectories become

more compact (e.g. up) and occupy areas not visited in early sessions (e.g. right, down). Note that up trajectories

become more consistent early in the sessions, while right trajectories become better only in late sessions.

https://doi.org/10.1371/journal.pone.0286742.g003
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test p< 0.05; up: R2 = 0.02, p< 10−3; down: R2 = 0.31, p< 10−7). The task for Monkey K had

targets at random angles, thus it is difficult to find clear patterns or stereotyped movements.

Group firing rate analysis. Our control paradigm is similar to the muscle-skeletal system

in that an agonist group of neurons and an antagonist group of neurons co-activate to generate

movement in a direction. When we flex our native arm, we need the agonist muscle group to

activate while the antagonist group should deactivate (or have lower activation); the difference

in activation of these two groups results in a net force, and thus influences the movement (out-

put-potent), while the sum of activations does not (output-null). Thus, for our paradigm, we

are interested in whether there were changes in values in the output-potent versus output-null

space (Fig 5a) after learning. We use the collected neural data and offline-reconstruct activa-

tion values; We calculate the output-potent values as the group activation subtraction between

the toward-target direction vs away-target direction. The output-null values are the summa-

tions of the two groups’ activation values. We pooled four directions and two monkeys’ data

together and compare the output-null and output-potent values from the first sessions versus

late sessions, to show the learning effect. Specifically for monkey K, we analyzed portions of

successful trials in which cursor speed was medium, so as to exclude times when the monkey

was not engaged in the task (idling) or when there were fast movements due to artifacts or

non-task-related physical behavior. The criterion was: cursor speed between 25 to 75 percent

of the maximum speed. For the output-null values, the later sessions showed larger average val-

ues than the early sessions (Fig 5b). However, this effect only existed for monkey T. For mon-

key K, the averages of output-null activity in the first and last sessions are the same. We believe

this could be due to the slight differences in experimental paradigm.

Fig 4. Trajectory scores decrease during learning. We separate trials according to target direction for Monkey T and

according to the vector direction from cursor initial position to target center for Monkey K. The trajectory score is

calculated by dividing trajectory length by the distance from cursor initial position to target center (smaller is

straighter). Black lines indicate linear fits. We observed significant decreasing trends (*p< 0.05, * * p< 0.001), except

for the left target for Monkey T and the downwards target for Monkey K.

https://doi.org/10.1371/journal.pone.0286742.g004
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In our control paradigm, only when the output-potent values are larger than 0 could the

cursor move towards the target. As seen in Fig 6, the output-potent values increased in late ses-

sions compared with early sessions. In early sessions the output-potent value was near 0, indi-

cating that the monkeys’ effort did not result in effective movements. Near the end of the

sessions, the output-potent values are larger than 0, indicating that the group activity is more

effective.

Tuning change through learning. The group-level neural ensemble activity shows signifi-

cant output-potent increase, so next we analyze where it came from. In this section, we looked

through the directional tuning properties of each neuron and found that neuron tuning

changes occur in a way that is suitable for using the algorithm.

In the calculation of tuning, the neuron firing rate was regressed to the target direction (for

monkey K, the calculation used target direction relative to the cursor direction). We selected

epochs when cursor was moving, since for monkey T there was a period when the cursor was

frozen. Specifically for monkey K, we selected epochs only when the cursor speed was neither

too high nor too low, similar to the above analysis.

We examined three key values, tuning depth, fit R2, and preferred direction (PD). The pre-

ferred direction is the direction which has the highest firing rate, and the tuning depth and R2

correspond to the range of tuning function as well as the goodness of tuning fitting curve. The

following analysis compares between the early learning stage and the late learning stage (first

and last ¼ of sessions).

The tuning depth did not show a significant change (Fig 7a). We separated neurons into

direct neurons, whose firing rate was feed into the task, and indirect neurons, whose firing rate

was not. Neither of the two groups’ tuning depths experienced a significant change. Note that

the difference of tuning depth between the direct and indirect neurons is due to our neuron

inclusion criteria, as we chose neurons with substantial tuning to avoid neural activity correla-

tion in weakly-tuned neurons.

Fig 5. Output-null value distribution change little. a. Output-potent and output-null space illustration. In our control

paradigm, the cursor speed in a dimension is proportional to the difference of two opposing action values (potent),

whereas the sum of two opposing action values does not influence cursor speed (null). b. Null-space analysis of neural

learning. We averaged the output-null values a1 + a2 across time in each trial, and compare the output-null values from

the early sessions versus the late sessions, pooling data from two monkeys and four directions. The null component

average of the late sessions was slightly larger than that in the early sessions, (ANOVA, **p< 10−10), this effect mostly

comes from monkey T, as there was no difference in monkey K.

https://doi.org/10.1371/journal.pone.0286742.g005
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Fig 6. Output-potent activity increase significantly. We calculated the output-potent a1 − a2 value for each

monkey and each directions and pool the data. The output-potent distribution for both monkeys changed to more

positive from early (blue) to late (red) sessions. Lines indicate distribution mean (horizontal placement). (ANOVA,

* * p< 10−10).

https://doi.org/10.1371/journal.pone.0286742.g006

Fig 7. Tuning depth and R2 of direct and indirect neurons indicate learning occurred. a. Tuning depth (Hz) from

early learning and late learning periods (first and last 1/4 of sessions) of direct and indirect neurons are shown. No

significant difference was found (p = 0.4665, t-test). Note the difference between the direct and indirect groups is due

to our neuron inclusion criteria. b. Comparison between early and late learning period shows an increase in tuning R2.

The direct neurons R2 ranges from 1 * 10−4 to 0.63 (data pooled between monkeys).

https://doi.org/10.1371/journal.pone.0286742.g007
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The quality of tuning, R2, changed during the learning period (Fig 7b), in general

increasing during learning. When we compared the change within direct neurons and indi-

rect neurons; we found that the R2 increased significantly (p = 7.93 * 10−8, paired-t-test) for

the direct neurons, and significant (p = 3.43 * 10−13) but small changes for the indirect

neurons.

In our group weight method, we group neurons into four groups, assigning each group to

one direction as their contribution direction. We wanted to know whether learning changed

the neurons’ PD towards their assigned direction (AD). In Fig 8a, an example neuron is

shown. For this specific neuron, the PD changed towards the AD.

Next we calculated the PD for all direct neurons and compared to their AD. The analysis

showed that neurons’ tuning PD changed towards the AD (Fig 8b). Here we compared the

early and late sessions for both monkeys, and plot normalized direction difference between PD

and AD, where 1 means they are opposite, and 0 means they are the same. For neurons from

both monkeys, the normalized direction difference decreased significantly (z-test, n = 33,

p = 0.012), which is consistent with our expectation (for more examples of PD change, see S1–

S3 Figs).

Fig 8. The tuning change of individual neurons. a. An example neuron with changing preferred direction. x- and y-

axes are the 2D space of movements and the z-axis is session. Each disk represents a session. The blue bar on the disk

represents the neuron’s preferred direction, and the shaded area on the disk represents the neuron’s assigned direction.

It can be seen that the preferred direction changes towards the assigned direction. b. Changes in direct neurons’ PD

over time. The PD of direct neurons in early and late learning periods are compared. Data from two monkeys and all

four directions are pooled together. We calculate the normalized |PD − AD|, which represents the directional

difference between the neurons’ PD and their assigned direction (AD). It is 1 for opposite directions and 0 for the same

direction. When comparing early and late learning stages, this value becomes smaller, indicating that the tuning is

shifting towards the assigned direction.

https://doi.org/10.1371/journal.pone.0286742.g008
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Discussion

In this study, monkeys used a bio-feedback BMI based on a relatively simple control law that

converts neuronal activity to 2D cursor movement. Over about a week’s practice, two monkeys

improved their BMI control ability, increasing trial success rate by around 70%. We presented

evidence in terms of both behavioral and neuronal activity which supports the occurrence of

learning.

Related to our work are studies such as those by Kennedy et al. [16]. Their work relied on a

single neuron to control each dimension, with firing rate change mapped to single-directional

velocity, combined with position reset (to edge of screen) on click. Arduin et al. [44] proposed

a bi-directional control method for one dimension and showed that the controlling neuron

changed in firing rate differently from nearby, non-controlling neurons. Law et al. [45] showed

that control accuracy of a bio-feedback decoder increases with the number of neurons. Like

them, we use the combined firing rates of neurons in a group. Another related study was done

by Moritz et al. [11], who used a relatively simple control method to build a functional electri-

cal stimulation based neural bypass. Our work uses a somewhat similar neural-movement

mapping as the above studies, but we control 2 dimensions using opposing groups of neurons.

The opposing group mechanism lets us analyzed changes in the output-potent and output-null

directions (Figs 5 and 6). The 2-dimensional control allows us to examine trajectories in 2D

space (Fig 3) and analyze path straightness (Fig 4).

Readers might be interested in the difference between our control method and the popula-

tion-vector algorithm [18]. Our method assigns neurons to groups that have orthogonal con-

tribution directions, thus each neuron only influence one direction. We also do not normalize

each neuron’s firing rate individually, but rather collectively in a group-wised manner. The

reason for this is to decrease neurons’ firing rate variability by leveraging a group of neurons.

We also use a threshold to remove the effect of small firing rates. Our method will have a same

effect as the population vector algorithm under the case when the neurons’ preferred direc-

tions are evenly distributed among the four cardinal directions and have the same tuning

depth. Our main goal when designing this group weight method is to minimize the assump-

tions on neural activity, to build a simple algorithm and let the bio-feedback learning take

charge. The settings of groups and thresholds were done to avoid unintentional movement

caused by neural firing variability.

BMI learning

The initial performance after the monkeys started using brain control is low, although higher

than random control (Fig 2), indicating the monkeys already had some level of control. How-

ever, the performance did not approach saturation (in terms of trial success rate) until late in

training after several sessions. Some studies in the field focus on the progression of neural

learning of BMI mappings [49–51]. They perturb the well-learned BMI mapping by re-assign-

ing the decoding parameters and found that monkeys’ performance increased within one ses-

sion [49, 50] or across sessions [51, 52].

In comparison, our work instead focuses on developing one simpler mapping between

neural activity and movements, thus we did not train monkeys to familiarize with other BMI

mappings beforehand, but only with the one group weight mapping. Thus, unlike their

study, we did not compare neural activity by projecting on the original mapping (there was

none); however, the cursor trajectories show that the monkeys achieve control of the new

mapping (Fig 3).

We calculated neurons’ PD by assuming cosine tuning. After fitting neural activity and the

intended movement direction using a cosine, we obtained the peak direction (PD) the range of
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firing (tuning depth), and the quality of the fitting (R2). In each of the monkeys’ training ses-

sions, PDs are ever-changing during learning, which is in line with previous work [38]. We

also found that the tuning R2 increased, which is consistent with their results.

Besides measuring tuning properties, we also analyzed group level neural activity in terms

of output potent-and-null-space (Figs 5 and 6) and found changes over time. The sum of activ-

ity of agonist and antagonist groups (output-null value) increased during learning in one mon-

key but not the other. This could be an effect of the task design. The difference of activity of

the agonist and antagonist groups (output-potent value) consistently increased in both mon-

keys. This is consistent with the fact that both monkey’s control performance improved; the

performance increase is explained by changes in the group-level activity in terms of output-

potent space.

Bio-mimetic and bio-feedback BMI

While bio-mimetic BMIs focus on the decoder mimicking the neural activity and movement

relationship, bio-feedback BMIs focus on the user’s feedback learning. Methods actually fall

into a spectrum between bio-mimetic and bio-feedback, with some work relying on aspects of

both, for example, using a linear decoder as in a bio-mimetic way, but also relying on bio-feed-

back to let the user increase performance. Ganguly and Carmena [39] showed that monkeys

could learn to control a cursor using different sets of randomly-chosen linear filter parameters

and switch readily between them, showing the strong adaptive capacity of the motor cortex.

Balasubramanian et al. [4] showed that over long-term training, functional neuronal connec-

tions changed, suggesting long-term training may alter the motor cortex. Here, our method

relies on a minimum of parameters, by assigning neurons to groups (though for monkey

experiments, this assignment was made intelligently to promote engagement) instead of find-

ing the parameters for each neuron, relying instead on bio-feedback for performance increase.

Our study has limitations. One was instability in neural recording, which limited our ability to

extend the training period. Our experiments were perhaps too short to see substantial changes

in neuronal activity patterns. Since we did not spike sort, recording instability may have meant

some neurons were included in a group in only a subset of sessions, which meant the group fir-

ing rate statistics changed between sessions. We tried to compensate for this using the normal-

ization procedure, but the effect of recording instability is still visible (e.g. session 12 in Fig 2a

left panel). Another area for improvement is the selection and grouping of neurons. We

grouped based on preferred direction, which may be less optimal than using a method that

considers existing connectivity structure, which can determine what is easily learnable [53,

54], at least in the short-term. While the ultimate goal of building bio-feedback BMIs with

minimum parameters is to allow high control accuracy, we did not train monkeys long enough

for learning to increase performance to a level comparable with bio-mimetic methods. This

study was meant as a feasibility demonstration, a first step showing that simple, group-based

method, for multi-dimensional control is learnable. Tweaking of the control law for better per-

formance and longer duration training are needed in future studies.

Conclusion

We implemented the group weight method as a bio-feedback BMI control paradigm with sim-

ple assumptions. Through one week of training, monkeys showed increases in success rate and

trajectories become straighter, indicating learning occurred. Group-based and single neuron

metrics also indicated learning occurred. This simple bio-feedback control paradigm has

potential to control multi-dimensional cursors or robotic limbs.
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Supporting information

S1 Fig. Neuronal PD change across learning, monkey T. Each column represents a group of

neurons and each pie plot corresponds to a session. In each pie plot, the shaded area shows

neurons’ assigned direction (AD) and the colored bars show neuron’s tuning (PD). In early

learning (session 1), the neurons’ PDs are not close to their AD (except for group 3). However,

in the late sessions (15 and 16), neurons’ PDs are closer to the AD.

(DOCX)

S2 Fig. Neuronal PD change across learning, monkey K. Same notation as S1 Fig.

(DOCX)

S3 Fig. Distance between neuronal PD and assigned directions AD across learning, both

monkeys. X-axis is time (session number) and Y-axis is the normalized |PD—AD|, which is 1

for opposite direction and 0 for same direction. Thus, the directional difference is mapped

from [-π, π] to [0,1]. The sector of the assigned direction [-45˚, 45˚] (shaded sector in S1 Fig)

is mapped to [0,0.25], and values lower than 0.5 indicate the channel contributes to the direc-

tion of movement. Most channels’ |PD–AD| is smaller than 0.5, showing that they contribute

to the movement direction.

(DOCX)

S1 Table. Task difference between the two monkeys.

(DOCX)
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