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Abstract

Large collaborative research networks provide opportunities to jointly analyze multicenter

electronic health record (EHR) data, which can improve the sample size, diversity of the

study population, and generalizability of the results. However, there are challenges to ana-

lyzing multicenter EHR data including privacy protection, large-scale computation resource

requirements, heterogeneity across sites, and correlated observations. In this paper, we

propose a federated algorithm for generalized linear mixed models (Fed-GLMM), which can

flexibly model multicenter longitudinal or correlated data while accounting for site-level het-

erogeneity. Fed-GLMM can be applied to both federated and centralized research networks

to enable privacy-preserving data integration and improve computational efficiency. By com-

municating a limited amount of summary statistics, Fed-GLMM can achieve nearly identical

results as the gold-standard method where the GLMM is directly fitted to the pooled dataset.

We demonstrate the performance of Fed-GLMM in numerical experiments and an applica-

tion to longitudinal EHR data from multiple healthcare facilities.

Introduction

Electronic health records (EHR) data are valuable for generating real-world evidence in bio-

medical and epidemiological research [1]. With the increasing availability of EHR data among

healthcare facilities [2], integrating these data from multiple institutions has great potential for

improving statistical power and generalizability of results [3]. Such integration is also particu-

larly valuable—and often necessary—for studying rare conditions and underrepresented sub-

populations [4]. As a consequence, an increasing number of clinical research networks have

been built domestically and internationally to facilitate multicenter EHR-based studies. For

example, the Patient-Centered Outcomes Research Institute has launched PCORnet to support
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a national research collaborative that empowers large-scale comparative effectiveness research

[5]. More recently, large collaborative consortia dedicated to investigating clinical and epide-

miological questions about COVID-19 have also been formed [6, 7], as timely observational

studies based on large integrated EHR data have been increasingly critical for clinical and

health policy decision-making in various areas such as treatment evaluation, diagnostic sup-

port and healthcare resource prioritization [8–10].

Despite the importance of multicenter EHR-based studies, challenges exist in terms of how

to effectively and efficiently compile and analyze multiple large-scale EHR datasets [11].

Depending on whether the individual-level data are shared, a research network can be catego-

rized into either a federated or centralized network. A federated network keeps patient-level

data within each institution, and only allows summary-level statistics to be shared across insti-

tutions. Some federated research networks allow automated queries and analysis and share

summary statistics through application programming interfaces and cloud computing, which

saves human labor from cross-institutional communication but may require additional safe-

guard against data breaches [12, 13]. Other federated networks rely on manually transferred

summary statistics, which has fewer infrastructure requirements, and is considered more reli-

able for privacy protection. Thus, this practice is widely adopted among international research

networks [6, 14, 15]. In federated networks, federated algorithms are needed to conduct joint

analyses across multiple datasets without sharing patient-level data. In contrast, centralized
networks directly pool deidentified patient-level data across institutions and store them in cen-

tralized data warehouses [16, 17]. When all data are pooled, fitting a model to a pooled dataset

(referred to as the pooled analysis hereafter) is feasible but may be subject to challenges from

computational complexity and physical memory bottlenecks due to the large size of the pooled

dataset. Therefore, in a centralized network, distributed algorithms are also needed to over-

come computational challenges [18, 19].

Most of the existing distributed or federated learning algorithms focus on regression mod-

els with independent observations, including logistic regression and Cox regression [20–26].

However, EHR data are often longitudinal and correlated, where multiple medical encounters

may be associated with the same patient, physician or facility. In EHR-based analyses, methods

are needed to account for such multi-level longitudinal and correlated observations. Among

many existing methods to address the multi-level correlated data structure, the generalized

mixed model (GLMM) is one of the most widely applied methods with great flexibility [27,

28]. To fit a GLMM on federated datasets, one straightforward way is to fit separated models

locally across sites and aggregate the local estimates through a meta-analysis [29]. Although

meta-analysis is straightforward to implement in practice, it has been shown that its accuracy

may be suboptimal, especially when rare conditions are included in the model [23]. A few

methods have been developed which consider using site-level random effects to account for

heterogeneity across sites. For example, Luo et al. proposed a lossless algorithm for the linear

mixed model [30], and a few methods have been proposed for GLMM [31–33]. However,

these approaches only consider site-level random effects, which cannot handle repeated and

correlated measures within each site. More recently, an algorithm accounting for correlated

measures was developed, but only considered a special case for modeling the specificity and

sensitivity of diagnostic tests [34]. Methods are needed that allow general and flexible specifica-

tion of random effects to account for longitudinal or correlated observations at lower levels.

In this paper, we propose an accurate and fast federated algorithm to fit GLMM (Fed-

GLMM) with correlated data structures. Our method can be implemented in both federated

and centralized networks. Specifically, in a federated setting where the pooled analysis is not

feasible, our method provides a solution that only requires a small amount of aggregated data

to be shared across sites. Our method requires limited numbers of communications across
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sites and thus can be applied to both the automated and manual federated settings. In a cen-

tralized setting where the pooled analysis is allowed, our method can greatly reduce the com-

putation time and memory cost. In all settings, our method can achieve nearly identical results

as the gold-standard pooled analysis estimator, allows flexible specification of random and

fixed effects in models, and can account for heterogeneity in the distribution of data across

sites. We demonstrate the utility of Fed-GLMM through a real-world EHR data analysis that

assesses characteristics associated with virtual versus in-person care utilization during the

COVID-19 pandemic, using data from 8 healthcare facilities in the New England area.

Methods

GLMM accounting for site-level heterogeneity

Fed-GLMM allows modeling correlated observations from multiple EHRs using the following

generic GLMM:

gðEðyijkjbijkÞÞ ¼ xT
ijkbþ wT

ijkak þ zTijkbijk; bk � N ð0;BkðgkÞÞ ð1Þ

where g(�) denotes a link function, and yijk denotes the outcome variable of the i-th visit for the

j-th patient at the k-th site. xijk, wijk and zijk denote the corresponding covariates with common

fixed effect β, site-specific fixed effect αk and random effect bijk, respectively, and bk is a vector

containing all the random effects bijk for a given k. Note that zijk is a subset of the union of xijk
and wijk. The random effect bijk can be flexibly specified to account for different correlation

structures. For example, we can include patient-level random effects to account for the correla-

tion among visits of the same patient, and also physician-level random effects to account for

the correlation among visits with the same physician.

To account for the heterogeneity across sites, we allow site-specific fixed effect αk and site-

specific variance-covariance structure Bk, which is parameterized by γk. In a homogenous set-

ting, αk and Bk(γk) can be set equal across sites. Compared with existing work where site-level

heterogeneity is adjusted by introducing a random effect [30–33], our method imposes no

assumptions on the exchangeability of the site-level effects, which is more robust when the het-

erogeneity is large, and allows accurate estimation even when the number of sites is very small.

Fed-GLMM algorithm

We start by introducing an overview of the algorithm. The core concept upon which Fed-

GLMM is built is the construction of a quadratic surrogate function using summary statistics

collected from each site to approximate the global likelihood function constructed from

directly pooling all the data. Fig 1 provides an overview of the Fed-GLMM algorithm. We start

with initialization for all the model parameters, denoted by �y. Since our model has both com-

mon parameters across sites and site-specific parameters, each site is required to fit its own

GLMM in the initialization step. The initial values for the site-specific parameters are set to

their local estimates (denoted by �dk for the k-th site), while initial values for the common

parameters are updated by a meta-analysis (denoted by �b). With more accurate initial values,

we can achieve the same level of estimation accuracy with fewer communications across sites.

In step 2, each site calculates and broadcasts summary statistics involving less than p2 numbers

(p is the number of parameters in the local model). These summary statistics are essentially

derivatives of the local likelihood function. In step 3, the summary statistics obtained from

step 2 are used to construct a quadratic surrogate function and obtain the parameter updates.

When iterative communications are allowed, steps 2–3 can be repeated to further update the

parameter values.

PLOS ONE Federated algorithm for generalized linear mixed models

PLOS ONE | https://doi.org/10.1371/journal.pone.0280192 January 17, 2023 3 / 15

https://doi.org/10.1371/journal.pone.0280192


To formally introduce the method, suppose we want to integrate data from K EHRs stored

at K different sites. At each site, we fit the GLMM specified earlier (Eq 1). Let Ik denote the

index set indicating patients in the k-th site. Suppose the j-th patient has nj observations. The

log-likelihood function constructed by data from the k-th site can then be written as

lkðb; ak; gkÞ ¼ ln
Z Y

j2Ik

Ynj

i

pak;bðyijkjxijk; bijkÞpgkðbkÞdbk

where pak;bðyijk; xijkjbijkÞ is the probability density function of yijk given xijk and the random

effect bijk, and pgkðbkÞ is the distribution of all the random effects bk.
Since the integral above does not have a closed-form solution, the log-likelihood is often

approximated by methods such as the penalized quasi-likelihood, the Laplace’s method or

Gaussian quadrature [27, 28]. Fed-GLMM applies to any of these integral approximation

Fig 1. Schematic overview of Fed-GLMM. Fed-GLMM enables the joint implementation of GLMM for EHRs from multiple sites without sharing individual-level data. In

step 1, each site fits GLMM locally to obtain the initial parameter estimates. In step 2, each site calculates intermediate summary statistics evaluated at the initial values and

broadcasts them to the central analytics. For the k-th site, these summary statistics are denoted as sk and Hk, and they are functions of the local data Dk, the common

parameter value �b
�
, and the site-specific parameter value �d

�

k. The local data Dk is composed of the local design matrix for the common fixed effect Xk, the local design

matrix for the site-specific fixed effect Wk, and the local outcome vector yk. The site-specific parameter value �d
�

k is composed of the values of site-specific fixed effect �a�k and

site-specific variance parameter �g�k. In step 3, the central analytics combines all the local intermediate results to construct a surrogate global likelihood function that

provides updates for parameter estimates. Steps 2–3 can be iteratively performed to keep updating parameter estimates.

https://doi.org/10.1371/journal.pone.0280192.g001
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methods, and here we use Laplace’s method as an example which approximates the log-likeli-

hood by

l̂k b; ak; gkð Þ ¼ q b̂k; b; ak; gk

� �
�

1

2
lnj � r2

bq b̂i; b; ak; gk

� �
j

where qðbi; b; ak; gkÞ ¼ lnð
Q

j2Ik

Qnj
i pak;bðyijk; xijkjbkÞpgðbkÞÞ with bk evaluated at b̂k such that

the corresponding first-order derivativerbqðb̂k; b; ak; gkÞ ¼ 0, andr2
bqðb̂k; b; ak; gkÞ denotes

the second-order derivative.

We denote the parameters specific to the k-th EHR as δk = (αk, γk), and denote the entire set

of parameters as θ = (β, δ1, δ2,. . .,δK)T. Assuming that observations between two different sites

are independent, the combined log-likelihood function encompassing all K EHRs can be writ-

ten as

l̂ðyÞ � l̂ðb; d1; d2; . . . ; dKÞ � l̂ðb; a1; g1; a2; g2; . . . ; aK ; gKÞ ¼
XK

k
l̂kðb; ak; gkÞ

�
XK

k
l̂kðb; dkÞ ð2Þ

The gold-standard pooled analysis is performed by optimizing the approximated global

likelihood function l̂ in Eq 2 constructed from data combined from all sites. However, the

combined dataset is not always available due to privacy concerns and optimizing the global

likelihood function built on a large amount of data can be computationally difficult. Fed-

GLMM solves these problems by working with site-specific likelihood function l̂k instead of

the global likelihood function. More concretely, we propose the following quadratic surrogate

function that approximates the global function l̂ðyÞ at an initial value �y ¼ ð�b; �d1;
�d2; . . . ; �dKÞ

T
:

~l y; �y
� �

¼ l̂ �y
� �
þrl̂ð�yÞT y � �y

� �
þ

1

2
ðy � �yÞ

T
r2 l̂ �y
� �

y � �y
� �

ð3Þ

To obtain ~lðy; �yÞ, site k needs to share

sk ¼ ½rb l̂kð�m; �dkÞ
T
;rdk

l̂kð�m; �dkÞ
T
� ð4Þ

and Hk ¼
rbb l̂kð�b; �dkÞ rbdk

l̂kð�b; �dkÞ

rdkb
l̂ kð�b; �dkÞ rdkdk

l̂kð�b; �dkÞ

2

4

3

5 ð5Þ

which are summary statistics that can be calculated using the local EHR given an initial value

�y. When the central analytics receives all the summary statistics, the parameter estimates can

be updated through ~y ¼ argmaxy ~lðy; �yÞ. The above procedure can be repeated T times when

iterative communications are allowed or until a convergence criterion d is reached. We denote

the resulting value as θFed. The Fed-GLMM algorithm is summarized as Algorithm 1.
Algorithm 1: Fed-GLMM
Step 1 Fit GLMM locally. For k in 1,2,. . .,K, do

• At the k-th site, fit a GLMM and obtain initial estimators �dk;
�bk,

as well as the estimated variance of �bk, denoted by Vk
• Transmit �bk and Vk to the central analytics.

Obtain �b ¼

P
V� 1
k

�bkP
V� 1
k

and initialize t = 0, y
ðtÞ
¼ ð�b; �d1;

�d2; . . . ; �dKÞ; and Δ = kθ(t)k2

While t�T or Δ�d
Step 2 Calculate and broadcast the summary statistics. For k in
1,2,. . .,K, do
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• At the k-th site, given θ(t), calculate the first- and second-
order derivatives sk and Hk according to Eqs 4 and 5

• Transmit the derivatives to the central analytics
Step 3 Update parameter estimates through the central analytics

• Combine elements of the derivatives from all EHRs to construct
the surrogate global likelihood function ~lðy; yðtÞÞ according to Eq 3

• Obtain y
ðtþ1Þ
¼ argmaxy ~lðy; yðtÞÞ

• Update Δ = kθ(t+1)−θ(t)k2, and t = t+1
Return θFed = θt

The algorithm also applies to the homogenous setting where there is no site-specific param-

eters and our model of interest becomes:

gðEðyijkjbijkÞÞ ¼ xT
ijkbþ wT

ijkaþ zTijkbijk; bk � N ð0;BðgÞÞ

where the entire set of parameters is redefined as θ = (β, α, γ)T.

The variance of the Fed-GLMM estimator can be calculated directly using the Hessian of

the surrogate global likelihood evaluated at θFed, denoted as HFed. The variance-covariance esti-

mator for θFed can then be obtained through V̂arðyFedÞ ¼ ð� HFedÞ
� 1

.

Simulation study

We use a simulation study to evaluate the accuracy of Fed-GLMM compared to the standard

meta-analysis and to evaluate the computation time compared to the gold-standard pooled

analysis.

To evaluate the accuracy of Fed-GLMM, we considered a GLMM with a binary outcome

(modeled by a logit link function), a binary exposure and three additional covariates (one

binary and two continuous variables that follow standard normal and uniform distributions

respectively). The model also included a patient-level random intercept and can be expressed

as

gðEðyijkjbjkÞÞ ¼ b0 þ x1ijk þ 0:5 � x2ijk þ 0:5 � x3ijk þ akx4ijk þ bjk;

where x1ijk � BernoulliðpxÞ; x2ijk � Uniformð0; 1Þ; x3ijk � Bernoullið0:5Þ; x4ijk �

N ð0; 1Þ; and bjk � N ð0; gkÞ:
We randomly assigned k distinct values ranging from 0 to 1 for the K sites as the site-level

fixed effect αk, and another k distinct values ranging from 0 to 2 as the site-specific variance-

component parameter γk. To study the impact of the prevalence of binary exposure on the

model performance, we let px vary from 0.01 to 0.5. By choosing different values of β0, we were

also able to allow the prevalence of the binary outcome to vary from 0.01 to 0.5.

In a single simulation replicate, we simulated 8 EHR datasets, each with varying numbers of

patients (ranging from 100 to 450) and 5 encounters per patient. We performed the pooled

analysis, the meta-analysis and Fed-GLMM respectively using the same set of datasets. We

evaluated the accuracy of Fed-GLMM versus meta-analysis by the relative bias for estimating

the coefficient of the binary exposure x1, calculated as the following:

Relative Bias ¼ j
Fed� GLMM or Meta� analysis Estimate � Pooled Analysis Estimate

Pooled Analysis Estimate
j

To evaluate the computational efficiency of Fed-GLMM, we considered the same GLMM

specifications and variable distributions as in the previous simulation except that the site-spe-

cific parameters αk and γk are fixed at 0.5 and 1 respectively for all k. In a single simulation rep-

licate, we generated a single dataset with 5,000 patients and 5 encounters per patient (25,000
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encounters in total). The prevalence of the binary exposure was set as 0.05 and the prevalence

of binary outcome was set as 0.25. We applied Fed-GLMM by randomly splitting the dataset

into subsets. We investigated the computation time with the number of subsets ranging from 5

to 100. We generated 50 simulation replicates for each setting, and for each simulation repli-

cate, we also performed the pooled analysis and the meta-analysis. We evaluated the computa-

tional efficiency of Fed-GLMM and meta-analysis using the ratio of their computation time to

that of the pooled analysis, calculated as the following:

Relative Computation Time ¼
Fed� GLMM or Meta� analysis Computation Time

pooled Analysis Computation Time

An application of Fed-GLMM to real-world EHR data

Data source. We applied Fed-GLMM to assess characteristics associated with a dataset of

real-world virtual versus in-person care utilization during the COVID-19 pandemic. The data-

set was curated from the data warehouse of a large New England healthcare system. For a dem-

onstration of Fed-GLMM, we included all ambulatory visits with physicians conducted at 8

acute care hospital facilities during a one-year period from 10/1/2020 through 9/30/2021. We

extracted patient characteristics and demographics, physician primary specialty, and whether

the visit was conducted in person or virtually through associated modifier codes. This EHR

study was approved by our Institutional Review Board as a medical record review that did not

require patient consent.

Model specifications. We considered a GLMM with a binary outcome indicating whether

a care encounter was conducted virtually (coded as 1) or in person (coded as 0). The covariates

in the model included patient age, gender, race/ethnicity (Hispanic, non-Hispanic white, non-

Hispanic black, non-Hispanic Asian and other non-Hispanic race/ethnicity), English profi-

ciency (whether the patient indicated English as the preferred language), the digital patient

portal status (whether the portal was activated or not for the care encounter as a proxy for “dig-

ital literacy”), insurance status (whether the visit was billed to the Medicaid as a proxy for

social determinants of health), visit type (whether the visit was completed in a primary care,

behavioral health or specialty department), and an indicator for whether the care happened on

or after 5/29/2021—the ending of social restriction in Massachusetts (to approximate the

beginning of “social normalization” during the COVID-19 pandemic in the New England

area). The fixed effect intercept was modeled to be site-specific to accommodate the varying

prevalence of virtual care across facilities. We included a physician-level random intercept and

a patient-level random intercept to account for the correlations across encounters at different

levels. We set the variance components parameterizing the random effects to be homogeneous

across sites due to the supporting evidence from site-specific models and the need for improv-

ing statistical efficiency.

Centralized setting. We demonstrate the computation time benefit of Fed-GLMM com-

pared to the pooled analysis in a centralized setting. We fit the same GLMM using the EHR

data from the facility with the highest visit volume. With Fed-GLMM, the single EHR was split

into 10 smaller subsets to be computed in parallel. Our analysis was performed with R 4.0.2 on

a Linux cluster with up to 512GB RAM per node at 1600MHz. Different from the simulation

study where we had only the patient-level random effects, physician-level random effects were

also included in our real-world data analysis. This added difficulties in terms of dividing data

into subsets. When there are only patient-level random effects in the model, we can randomly

split the patients into subsets. However, when there are physician-level random effects, a ran-

dom split of patients cannot guarantee two observations associated with the same physician

are in the same subset, and a random split of physicians cannot guarantee two observations
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associated with the same patient are in the same subset. To keep correlated observations in the

same subset as much as possible, we propose a clustering-based algorithm such that two physi-

cians are more likely to be assigned to the same subsets if they share more patients. In this way,

we can best preserve the correlation structure of the data, and therefore achieve better accu-

racy. The detailed procedures of the cluster-splitting algorithm are demonstrated in S1 Table.

To evaluate and exemplify the algorithm, we also repeatedly apply it to small subsets of our

real-world EHR data at a facility with a large number of records and compared the resulting

Fed-GLMM estimates with the estimates obtained using randomly splitting the data, both rela-

tive to the gold-standard pooled analysis results which are obtainable for subset data.

Federated setting. To demonstrate the use case of Fed-GLMM in a federated setting, we

applied it to EHRs from all 8 facilities to fit the GLMM with facility-specific fixed intercepts

that account for heterogeneity across facilities. EHRs from the two largest facilities were each

split into 10 subsets to reduce computation time, while other smaller EHRs were not split.

Results

Simulation study

Fed-GLMM demonstrated improved accuracy compared to meta-analysis in a federated

setting. From Fig 2 (upper left panel), the relative bias of the meta-analysis estimator for the

Fig 2. Accuracy of Fed-GLMM and meta-analysis estimates relative to the gold-standard pooled analysis. We compared the accuracy of Fed-

GLMM with the standard meta-analysis by calculating the median absolute relative difference compared to the gold-standard pooled estimate of the

coefficient of a binary exposure variable. The underlying model has a binary outcome, a binary exposure, three more covariates with 8 site-specific

fixed effect coefficients for the normally distributed covariate and a patient-level random intercept. The model also includes 8 site-specific parameters

for variance components. We considered 25 combinations of outcome and exposure prevalence to assess the model accuracy with 100 simulation

replicates per combination. Fed-GLMM demonstrated reduced relative bias after 1–2 iterations compared with the meta-analysis, which was highly

biased in the presence of rare events.

https://doi.org/10.1371/journal.pone.0280192.g002
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exposure coefficient was more severe with rare outcomes or exposures. In contrast, Fed-

GLMM converged to the values nearly identical to the pooled analysis estimates within 5 itera-

tions in all prevalence settings. Additionally, in most non-rare event settings, Fed-GLMM

achieved considerable improvement over the meta-analysis within 1–2 iterations. Compared

with the meta-analysis, Fed-GLMM also demonstrated small variability in bias from the

pooled analysis estimates across the simulation replicates, as shown in S1 Fig.

Fed-GLMM demonstrated improved computational efficiency compared to the pooled

analysis in a centralized setting. We divided a pooled dataset into a different number of sub-

sets and Fed-GLMM is applied using multiple computing nodes in parallel. Fig 3 shows that

Fed-GLMM spent than 5% of the computation time required by the pooled analysis when the

number of computing nodes exceeds 20, and the time can be further reduced with more com-

puting nodes. The meta-analysis can also provide a similar time reduction effect through paral-

lel computing. However, with more computing nodes, the meta-analysis resulted in increasing

relative bias, while Fed-GLMM retained its accuracy relative to the pooled analysis.

Real-world data analysis

We identified 3,165,913 outpatient encounters between 10/1/2020 and 9/30/2021 from the 8

acute care hospital facilities in the New England area. We performed a complete-case analysis

Fig 3. Comparison of computation time and estimate accuracy for Fed-GLMM and meta-analysis relative to gold-standard pooled analysis with increasing

computing nodes/EHR subsets. We compared Fed-GLMM with meta-analysis using the ratio (in percentage) of computation time over the pooled analysis. For each

simulation replicate, we generated one single centralized EHR. The underlying model has a binary outcome, a binary exposure, three more covariates and a patient-level

random intercept. We considered dividing the centralized EHR data into varying numbers of subsets to be computed in parallel. Both Fed-GLMM and the meta-analysis

spent less than 5% of the computation time required by the pooled analysis with the number of computing nodes greater than 20. However, the meta-analysis had

increased relative bias for the exposure coefficient when the number of subsets increased, while Fed-GLMM retained its accuracy relative to the pooled analysis. The points

and bars represent median and interquartile range of computation time and relative bias in percentage respectively.

https://doi.org/10.1371/journal.pone.0280192.g003
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where all observations with missing values (215,329 visits) were excluded from the final analyt-

ical sample. The descriptive statistics for all covariates are shown in S2 Table. Before perform-

ing Fed-GLMM, we estimated variance-component parameters locally and separately for each

site. As shown in S4 Table, those estimates are similar among the sites for both patient- and

physician-level random effects, supporting our model specification of equal variance-compo-

nents parameters.

The results of Fed-GLMM for the federated (all 8 facilities) and centralized (the facility with

the highest visit volume only) settings are summarized in Fig 4. The detailed numeric outputs

are displayed in S3 Table. For the centralized setting, the entire process took around 1.4 hours,

while the analysis would be otherwise infeasible within a similar timeframe if all data were fit

in a single GLMM process.

To address the computational concern, analyses in both federated and centralized settings

involve splitting data at facilities with a large number of records. We evaluated the performance

of the clustering-based splitting method designed to address the issue of crossed patient- and

physician-level random effects as described in Methods. As demonstrated in S2 Fig, for all coef-

ficients of interest, clustering-based splitting resulted in negligible bias compared with the ran-

dom splitting strategy. This also demonstrated the good performance of Fed-GLMM in the

real-world data scenario given that an appropriate splitting strategy is applied.

In both federated and centralized settings, the characteristics associated with lower odds of

conducting a virtual visit (i.e., higher odds of conducting an in-person visit) are increasing

age, Hispanic, non-Hispanic Black, non-Hispanic Asian or other non-Hispanic relative to

non-Hispanic White race/ethnicity, limited English proficiency, and inactive patient portal.

Compared with primary care, behavioral health and specialty visits were more likely to be con-

ducted virtually. Visits of female patients, as well as visits billed to Medicaid were also more

likely to be conducted virtually. Except for the behavior health specialty, the parameter esti-

mates for the federated and centralized settings are very close to each other, demonstrating the

potential dominant effects of the site with the largest proportion of data on the results based

on all sites.

Fig 4. Adjusted odds ratios of virtual vs. in-person visit by patient and visit characteristics. Using the forest plot, we visualized the adjusted odds ratios obtained

through Fed-GMM for both all facilities (federated setting to demonstrate privacy preservation) and single facility (centralized setting to demonstrate computation

improvement). The points and bars represent the point estimates and 95% confidence intervals, respectively. Abbreviations: OR—Odds Ratio; NH—Non-Hispanic; LEP—

Limited English Proficiency.

https://doi.org/10.1371/journal.pone.0280192.g004
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Discussion

In light of the increasing need for multicenter collaborative research utilizing EHR data and

the potential challenges in data sharing and large-scale computation, we proposed the Fed-

GLMM algorithm to model correlated EHR data that allows privacy-preserving integration of

datasets from multiple healthcare systems. Our method enables fitting GLMM with much less

computation time and memory cost in both federated and centralized networks, and thus can

also be applied to EHR from a single site. Our simulation study has demonstrated that Fed-

GLMM achieves nearly identical results to the pooled analysis with reduced computation time

over a broad spectrum of settings. Our real-world data analysis demonstrated the feasibility of

applying Fed-GLMM to single-site and multicenter EHR-based studies to fit a model with mil-

lions of observations.

In contrast to a meta-analysis, our method is not based on constructing a weighted average

of local estimators obtained from each site. When studying rare events, the local estimators

would be biased due to the limited number of cases, which can lead to biases in the meta-anal-

ysis. Our method is more robust to such biases as we directly aggregate the first- and second-

order derivatives, which are not sensitive to the rareness of the event. The contribution of each

study in Fed-GLMM is captured by the shared derivatives, which cannot be summarized to a

single weight as in a univariate meta-analysis. Nevertheless, compared to existing work of fed-

erated and distributed algorithms, the most important contribution of Fed-GLMM is that it

allows the modeling of longitudinal and correlated data within each institution and can

accommodate all GLMM specifications, including crossed or nested random effects. However,

when performing Fed-GLMM to improve computational efficiency through splitting large-

scale data in a centralized setting, one needs to be mindful of the data-splitting strategy. For

nested random effects, splitting the data by the highest-level factors will allow Fed-GLMM esti-

mates to converge to the gold-standard pooled analysis results. For crossed random effects, we

recommend splitting the data such that the correlated observations are allocated to the same

subsets as much as possible as shown in S2 Fig. This makes the Fed-GLMM estimates close

(though not identical) to the pooled analysis estimates.

As demonstrated in our simulation and real-world data analyses, iterative communication

among the central analytics and individual sites is not required. In most cases, only one round

of parameter updating provides negligible bias. Thus, in federated research networks that rely

on manual data transferring, our method with one round of iteration is preferred to reduce the

communication cost. However, when multiple rounds of communication are feasible, with an

increasing number of iterations, our method will eventually converge to the pooled analysis.

When studying rare conditions, extra iterations help correct the bias, so a balance needs to be

reached between the communication cost and estimation accuracy. In addition, the sharing of

first- and second-order derivatives is common among federated algorithms but may still entail

a risk of identifiability for small datasets with rare events. Nevertheless, this risk is limited in

that the transmission of summary-level statistics is typically regulated and protected by the

data-sharing protocols of collaborative research networks. Methods such as differential privacy

and data encryption techniques can be combined with Fed-GLMM to improve privacy protec-

tion. While we have demonstrated Fed-GLMM for analyzing EHR data to assess virtual care

utilization, our method can be used to address correlated structures in many types of real-

world datasets. Future steps include paring Fed-GLMM with high-dimensional data analysis

methods to model genetic datasets, as well as the combination of Fed-GLMM and vertical data

integration techniques to integrate granular clinical and health service information from longi-

tudinal administrative claims and survey databases [35].
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Supporting information

S1 Fig. Absolute relative bias of Fed-GLMM and meta-analysis estimates relative to gold-

standard pooled analysis across simulation replicates. We compared the accuracy of Fed-

GLMM with the standard meta-analysis by calculating the absolute relative difference from

the gold-standard pooled analysis for estimating the coefficient of a binary exposure variable.

The underlying model has a binary outcome, a binary exposure, three more covariates with 8

site-specific fixed effect coefficients for the normally distributed covariate and a patient-level

random intercept. The model also includes 8 site-specific parameters for variance components.

We considered 25 combinations of outcome and exposure prevalence each with 100 simula-

tion replicates to assess the model accuracy. Fed-GLMM achieved almost identical results as

the pooled analysis for all simulation replicates after 1–2 iterations, while the meta-analysis

demonstrated greater bias and variance relative to the pooled analysis across all simulation

replicates and prevalence settings. Abbreviations: EY—Prevalence of Outcome; EX—Preva-

lence of Exposure.

(JPG)

S2 Fig. Comparison of Fed-GLMM accuracy relative to pooled analysis between different

data splitting strategies. Using randomly extracted small sub-datasets (n = 100,000) from the

EHR of a single facility, we compare the accuracy of Fed-GLMM with different data splitting

strategies. Two splitting strategies were attempted and compared: random splitting and our

proposed clustering-based splitting introduced in S1 Table. A sub-dataset was split into 5 sub-

sets by both strategies. The absolute relative bias was calculated as the difference between the

corresponding Fed-GLMM estimates and those given by the pooled analysis in absolute per-

centage. A total of 50 randomly extracted sub-datasets were used in the evaluation. For all coef-

ficients of interests, clustering-based splitting resulted in negligible bias compared with the

random splitting strategy. Abbreviations: NH—Non-Hispanic; LEP—Limited English Profi-

ciency.

(JPG)

S1 Table. Clustering-based splitting strategy. This strategy aims to cluster physicians who

shared patients together by examining physicians’ patient-sharing network. With the cluster-

ing-based splitting strategy, two physicians are more likely to be assigned to the same subsets if

they share more patients so that the patients’ visits linked to multiple physicians are likely to be

included in the same data subsets.

(DOCX)

S2 Table. Descriptive statistics for the virtual care utilization analysis. We identified all out-

patient encounters spanning 10/1/2020 through 9/30/2021 from the 8 acute care hospital facili-

ties in the New England area, which we deidentified and denoted as Facilities 1 through 8. We

described all the variables in the dataset to be used in the Fed-GLMM analysis, as well as the

overall observation distribution across facilities.

(DOCX)

S3 Table. Parameter estimates generated by Fed-GLMM for the virtual care utilization

analysis. We displayed the adjusted odds ratios with 95% confidence intervals obtained

through Fed-GLMM for both single EHR from Facility 4 (centralized setting to demonstrate

computation improvement) and all facilities (federated setting to demonstrate privacy preser-

vation). We adopted a complete-case analysis where 6.8% of the observations with missing val-

ues were removed. Abbreviation: Ref—Reference Group.

(DOCX)
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S4 Table. Local variance parameter estimates at each facility. We demonstrated variance-

component parameter estimates obtained separately for each site to evaluate our assumption

of equal variance-component parameters across sites. For sites with a relatively small number

of records, the estimates were obtained by fitting the GLMM locally. For sites with a large

number of records, the estimates were obtained by a meta-analysis aggregating the GLMM

estimates from split data batches. The variance- component parameter estimates for both

patient- and physician-level random effects are similar across the sites, supporting our model

specification with homogenous variance-component parameters.

(DOCX)
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