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Abstract

Humans are born with very low contrast sensitivity, meaning that inputs to the infant visual

system are both blurry and low contrast. Is this solely a byproduct of maturational processes

or is there a functional advantage for beginning life with poor visual acuity? We addressed

the impact of poor vision during early learning by exploring whether reduced visual acuity

facilitated the acquisition of basic-level categories in a convolutional neural network model

(CNN), as well as whether any such benefit transferred to subordinate-level category learn-

ing. Using the ecoset dataset to simulate basic-level category learning, we manipulated

model training curricula along three dimensions: presence of blurred inputs early in training,

rate of blur reduction over time, and grayscale versus color inputs. First, a training regime

where blur was initially high and was gradually reduced over time—as in human develop-

ment—improved basic-level categorization performance in a CNN relative to a regime in

which non-blurred inputs were used throughout training. Second, when basic-level models

were fine-tuned on a task including both basic-level and subordinate-level categories (using

the ImageNet dataset), models initially trained with blurred inputs showed a greater perfor-

mance benefit as compared to models trained exclusively on non-blurred inputs, suggesting

that the benefit of blurring generalized from basic-level to subordinate-level categorization.

Third, analogous to the low sensitivity to color that infants experience during the first 4–6

months of development, these advantages were observed only when grayscale images

were used as inputs. We conclude that poor visual acuity in human newborns may confer

functional advantages, including, as demonstrated here, more rapid and accurate acquisi-

tion of visual object categories at multiple levels.

Introduction

The trajectory of maturation in the visual system mirrors the trajectory of infant development

more generally, with adult-like abilities emerging only over months or years [1]. Given that
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neonates of many other mammalian species begin life with relatively high-quality vision, it is

curious that human infants start life with such poor vision. Under one view, the human altri-

cial state at birth is attributed to our extreme intelligence (and by consequence, large brain),

which creates selective pressure for humans to be born in a relatively premature, under-devel-

oped state [2]. However, an alternative view holds that the premature starting point and path

of human development is, at least in part, a functional adaptation that helps bootstrap many

mental abilities [3].

Consistent with the latter account, our hypothesis is that poor visual acuity at the earliest

stages of development facilitates the infant’s acquisition of basic-level object categories. As an

early learning objective, basic-level categories are at the core of the acquisition of stable mental

concepts and foundational for naturally organizing large numbers of similar objects into

behaviorally-relevant semantic clusters (e.g., “apple”, “table”, “bird”, “fish”, etc.; [4]). In their

seminal paper, Rosch et al. [4] propose that basic-level categories are those that maximize

within-category similarity, while minimizing across-category similarity. Moving up or down

the hierarchy, superordinate categories (e.g., “animal”) will have a lower degree of within-cate-

gory similarity, while subordinate categories (e.g., “red-tailed hawk”) will have a higher degree

of across-category similarity. Rosch et al. further suggest that object shape, defined as the over-

all outline or silhouette of objects once their orientations have been aligned and their size nor-

malized (Fig 1A), should exhibit a correlational structure that reflects the organization of

objects into basic-level categories. This relationship predicts improved ability to infer basic-

level category representations if images are transformed in such a way as to emphasize global

shape and reduce non-shape and fine-grained shape information.

To examine this hypothesis, we simulated the process of basic-level category acquisition

using neural network models trained on large-scale image datasets. We exploited the fact that

global shape information can be enhanced by low-pass filtering images (blurring), which

removes fine-scale spatial detail, but retains coarse-scale shape features. Below we provide

additional background on the relationship between image blurring, silhouette information,

and basic-level categories, as well as a review of relevant work that has examined the effect of

image blurring on category learning in somewhat different domains.

The role of global shape in basic-level categorization

Multiple studies lend support to the proposal that information about basic-level categories is

carried by the coarse outlines/silhouettes of objects—which roughly correspond to the outputs

of low-pass filtered versions of images. Cutzu and Tarr [5] used a simple computational model

of silhouette similarity and found that object views within a basic-level category are more simi-

lar to one another than are views of objects between categories (see also [6]). Cutzu and Tarr

suggest that human infants may perform binary basic-level categorization tasks (e.g., cats vs.

dogs) based primarily on the information carried by object silhouettes. This prediction was

borne out by Quinn, Eimas and Tarr [7], who found that 3 and 4-month-old infants were able

to form, in a pairwise discrimination task, categorical visual representations for cats versus

dogs based only on object silhouettes. This finding lends credence to the hypothesis that global

outline shape may play a critical role in basic-level categorization. Reinforcing this point,

French et al. [8] observed that using input images filtered to remove high spatial frequencies—

thereby emphasizing outline shape over finer image details—improved an autoencoder’s abil-

ity to discriminate between the same cat and dog images as used in [7].

One limitation of both of these studies is that only a pairwise discrimination between two

categories was tested. Consequently, it is possible that the visual features preserved in the low

spatial frequencies of these images are able to support the discrimination of these particular 18
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Fig 1. Rationale and experimental design. (A) Rosch et al.’s stimulus images depicting the global shape of exemplars from four visually-similar basic-level

categories within four superordinate categories (rows; adapted from Fig 1, [4]). (B) Schematics illustrating how blurring (in terms of the parameter sigma or σ;
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cats and 18 dogs, but do not generalize to the more complex space of discriminating between

multiple basic-level categories. A second limitation is that both studies used images of single

objects against white backgrounds. As a result, the task did not require visual object segmenta-

tion or figure-ground processing and, consequently, the stimulus images were biased towards

outline shape beyond what would be expected from natural images (which depict objects in

the context of complex visual environments; e.g., Fig 1C and 1D). Thus, while these two studies

are consistent with our hypothesis, they leave open many questions regarding whether the

information carried by global object shape is privileged with respect to acquiring basic-level

category knowledge. We address these limitations using a large-scale simulation of visual cate-

gory learning that requires discriminating between over 500 object classes.

The perception of visual object shape

Stepping back, it is axiomatically true that the human visual system does not process images to

extract the global shapes or silhouettes of objects. The visual system instead includes a complex

hierarchy of overlapping spatially tuned neurons, the earliest of which respond to roughly cir-

cular regions of space and serve as spatial frequency filters [9] (or as construed by Marr & Hil-

dreth [10], a set of multiscale edge detectors which measure local intensity changes which are

then combined into a global description of the image). Thus, as an approximation to global

shape, a population of appropriately tuned neurons will produce a low-pass filtered image

which lacks fine-grained details and which will highlight local regions of high contrast. At later

stages of the object recognition hierarchy, progressively more complex features emerge across

anterior regions of visual cortex, including sensitivity to class-diagnostic object features or spe-

cific categorical domains (e.g., faces, places, bodies, food, tools, etc.). Interestingly, the same

feature hierarchy appears to be reflected in modern neural networks performing object classifi-

cation: multiple studies have established that early layers of such networks best account for

variance in early visual areas while later layers of the same networks best account for variance

in high-level and domain-specific visual areas [11, 12].

In this context, we propose that basic-level categorization within the infant visual system is

facilitated by a bias in the representation of spatial frequency. That is, encoding low-frequency

information at the expense of high-frequency information serves to emphasize global shape

and high contrast shape boundaries—a bias in infant vision that can be functionally approxi-

mated by low-pass filtering of input images. We view low-pass filtered images as better ecolog-

ically-anchored relative to the simplified silhouette-like stimuli that have been used in past

work in that silhouettes omit all interior surface and shape information and do not reflect the

likely outputs of early visual processing in infants.

Changes in visual abilities across development

Compared to adults, human newborns are much less sensitive to high spatial frequencies but

grow progressively more sensitive to high spatial frequencies (and more adult-like) over the

course of development [13, 14]. Spatial acuity improves substantially over the first year of life,

with studies reporting near-adult acuity levels in infants between 6–12 months of age

(although acuity continues to improve until around 3 years of age; [1, 15]). More generally, as

in units of pixels) was manipulated across three conditions in Experiment 1. In the non-blurred condition (top), sigma was fixed at a small value that results in

no blurring throughout training, while in the two blur conditions, sigma started at 5 pixels and decreased—at different rates—over the first 50 epochs of

training, corresponding to an increase in spatial acuity over the course of learning. See Methods for details. (C-D) Example ecoset images from the basic level

categories “dog”, “fish”, “car”, “truck”, blurred at three example values for sigma. Note that larger sigma values give rise to blurrier images, while σ = 0 results in

an intact, non-blurred image. Examples of the same images are shown for the (C) grayscale and (D) color conditions.

https://doi.org/10.1371/journal.pone.0280145.g001
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reviewed by Brown and Lindsey [13], sensitivity to light, color, and contrast are all much lower

in infants than as measured in adults. Underlying these limitations, infant contrast sensitivity

is incredibly poor, measuring 50 times lower than adults at three months of age. Relevant to

the manipulations used in our study, there is also evidence that the infant contrast sensitivity

function is not only lower, but is shifted to lower spatial frequencies. Similarly, color vision in

the first few months of life is poor relative to adult abilities [13, 15, 16]. At the same time, chro-

matic sensitivity appears to mature earlier than acuity, with 4–6 month-old infants showing

adult-like hue discrimination and categorization performance [17–19] and 6–8 month-old

infants demonstrating use of canonical colors in object recognition [20]. Irrespective of the

rate of maturation across different visual abilities, at birth human infants experience a rela-

tively blurry and colorless world that only improves over the course of development.

Reducing input complexity

From a theoretical perspective, the initial prematurity of human infants as well as their overall

path of development may facilitate more effective learning across a variety of domains [3]. In

vision, we hypothesize that the trajectory of visual development discussed above serves as a

functional constraint that provides an advantage for learning foundational knowledge about

the world in the form of visual categories. This proposal is an instance of the Starting Small
principle put forward by Elman [21]: that the reduction in input complexity in infant vision—

as a consequence of the path of visual development—enables both faster and better category

learning. Intuitively, our argument is as follows. Basic-level categories form the conceptual

scaffolding for much of our semantic knowledge [4]. Consequently, we assume that a core

objective of early human development is to acquire robust basic-level categories—leaning

heavily on visual experience. Yet contrary to this goal, the visual world presents as a complex,

highly detailed environment. While some attributes of this environment help to specify

the basic-level structure of the world—through shared features across within-category

exemplars—other attributes detract from learning this structure. In particular, fine-grained

details of objects such as metric shape and, especially for non-living things, colors or surface

textures, often vary for exemplars within a category. As such, fine-grained features frequently

increase the dissimilarity between items within basic-level categories. Thus, object information

carried by high spatial frequencies and/or color may be detrimental to learning robust

categories.

How then, does the infant learner select visual attributes appropriate to the learning objec-

tive? One possibility is that selective attention serves to orient the infant to the most informa-

tive visual attributes in inputs. While such biasing might be theoretically achievable, it would

require a great deal of neural machinery—a complex system devoted to identifying, orienting,

and selecting across complex visual inputs. In contrast (sic), somewhat the same end goal may

be achieved by reducing input complexity via limited contrast sensitivity at birth (but allowing

contrast sensitivity to improve over the course of development as fine-grained information

becomes relevant to more subtle, adult-like visual tasks). Under this view, a reduction in com-

plexity is a consequence of the way in which visual percepts are processed by the infant’s

maturing visual system. Supporting this point, Brown and Lindsey [13] present evidence

that infant contrast sensitivity is limited as a consequence of mid-level visual processing con-

straints and not as a consequence of any attentional effect in alert infants. As such, human

infants are fully capable of visually exploring their surrounding environment (and, as a result,

acquiring category knowledge), but their inputs are biased towards lower spatial frequencies,

high contrast, and poor color perception due to intrinsic properties of their developing visual

systems.
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High-performing neural networks enable computational studies of

category learning

Until recently, a variety of practical considerations made it challenging to study and manipu-

late visual learning in an ecologically relevant context (for recent state-of-the-art work, see

[22]). While studies relying on recovered sight in older children or adults are somewhat infor-

mative, they are necessarily limited in their conclusions because of concurrent maturational

changes that occur regardless of the structure of perceptual inputs [23]. However, the tools

available for studying learning from experience have transformed over the last decade due to

the rapid advance of artificial intelligence and computer vision in the form of deep convolu-

tional neural networks (CNNs). CNNs are a type of feed-forward artificial neural network that

are inspired by the architecture of the primate visual cortex and that have been applied to a

wide variety of visual tasks, including image recognition and classification. This correspon-

dence, along with performance that approaches human levels for many tasks [24], suggests

that CNNs present a useful testbed in which to examine theories of visual learning using natu-

ral images [25]. CNNs also allow tight control over parameters of the model and the training

regime (e.g., learning rate, input content, etc.). Thus, as a starting point, CNNs provide models

that are high-performing approximations of human behavior for many tasks.

At the same time, it is an open question as to the degree to which learning in CNNs is built

on similar computational principles to those realized in biological systems [26]. To highlight

one particular concern, CNNs learn using extremely large-scale datasets—millions of distinct

images—which may exceed the amount of input (at least in variety if not sheer quantity)

received by human infants during their development. Note also that these datasets are often

less controlled than one might like. For example, the popular ImageNet image dataset [27]

contains a mixture of basic- and subordinate-level categories that does not approximate the

real-world distribution of categories. Thus, training a model from scratch on solely ImageNet

categories forces the network to learn both basic- and subordinate-level categories throughout

training, making it both difficult to isolate the mechanisms for individual levels of category

learning and to mirror the basic to subordinate progression that typifies human category

learning. In contrast, ecoset, a recently released large-scale image dataset, is more ecologically

motivated and only contains basic-level categories [28].

In the work we present here, we take advantage of these recent advances in models and

datasets by using one of the most high-performing visual classification models, ResNet50 [29],

trained on the ecoset dataset [28]. In contrast to earlier work that relied on binary discrimina-

tion tasks, we explore the impact of reducing input complexity on multi-way classification

across a large number of basic-level categories using natural images (which also necessitate

segmentation/figure-ground processing). As a result, the overall task we adopt is better aligned

with the learning problem facing the human infant. Of note, because data collection in simula-

tions is inexpensive and efficient as compared to human infant studies, we are able to collect

data over a much wider range of input and training conditions.

Past studies using CNNs and image blur

Related to our work, other recent studies have used CNNs to explore the effect of image blur

on learning of object representations. One study by Avberšek et al. [30] used a coarse-to-fine

image training regime, training CNNs initially with low-pass filtered images and then gradu-

ally introducing higher spatial frequencies as training progressed. As with other forms of

learned invariance in CNNs, progressive training for a given perceptual dimension where vari-

ation is explicit (i.e., by isolating low spatial frequencies at the beginning of training) confers

stronger invariance over that dimension. That is, Avberšek et al. found that models trained
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using a coarse-to-fine regime performed significantly better on blurred images during valida-

tion testing than models trained without blurred images. In addition, when presented with

images that combined conflicting information at low- and high-spatial frequencies, models

trained with the coarse-to-fine regime were found to be more sensitive to low spatial frequen-

cies than models trained with the standard regime. However, in contrast to the results we will

discuss below, these benefits only maintained if blurred images continued to be included

throughout training. Furthermore, there was no representational difference between models

when validated on images having full spatial frequency information.

Also related to our present study, earlier work with CNNs has focused on how blurred

training images impact learning in the specific domain of face recognition. Vogelsang et al.

[31] found that experience with blurred images during early training of a CNN enhanced the

ability to learn invariant spatial representations, which are central to adult-like configural face

processing. Similarly, Jang and Tong [32] found that a network trained with initially blurred

faces and objects was invariant across blur for face recognition, but not object recognition.

This dissociation appears consistent with the claim that face recognition relies on somewhat

different mechanisms from generic object recognition. Interestingly, a parallel finding was

recently reported by Li et al. [33], who found that low-spatial frequency preprocessing of

images helps model robustness with respect to both adversarial attacks (e.g., images inten-

tionally designed to fool a model) or image corruption (e.g., noisy images). However, neither

study addressed our central question: namely whether reduced input complexity might

directly affect category learning.

Our approach

We posit that poor infant vision at birth is not altricial by accident or for purely neurodevelop-

mental reasons. Rather, consistent with past work, poor vision early in development may be, at

least in part, a functional adaptation that bootstraps faster and more effective learning across

multiple ecologically critical dimensions. We examine this hypothesis using a CNN trained to

perform basic-level object categorization on the ecoset database [28]. Our use of the ecoset data-

set, which is composed of a large number of objects in basic-level categories, allows us to address

a critical, currently unanswered question of how basic-level category acquisition, at an ecolog-

ically relevant scale, is impacted by early experience with blurred inputs. Our findings suggest

that experience with blurred images during early learning benefits the acquisition of basic-level

categories—an organizing principle of conceptual knowledge that is central to adult cognition.

Results

Experiment 1: Background & motivation

Models were trained to perform basic-level object categorization across six conditions defined

by manipulations of spatial blur and color applied to training images drawn from the ecoset

dataset ([28]; Fig 1B–1D). The spatial blur manipulation assessed how the dynamics of visual

acuity changes over time impact learning and recognition performance. In addition to a non-

blurred image condition, we included two different time courses of blur reduction across

training: blur decreasing linearly over time (linear-blur condition) and blur decreasing loga-

rithmically over time (nonlinear-blur condition). The color/grayscale manipulation assessed

whether color provides additional information with respect to object identity (i.e., some cate-

gories have highly consistent colors; [34]). This manipulation also served to compensate for

the known tendency of CNNs to be biased towards color and texture rather than shape [35]. In

addition, human infants have poor color sensitivity for the first 4–6 months after birth [15].

Thus, it is important to understand how color may interact with the effect of image blur.
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Experiment 1: Results

Across all spatial blur conditions, models trained on color images showed higher overall accu-

racy as compared to models trained on grayscale images (Fig 2; two-way ANOVA on time-

averaged validation set accuracy; main effect of Color: F1,9 = 788.81, p = 6.72e-34, main effect

of Blur: F2,18 = 2.28, p = 0.11, Color x Blur interaction: F2,18 = 11.34, p = 7.74e-5). Furthermore,

the effect of blur on model performance differed between color and grayscale images. As

shown in the left panel of Fig 2A, when using grayscale images, both the linear-blur and non-

linear-blur models achieved higher accuracy than models trained on non-blurred images, with

linear-blur models performing slightly better than nonlinear-blur models. This difference

between the linear-blur and non-blurred models manifested early in training, around epoch

25, and remained consistent throughout the remainder of training, while the difference

between the nonlinear-blur and non-blurred models appeared later in training, closer to

epoch 50, and was less consistent over subsequent training. No significant differences between

the linear-blur and nonlinear-blur models were observed (linear mixed effects model with

fixed effects of condition and epoch number, evaluated using a sliding window; significant

effect of condition, FDR corrected α = 0.05; for details see Methods). Conversely, as shown in

the right panel of Fig 2A, when using color images, there was little benefit for training

on blurred images, with all models converging to roughly the same level of performance by

epoch 50.

Computing the learning rate of each model, estimated as the slope of accuracy over time,

provides a more detailed picture of how the different conditions diverged over learning. Learn-

ing rates peaked at epoch 25, then decreased rapidly, reaching near zero by the end of training.

For the grayscale models, there were no differences in learning rates across models in the dif-

ferent blurring conditions (Fig 2B, left). For the color models, the learning rate for the nonlin-

ear-blur and non-blurred models each achieved a higher peak learning rate than the linear-

blur models, but following this peak their learning rates decreased to a similar level as the lin-

ear-blur model (Fig 2B, right). The learning rates of all color models converged with one

another by epoch 75.

Experiment 2: Background & motivation

In Experiment 1, initial training with blurred visual inputs facilitated learning of basic-level

visual categories for grayscale images. In Experiment 2, we explored whether this advantage

for learning basic level categories transfers to the acquisition of categories at the subordinate

level. To address this question, we fine-tuned the models from Experiment 1 to perform classi-

fication using the ImageNet dataset, which contains both basic-level and subordinate-level

labeled categories.

Experiment 2: Results

As in Experiment 1, models trained with color images reached a higher overall accuracy level

as compared to models pre-trained and fine-tuned with grayscale images (Fig 3, two-way

ANOVA on time-averaged validation set accuracy; main effect of Color: F1,9 = 4300.13,

p = 5.95e-66, main effect of Blur: F3,27 = 2157.61, p = 2.11e-70, Color x Blur interaction: F3,27 =

25.14, p = 3.10e-11). For both color and grayscale images, there was a general benefit of pre-

training on ecoset, with all pre-trained models, irrespective of the blur condition, showing

higher validation accuracy at all time points as compared to models with no pre-training. This

result is not surprising given that models trained from scratch did not have the benefit of pre-

viously-learned features related to either early visual processing or basic-level categorization.

Most relevant to the central question of Experiment 2 are the observed differences in
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Fig 2. Experiment 1 model performance. Performance is shown over training for models in six conditions defined by the factors of blur and color. All models

used the ResNet-50 architecture and were trained to perform basic-level object categorization using the ecoset image dataset. Each plotted point is an average

across 10 runs of an otherwise identical model with different random seeds. Shaded error bars reflect mean ± SEM across these 10 trials. Dots along the top of

each plot indicate time points at which a linear mixed effects model over a sliding temporal window revealed a significant effect of the specified pairwise

condition comparison, in either direction (FDR corrected, α = 0.05). (A) Validation set accuracy. Gray corresponds to models trained with non-blurred images,

blue to models trained with images whose blur decreases linearly over the first 50 epochs (linear-blur condition), and green to models trained with images

whose blur decreases according to a logarithmic function over the first 50 epochs (nonlinear-blur condition). Left and right plots show averages for models

trained using either grayscale images or color images, respectively. Accuracy was temporally smoothed to reduce noise. (B) Estimated learning rate computed

as slope of accuracy over time. Colors correspond to models as in (A).

https://doi.org/10.1371/journal.pone.0280145.g002
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Fig 3. Experiment 2 model performance. Performance is shown for ecoset-trained models from Experiment 1 that were fine-tuned with ImageNet images for

1000-way object categorization. ImageNet contains labels at different category levels, with some images labeled at the basic-level and others labeled at the

subordinate-level. Fine-tuning was run only with non-blurred ImageNet images. Each plotted point is an average across 10 runs of an otherwise identical

model with different random seeds. Shaded error bars reflect mean ± SEM across these 10 trials. Dots along the top of each plot indicate time points at which a

linear mixed effects model over a sliding temporal window revealed a significant effect of the specified pairwise condition comparison, in either direction (FDR

corrected, α = 0.05). (A) ImageNet validation set accuracy. Light gray corresponds to models trained with ecoset in the non-blurred condition, blue to models

trained with ecoset in the linear-blur condition, green to models trained with ecoset in the nonlinear-blur condition, and dark gray corresponds to new models

with no pre-training (that is, starting from scratch). Left and right plots show averages for models trained using either grayscale images or color images,

respectively. Accuracy was temporally smoothed to reduce noise. (B) Estimated learning rate computed as slope of accuracy over time. Colors correspond to

models as in (A). Only pairwise comparisons between different pre-trained models are shown; all pre-trained models performed significantly better than the

no-pre-training models at all time points.

https://doi.org/10.1371/journal.pone.0280145.g003
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performance over fine-tuning for grayscale models pre-trained with non-blurred images as

compared to blurred images (Fig 3A, left). In contrast to the differences shown for grayscale

models, few differences in performance over fine-tuning for color models were observed

across any of the pre-training blur conditions (Fig 3A, right).

Because differences across pre-training conditions were observed only for grayscale models,

we focus on these results. Across many of the time points during fine-tuning, both the linear-

blur and the nonlinear-blur models reached a higher validation set accuracy as compared to

the non-blurred models. This difference was more pronounced for the linear-blur models,

whose performance was significantly higher than the non-blurred models at all time points

(linear mixed effects model with fixed effects of condition and epoch number, evaluated using

a sliding window; significant effect of condition, FDR corrected α = 0.05; for details see Meth-
ods). In contrast, performance for the nonlinear-blur models was more variable, initially hav-

ing a similar average validation accuracy as the non-blurred models, but then increasing and

approaching the accuracy of the linear-blur models after 30 epochs, and then briefly decreasing

to the same accuracy as the non-blurred models. The overall accuracy of the nonlinear-blur

models was significantly higher than the non-blurred models for the first half of training, and

again for several time points near the end of training. Finally, there were some significant dif-

ferences between the linear-blur and nonlinear-blur models, with better validation accuracy

for the linear-blur models.

Experiment 2: Basic-level vs. subordinate-level accuracy

The results of Experiment 2 establish that pre-training with blurred ecoset images in a basic-

level categorization task facilitates transfer to classifying ImageNet images in what is, effec-

tively, a combined basic-level and subordinate-level classification task. Importantly, the mag-

nitude of the benefit of pre-training was larger for pre-training on blurred versus non-blurred

ecoset images. Given that ImageNet is composed of both basic- and subordinate-level category

labels, this benefit may be driven solely by the presence of basic-level categories within Ima-

geNet. Alternatively, representations learned during the acquisition of basic-level categories

with blurred inputs may additionally support subordinate-level categorization. To address

these alternatives, we hand-labeled the 1000 categories in ImageNet as either basic or subordi-

nate and then re-computed the validation set accuracy for each of our grayscale models split

by basic and subordinate labeled images. Fig 4 shows these results for the basic/subordinate

category level split (panels B-C) as well as across all categories (panel A). This analysis repli-

cated the results of the previous analysis (Fig 3), in that the three pre-trained conditions each

showed significantly higher accuracy than the from-scratch models, and of the pre-trained

conditions, the linear-blur models showed significantly higher accuracy than either the non-

blurred models or the nonlinear-blur models. Importantly, these differences in accuracy were

found for both basic- and subordinate-level categories alone, as well as for their aggregate.

Thus, our current results indicate that the benefits of early experience with blurry images gen-

eralize from basic-level categorization to subordinate-level categorization.

Discussion

Human visual cognition is grounded in our knowledge of basic-level object categories [4] and

the rapid and stable acquisition of these categories in early development is central to building

robust world knowledge. It is our hypothesis that the ability to learn basic-level categories may

be improved by reducing the complexity of visual inputs during early learning. We examined

this hypothesis by training a neural network model with a regime in which inputs were initially

low-pass filtered and became progressively less blurry over time. Because blurring images
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emphasizes global object shape information and reduces fine-grained shape and texture infor-

mation, we predicted that early experience with blurred images would improve category learn-

ing. This prediction was confirmed across both of our experiments. In Experiment 1, training

on blurred images improved the accuracy of learning for basic-level categories relative to train-

ing with non-blurred images. In Experiment 2, pre-training on blurred images in a basic-level

categorization task transferred to and improved the learning of subordinate-level categories

relative to pre-training with non-blurred images. Such results support the theory that poor

spatial acuity at birth may benefit early category learning.

Effect of blur is dependent on color and other model training parameters

While the benefit of image blurring was robust across several experimental conditions, several

factors affected the degree to which blurring was beneficial. First, in both experiments, these

benefits only manifested when using grayscale images. This result suggests that the benefit of

blurring for basic-level category learning is dependent on whether color is available as an addi-

tional cue to object category. Specifically, when the models we used have access to color

Fig 4. Experiment 2 model performance split by category level. Models pre-trained on grayscale ecoset images with various blur conditions were fine-tuned

for 1000-way image classification on ImageNet; the performance of these models is shown separately for the basic-level and subordinate-level category labels in

ImageNet. Only results from models pre-trained with grayscale images are plotted because few differences were observed between models pre-trained with

color images (see Fig 3). Validation set accuracy was computed using (A) all categories, (B) basic-level labeled categories only, and (C) subordinate-level

labeled categories only. Bar heights and error bars indicate mean ± SEM across 10 trials of each model, light gray dots show accuracy for individual trials.

Brackets above bars indicate the significance of pairwise comparisons between conditions, assessed using a two-tailed independent samples t-test for each

pairwise condition comparison (FDR corrected, α = 0.05) where � denotes a significant difference in either direction and n.s. denotes no significant difference.

https://doi.org/10.1371/journal.pone.0280145.g004
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information, they may learn at least partially based on color, thereby reducing the role of ach-

romatic features (texture, shape). In contrast, when color information is not available in train-

ing images, our models necessarily rely more on achromatic features, including both fine-scale

texture and coarse-scale shape information. However, in a color-free regime, the fine-scale

details of images may be detrimental to learning basic-level categories. This is supported by

past evidence that categorization in CNNs relies more on fine-scale details such as texture and

less on coarse-scale features such as shape [35, 36]. For these reasons, blurring inputs to

emphasize coarse scale shape information may result in a larger benefit to category learning

when color is absent than when it is present.

The dependence of our results on the absence of color also has implications for relating our

models to the human visual system. Specifically, past research has indicated that, in addition to

poor spatial acuity, human infants have relatively poor sensitivity to color for the first 4–6

months of life [15]. Thus, the grayscale image training regime may be a better approximation

of the environment experienced by infants early in development. The fact that we observe a

benefit from blurring in this ecologically realistic setting, but not a less realistic setting, sup-

ports the idea that blurring confers a benefit in the context of the overall environment in

which the infant visual system is situated. An important caveat to this is that, as mentioned

previously, color vision matures more rapidly than visual acuity, meaning that color may

quickly come to play some role in object categorization during development [18, 20]. There-

fore, in order to better simulate the learning environment of developing infants, future work

should also model the maturational pattern of chromatic vision relative to acuity.

We also note that the benefits of training with blurred images were only apparent when

using specific hyperparameters and model training conditions. Using a learning rate scheduler

(which sets the step size for weight updates) in Experiment 1 rendered the effect of blur less

apparent as compared to when the scheduler was removed. We speculate that using the sched-

uler may have optimized learning. This rapid shift to extremely high performance may have

yielded an environment in which there was little room for reduced input complexity to further

improve performance. In contrast, infant categorization performance is quite poor and only

slowly improves over many years to attain adult-like levels [37, 38]; see later subsections for

more discussion of this point. One interesting possibility that should be pursued in future

work is whether models using a learning rate scheduler, despite high performance, ultimately

learn less robust basic-level category representations.

Another model parameter that had an impact on performance was the rate of decrease in

blur: this manifested as an advantage for the linear-blur condition over the nonlinear-blur con-

dition. In the former condition, the degree of blur (i.e., standard deviation of Gaussian filter)

decreased linearly over time, while in the latter condition, the amount of blur decreased more

rapidly at the start of training. Given that the standard deviation of the filter in the spatial

domain is nonlinearly related to its standard deviation in the frequency domain, the nonlin-

ear-blur condition actually may more closely approximate a linear increase in acuity than does

the linear-blur condition. Based on the finding that acuity increases approximately linearly

across human visual development [39], we had initially hypothesized that our nonlinear-blur

models would achieve higher performance than our linear-blur models. However, our results

showed the opposite. There are multiple plausible explanations for such a result. First, CNNs

may benefit more from a linear time course of blur reduction because neural networks are

likely sensitive to somewhat different learning parameters than humans. Second, it is also pos-

sible that our implementation of nonlinear blur was too fast relative to the time span over

which we implemented blurring of images. Across several preliminary analyses, we found that

our slowest nonlinear function (with a base of 2) was the most effective out of the tested non-

linear functions. Given the brief span in which the model was trained on blurred images, it is
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possible that the decrease in blur was still not gradual enough to allow the network to benefit

from the reduction in input complexity afforded by blurring. Future work should explore

models with more gradual nonlinear blurring functions as well as training on blurred images

for longer periods of time in order to evaluate how these parameters affect performance in

nonlinear models.

Reduced input complexity enhances subordinate-level category learning

Somewhat unexpectedly, the results of Experiment 2 suggest that the benefit of early visual expe-

rience with blurred images generalizes to subordinate-level category learning. Models initially

trained to perform basic-level categorization on ecoset showed their largest boost in ImageNet

image classification accuracy when the initial training phase included blurred images. This

boost was observed for both basic-level labeled images and subordinate-level labeled images

from ImageNet. Given that subordinate-level categories are defined more by fine-grained shape

and surface appearance [4], why does a model trained on a basic-level classification task for

blurred images facilitate learning subordinate-level categories? One possibility is that there is

some similarity in the representations needed for basic-level versus subordinate-level classifica-

tion in that subordinate-level categories are refinements of basic-level categories. To the extent

that this is true (e.g., most dog breeds are all visually recognizable as dogs), the basic-level repre-

sentations learned by the linear-blur and nonlinear-blur models in Experiment 1 can be effi-

ciently fine-tuned for a new subordinate-level task in Experiment 2. However, in the case of

basic-level categories with subordinate-level members that deviate from the general category

appearance (e.g., penguins and ostriches do not look like the majority of birds), our expectation

is that fine-tuning for such subordinate-level categories will not benefit from pre-training with

blurred images. Future work should include fine-grained analyses of category learning that take

into account the specific visual and semantic structures of individual categories.

Related to the finding that basic-level pre-training benefits subsequent learning of subordi-

nate-level categories, a recent study found that training a visual CNN model with superordi-
nate-level labeled images (e.g., fruit, animal) followed by basic-level training resulted in a

model that was highly robust to image perturbations, as well as exhibiting a stronger shape

bias as compared to models trained without hierarchical labels [40]. In tandem with our

results, such findings highlight the importance of considering the role of different hierarchical

levels when creating training paradigms for neural networks. For example, ImageNet includes

a mixture of basic-level and subordinate-level labels that are not meaningfully differentiated,

thereby confounding two levels of category learning that are likely to be supported by different

visual features. At the same time, some ImageNet categories labeled at the subordinate-level

may effectively function as basic-level categories in that no other subordinate-level categories

for their parent basic-level category are included in ImageNet. Within the work we present

here, in Experiment 1 we controlled for this issue by using the ecoset dataset [28] which con-

tains only basic-level labels and is motivated by the foundational role that the basic level plays

in category learning and adult cognition [4]. Moreover, when using ImageNet in Experiment

2, we explicitly divided our results by basic- and subordinate-level labeled images. Future work

should explore including superordinate-level labeled images to investigate how early experi-

ence with blurred inputs interacts with a hierarchical superordinate-to-basic training regime

similar to that used by Ahn and colleagues [40].

Limitations of the analogy between neural networks and human vision

While CNNs have many practical advantages that make them a useful model system for visual

neuroscience, there are multiple ways in which these models are likely to diverge from
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biological visual systems. For example, as mentioned previously, as compared to humans,

CNNs rely more strongly on local texture features than global shape [35, 36]. Relatedly, Baker

et al. [41] evaluated a trained CNN with outlines of 2D objects and animals with varying inter-

nal patterns and found that CNNs often classify images based on texture and local shape rather

than global shape. Moreover, model performance changed dramatically based on the color

and texture inside the outlined objects.

Another point of divergence between CNNs and humans is the lack of generalization to

new viewing conditions in terms of lighting, rotation, viewpoint, etc. Whereas humans are

able to generalize to novel viewing conditions, several studies have found that CNNs tend to

overfit to the conditions on which they are trained on and have difficulty adapting to new con-

ditions. For example, Szegedy et al. [42] found that CNNs classified images differently when

minimal changes, imperceptible to humans, were applied to the image. More generally, Serre

[26] makes a strong case for CNNs serving as incomplete models of human vision: he reviews

a variety of different human visual recognition behaviors that are poorly captured by CNNSs

(e.g., perceptual grouping) and, similar to Szegedy et al. [42], multiple examples of failures to

generalize due to the extreme sensitivity of CNNs to small noise perturbations. At the same

time, O’Toole and Castillo [43] make a cogent argument for why CNNs are appropriate mod-

els for studying functional aspects of human vision and, in particular, for testing sophisticated

hypotheses on human learning across the lifespan.

Another important aspect in which CNNs diverge from human learners is that CNN mod-

els are fully supervised: every input has a ground truth label that is used to train the network.

In contrast, human infants appear to learn without supervision. For example, Eimas and

Quinn [37] found that very young infants form categorical representations across a range of

pairwise or multiway contrastive comparisons (e.g., cats vs. horses; or horses vs. cats, zebras, or

giraffes) and that humans learn to further differentiate between visually-similar categories rela-

tively early in development. Such findings suggest that human infants are able—almost entirely

on the basis of visual inputs alone—to learn visually-based basic-level categories. Similarly,

Quinn and Eimas [38] argue that the acquisition of conceptually-based representations is a

gradual process which is bootstrapped by early, purely perceptual learning. Under this view,

human learners scaffold their conceptual knowledge on the basis of a perceptually anchored

structure that is learned in a largely unsupervised manner. In this regard, the use of CNNs to

study human learning is not perfectly aligned.

Despite this potential difference, we argue that several factors support the use of supervised

learning models in the context of our current study. First, there is increasing evidence that

even very young children are self-supervising as part of learning visual categories [44]. Second,

even at the earliest stages of development, caregivers provide linguistic supervision to human

infants—such sparse supervision can be nearly as or even more effective (because feedback is

provided for the most salient examples) than full supervision. Third, in our present study we

focus on how reducing the complexity of visual inputs impacts the rate and ultimate accuracy

of visual classification; while supervision might improve overall performance relative to an

unsupervised system, it is less likely to interact with input manipulations. If anything, we pre-

dict that an unsupervised learner would receive greater benefit from a reduction in input com-

plexity in that the dimensionality of the visual similarity space is reduced. As a consequence,

within-category objects appear more similar to one another and are more readily learned as

members of the same basic-level category. In this light, future work should examine how low-

pass filtering affects learning in unsupervised models of visual classification.

Further supporting the validity of comparisons across artificial neural networks and biolog-

ical systems is the longstanding finding that goal-driven CNNs trained on an object categoriza-

tion task common to human visual behavior learn object representations quite similar to
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neural representations of the same objects [25]. More generally, a wide array of studies have

found that CNNs are able to account for much of the neural response variance in object view-

ing tasks as measured by fMRI in humans or by neurophysiological recordings in monkeys

[12, 45, 46]. Given these representational similarities, CNNs provide an experimental setting

in which to explore, using high-performing models and complex, real-world images, how

learning is affected by the manipulation of a wide range of visual attributes and learning

conditions.

Relation to previous work

As discussed earlier, several recent studies similar to ours have investigated how training with

blurred images impacts learning in neural network models [30–33]. However, the central task

we explored—basic-level object categorization—was not observed to benefit from low-pass

image training in any of these reports. Indeed, contrary to our results, Avberšek et al. [30]

reported that, for categorization of unblurred images, models trained on intact images per-

formed better than models trained on blurred images. Similarly, Jang and Tong [32] did not

observe an overall benefit in object categorization for models trained on blurred images as

compared to models trained on unblurred images.

There are several reasons for the discrepancy between these studies and ours. First, we uti-

lized the ecoset database, which includes only basic-level categories, while these prior studies

used the mixed category ImageNet database. Second, initial training with low-pass inputs only

affected performance using grayscale images, while some of these studies used colored images

as inputs. Third, some of these studies focused on the robustness of their models to blurred

images but did not examine the trajectory of learning or ultimate performance across different

conditions. Finally, other factors such as network architecture and training parameters may

also contribute to differences between our present study and earlier studies. Perhaps most crit-

ically, the functional parameters we adopted were specifically targeted at mirroring the learn-

ing environment of the human infant: reducing image resolution at initial learning, increasing

resolution only slowly over learning, removing color, and restricting the task to basic-level cat-

egory learning. Under these specific conditions, we find a clear benefit for models whose train-

ing includes blurred inputs at initial learning.

Changes in conceptual object representations across development

Our results are consistent with developmental evidence for a change in how basic-level catego-

ries are represented across development. Jüttner et al. [47] found that younger children are

able to perform object discriminations relying on object part structure but fail on tasks that

require metric part relations. In contrast, older, school-aged children are able to make metric

discriminations between visual categories. As such, the visual discrimination trajectory articu-

lated in Jüttner et al.’s study reflects a developmental trajectory in which coarser object part

structures are available in the low-pass filtered images available early in development, but that

metric relations only become available as more fine-grained resolution inputs come into play

with the maturation of the visual system. This change in conceptual learning reinforces our

point that the developmental path of visual acuity is central to bootstrapping both initial basic-

level category learning and later general category learning—at which point, a wide variety of

information sources, including part structure, metric part relations, linguistic feedback,

semantics, affordances, etc. may participate in refining and enhancing the core organization of

knowledge built on visual similarity. Future work should explore model behavior across the

different perceptual tasks that map human development as well as how this wider range of fac-

tors interact with category learning within these models (e.g., [12]).
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Conclusion

In conclusion, our simulations support the hypothesis that low visual acuity in early develop-

ment (as a consequence of low contrast sensitivity) may be a key factor in infant visual growth

and cognitive development, providing an early advantage in basic-level category learning.

Although blurry inputs were only presented briefly at the start of training, early performance

advantages were sustained throughout the duration of basic-level training and, as established

in separate experiments, persisted through the introduction of subordinate-level categoriza-

tion tasks. Thus, poor vision early in life, rather than hindering learning, may be, in part, a

functional adaptation that supports the human infant’s acquisition of robust conceptual

structures.

From a broader perspective, this conclusion highlights the ways in which near-term devel-

opmental benefits may emerge as a consequence of the human infant’s underdeveloped cogni-

tive and perceptual mechanisms [3]. At the same time, there may be long-term benefits to

prematurity at birth. For example, Piantadosi and Kidd [2] speculate that a positive feedback

loop has selected for intelligence whereby human infants’ premature state at birth enables the

development of larger brains (and greater intelligence), but this same helplessness leads to a

need for superior intelligence in adult caregivers. More generally, we suggest that while there

may be evolutionary-scale benefits for the altricial state of human newborns, more specific

selective pressures tied to perceptual or cognitive capacities also contribute to the premature

state of human newborns.

Reinforcing this claim, our findings are consistent with other recent studies indicating that

the trajectory of human visual development has positive functional implications [8, 31, 32].

This body of research illustrates how a reduction in input complexity in early development

[21, 48], as well as the overall trajectory of development [3], can help facilitate learning within

a variety of domains. Of note, a parallel approach for training models—referred to as curricu-
lum learning—has become popular in the machine learning community (similarly inspired by

Elman’s 1993 paper [21]). As articulated by Bengio et al. [49], more effective learning can be

facilitated when inputs are ordered with a gradual increase in both number and complexity.

Given this growing interest in how the organization of inputs can influence learning, future

work should explore how developmental trajectories across all perceptual systems may impact

the acquisition of adult-like abilities. With respect to the specific question of category acquisi-

tion, we see several fruitful areas of potential investigation. First, our results suggest that the

organization of early experience impacts category learning at multiple hierarchical levels.

Thus, further experiments with better curated multi-level category datasets should be used to

explore how different modes of complexity reduction may facilitate learning across categorical

hierarchies. Second, the specific roles of visual attributes, including color, spatial frequency,

contrast, acuity, and foveation should be explored with respect to their general effect on cate-

gory learning, as well as how these attributes might interact with the acquisition of specific cat-

egories that are defined more or less by particular visual properties. Third, while early category

learning may be strongly driven by visual inputs, supervision—in the form of category labels

via speech, environmental sounds [50], etc.—may, sparsely at least, provide learners with

important information about category membership. Following Stretcu et al.’s [51] demonstra-

tion that a coarse to fine approach to training improves classification performance, state-of-

the-art multimodal classification models [52] should be used to examine whether reducing

input complexity yields equal benefits across modalities. While even fully supervised models

may show a benefit to using a curriculum learning training strategy, because a reduction in

input complexity allows the learner to better align representations across modalities, we pre-

dict much larger benefits in category learning when using sparsely supervised or unsupervised
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models. Exploring these and related questions will enable a better understanding of how the

structure of our environment influences the emergence of high-level conceptual knowledge

structures in human development.

Materials and methods

Our study is split into two distinct sections. First, Experiment 1, using standard CNNs,

explores whether using blurred visual inputs during the initial learning of basic-level categories

impact model accuracy and/or rate of learning. Second, Experiment 2, using the same CNNs

trained in Experiment 1 which are fine-tuned on a new task, explores whether the basic-level

representations learned with initially blurred visual inputs also confer benefits for learning of

subordinate-level categories.

Models and general training procedures

For all models in both experiments, we used the ResNet-50 architecture [29] with a learning

rate of 0.1 and a standard gradient descent (SGD) optimizer. ResNet-50 is a type of deep neural

network model which has 50 total layers (48 convolutional layers, 1 maxpool layer, and 1 aver-

age pool layer). For models trained on color images, three different inputs representing the

RGB values of each pixel in each image were used. For models trained on grayscale images, a

single input representing the brightness of each pixel in each image was used. Models were

trained using PyTorch version 1.10.0 in Python version 3.7.1, on the Carnegie Mellon Neuro-

science Institute High Performance Computing Cluster which consists of 21 CPU nodes and

12 GPU nodes, 280TB terabytes of shared disk space and 2.8 terabytes of RAM (https://ni.cmu.

edu/computing/knowledge-base/computing-facilities-description-overview/). For our SGD

optimizer, we set momentum to 0.9 and weight decay to 0.1. No learning rate scheduler was

used, a decision motivated by our finding in initial tests that when a scheduler was used, all of

our models performed similarly regardless of blur condition; see Discussion. Individual models

were each trained for 300 epochs (Exp. 1) or 150 epochs (Exp. 2).

Image datasets

For Experiment 1, model training was performed using the ecoset image dataset, which con-

tains over 1.5 million images drawn from 565 labeled basic-level categories [28]. This dataset

contains only basic-level categories that have clear, commonly used basic-level names, for

example, “table”, “dog”, or “cat”. For Experiment 2, we used the ImageNet dataset [27]. Ima-

geNet is more commonly used in computer vision research, and contains 1000 categories,

including a mix of basic- and subordinate-level labels. Multiple categories included in Ima-

geNet are subordinate to the basic-level categories in ecoset (i.e., numerous bird species or dog

breeds). The inclusion of both basic and subordinate-level categories in ImageNet was our

motivation for using it in Experiment 2. To control for the fact that the images in ecoset and

ImageNet were variable in size, we used the PIL image processing library in Python to resize

each image by center cropping based on the minimum dimension between width and height

and then resizing all images to 224x224 pixels (code available at https://github.com/tarrlab/

startingblurry).

Experiment 1 training procedure

To explore the impact of blurring during learning, we trained multiple models on image sets

defined by different numbers of blurred and non-blurred images presented at the beginning of

training. For each epoch, 50,000 images were randomly selected from the training dataset. All
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models were trained on the same randomly selected images at each epoch, but with different

amounts of blur applied to the training images during pre-processing. The use of 50,000 train-

ing images per epoch was selected based on a balance between having a sufficient number of

images to adequately train the model and limiting the number of images to allow gradual blur

to have some impact on learning. For all blurred models, images were blurred for only the first

50 epochs (i.e., 2,500,000 images), although the exact time course of blur reduction differed

between the different blur conditions (see Implementation of image blur during model train-
ing). Pilot testing using blurring for the first 50, 100, 150, 200, 250, or 300 epochs in different

models revealed that limiting blur to the beginning of training—50 epochs—produced our

most robust results. To compute validation accuracy at each epoch, we matched the blur

applied to the validation image dataset to the degree of blur applied to the training images for

that epoch, ran the blurred validation images through our model, and then calculated the

number of images labeled correctly relative to the total number of images in the validation

dataset.

Implementation of image blur during model training

Blurring was implemented using a Gaussian filter via the GaussianBlur function in the trans-

formations module under Torchvision (a Pytorch library). The GaussianBlur filter applies a

low-pass filter to each image by removing any spatial frequencies finer than the scale of the

Gaussian (Fig 1C and 1D). Implementing a Gaussian blur filter requires specifying a sigma (σ,

which denotes the standard deviation of the Gaussian filter, in pixels) and a kernel size value

based on the epoch. In all blurred models, the standard deviation was initially σ = 5 and was

reduced until the 50th training epoch, at which point σ = 0.25. Our implementation and

manipulation of Gaussian blur is similar to past work that examined how image blur impacts

different aspects of visual learning [31, 32].

In different model training conditions, we used either a linear or a logarithmic function to

determine the degree to which σ was reduced in each subsequent epoch. The linear function

(linear-blur condition) was defined by calculating the difference between our initial and final σ
values and dividing by the number of epochs in which images were blurred (50). The value of

σ was then decreased by this increment following each epoch. The logarithmic function (non-
linear-blur condition) was defined by reducing the value of σ according to a logarithmic func-

tion with a base of 2, which results in a decrease in σ that is of greater magnitude at the

beginning of training (Fig 1B). Since the σ of our Gaussian kernel is related nonlinearly to the

resulting low-pass frequency cutoff of the image (our approximation of visual acuity), a loga-

rithmic change in σ means that the change in acuity over time will more closely approximate a

linear function—similar to that measured in human development [39]. For both functions,

kernel size was calculated as 8 times the σ value plus 1 to ensure that: 1) the kernel size was an

odd number; 2) the entire kernel was sufficiently large so as to accommodate ±4 standard devi-

ations from the center of the filter.

Color manipulations

In addition to the amount of blur applied to each image, we also manipulated the color content

of images by using either color or grayscale images. Our rationale for manipulating color was

two-fold. First, poor contrast sensitivity in infants also limits their ability to see color differ-

ences [13]. Thus, images absent color in addition to image blur may better approximate a

human infant’s visual experience in the early months of their development. Second, while

color can play a role in human categorization [20, 34], color is not consistent or diagnostic for

many basic-level categories. To the extent that CNNs tend to overfit, fine-grained details such
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as color or texture may support category learning at the expense of more general shape proper-

ties [35]. Models trained with grayscale images were expected to have a stronger shape bias

and, consequently, to allow for a larger impact of spatial frequency manipulations during

learning.

Experiment 1 model conditions

We implemented six total model conditions. These consisted of three blur conditions: non-
blurred (normal unfiltered inputs throughout training), linear-blur (a linear decrease in blur

over the first 50 training epochs), and nonlinear-blur (a logarithmic decrease in blur over the

first 50 training epochs). These were crossed with two color conditions: color and grayscale
images. For each of these six conditions, we ran 10 replications (which we refer to as trials)

using different random seeds with otherwise identical models. To ensure comparability of our

results across conditions, we used the same randomly selected ecoset images for each epoch

during training and used the complete validation set after each training epoch (although the

appearance of each image in terms of blur and color varied with the condition).

Experiment 1 data analysis

For the purpose of visualization and statistical analyses, we temporally smoothed the validation

accuracy results for each individual model by computing the moving average over a sliding

window of 20 epochs. All subsequent statistical analyses were performed on this smoothed

data. Learning rate was estimated by finding the difference in validation accuracy between

neighboring epochs (i.e., the approximate slope of the accuracy), and then applying a second

moving average filter with a window size of 20 epochs. For both the accuracy and learning

rate, we then tested for significant differences between conditions at each time point using a

linear mixed effects model, implemented using the Python package statsmodels. Across a slid-

ing window where 20 epochs were considered at a time, we constructed a model where Condi-

tion and Epoch number were fixed effects (categorical and continuous, respectively) and the

Trial Number was the random effect. This analysis provides a coefficient and p-value for the

effect of Condition, for each possible pairwise condition comparison (non-blurred vs. linear-

blur, non-blurred vs. nonlinear-blur, linear-blur vs. nonlinear-blur). Comparisons were always

made between different blur conditions within the same color condition only. Finally, the

resulting p-values from all pairwise comparisons, as shown in Fig 2, were FDR corrected across

all epochs using the Benjamini-Hochberg procedure implemented in statsmodels, with α =

0.05 [53]. In addition to this sliding window procedure, we computed the time-averaged vali-

dation accuracy for each of the six model conditions and performed a two-way ANOVA on

these values with factors of Color and Blur.

Experiment 2 training procedure

To explore whether the basic-level categorization results also generalized to subordinate-level

classification, we used a transfer learning paradigm in which the trained models from Experi-

ment 1 were fine-tuned using ImageNet [27]. Beyond this shift in the image dataset, Experi-

ment 2 used the same overall training procedure as Experiments 1. All models were fine-tuned

using the same 50,000 randomly selected images (now from ImageNet) for each epoch, and

images were resized using the same center crop method as used in Experiment 1. Color con-

tent was held constant from ecoset to ImageNet: when using an ecoset pre-trained model that

was initially trained with grayscale images, all ImageNet fine-tuning was performed with gray-

scale images, and vice versa for color models. To maintain the same learning environment as

in Experiment 1, models in Experiment 2 used the same architecture and hyperparameters,
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except for two differences. First, because Experiment 2 is based on fine tuning (and not train-

ing from scratch), models were fine-tuned for only 150 epochs (rather than 300 epochs). Sec-

ond, because of the larger number of classes labeled in ImageNet, models used for fine-tuning

had a final layer with 1,000 units (rather than 565 units).

Pre-trained model selection

To determine which models would serve as the base for Experiment 2, we identified the best

training time point (based on validation accuracy) for each model from Experiment 1, and the

weights from the model at this time point were stored (note that this could be a different time

point for different trials within a given condition). These stored models were each fine-tuned

with ImageNet images across 150 epochs. In addition to these stored models, we also trained,

from scratch with random initial weights, two sets of control models with either grayscale or

color images. This resulted in eight model conditions in total—six pre-trained model condi-

tions and two control model conditions. As in Experiment 1, we ran 10 trials for each condi-

tion. For each trial within each pre-trained model condition, the pre-trained models were

from the corresponding trials in Experiment 1. For example, during Trial 4 of Experiment 2,

the starting point in each condition was Trial 4 of the corresponding model from that same

condition from Experiment 1.

Experiment 2 data analysis

To calculate validation accuracy and learning rate, we used the same averaging techniques as

in Experiment 1. Statistical tests comparing training conditions were also identical to the anal-

yses used in Experiment 1. We also performed an analysis in which we computed the valida-

tion set accuracy separately for the ImageNet categories that were defined as basic-level versus

those defined as subordinate-level. We focused on the models trained with grayscale images

only because these models showed the largest benefit from blurring during training. ImageNet

categories were defined as basic- or subordinate-level categories based on human annotations

for how frequently a given category name was likely to be used in everyday language to refer to

the object of interest [4]. For example, “bee” and “strawberry” were labeled as basic-level,

while “Yorkshire terrier” and “Granny-smith apple” were labeled as subordinate-level. The full

list of basic- and subordinate-level assignments for the 1000 ImageNet categories is available

in our supplementary materials (S1 and S2 Tables).

To compute accuracy for the basic- and subordinate-level categories, we identified the best

training time point with respect to validation accuracy for each individually fine-tuned model

in Experiment 2. The weights at this time point were saved, and the entire ImageNet validation

dataset was run through each model using these saved weights. Accuracy was computed for

one category label at a time and was defined as the number of correctly classified images with

that label divided by the total number of images with that label. The resulting category-specific

accuracy values were then averaged over all basic-level categories or all subordinate-level cate-

gories. We also computed the overall validation accuracy of each model across all categories.

In computing overall validation accuracy, we always used the same time point as was used to

generate the basic- and subordinate-level accuracy values (i.e., the time point for each model

with the single best validation accuracy value). Finally, we performed statistical comparisons

between the four different pre-training conditions (no pre-training, pre-training with non-

blurred images, pre-training with linear-blur images, pre-training with nonlinear-blur images)

using two-tailed independent samples t-tests between each pair of conditions, implemented

using the Python package scipy. The resulting p-values from all pairwise comparisons, as

shown in Fig 4, were FDR corrected as described above.

PLOS ONE Training with blurred images improves basic-level category learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0280145 January 6, 2023 21 / 25

https://doi.org/10.1371/journal.pone.0280145


Supporting information

S1 Table. ImageNet categories were manually labeled as either basic- or subordinate-level

(see Methods); this table lists the English names of the categories labeled as basic- and sub-

ordinate-level. To find the folder ID-to-category name correspondence, see the file “bOrS.

csv” in our Github repository (https://github.com/ojinsi/startingblurry).

(DOCX)

S2 Table. ImageNet categories were manually labeled as either basic- or subordinate-level

(see Methods); this table lists the ecoset folder IDs of the categories labeled as basic- and

subordinate-level. To find the category-to-folder ID name correspondence, see the file “bOrS.

csv” in our Github repository (https://github.com/ojinsi/startingblurry).

(DOCX)

Acknowledgments

The first two authors contributed equally to this work. The authors thank the following people

for their ideas and comments: Jayanth Koushik.

Author Contributions

Conceptualization: Margaret M. Henderson, Michael J. Tarr.

Data curation: Omisa Jinsi, Margaret M. Henderson.

Formal analysis: Omisa Jinsi.

Investigation: Omisa Jinsi.

Methodology: Omisa Jinsi, Margaret M. Henderson, Michael J. Tarr.

Project administration: Michael J. Tarr.

Resources: Michael J. Tarr.

Software: Omisa Jinsi, Margaret M. Henderson.

Supervision: Margaret M. Henderson, Michael J. Tarr.

Visualization: Omisa Jinsi, Margaret M. Henderson.

Writing – original draft: Omisa Jinsi.

Writing – review & editing: Margaret M. Henderson, Michael J. Tarr.

References
1. Kellman PJ, Arterberry ME. Infant visual perception. In Kuhn D, Siegler R., Damon W, Lerner RM

(Eds.), Handbook of Child Psychology: Cognition, Perception, and Language. John Wiley & Sons Inc,

2006; 109–160.

2. Piantadosi ST, Kidd C. Extraordinary intelligence and the care of infants. Proc. Natl. Acad. Sci. 2016;

113: 6874–6879. https://doi.org/10.1073/pnas.1506752113 PMID: 27217560

3. Smith L, Gasser M. The development of embodied cognition: six lessons from babies. Artif Life. 2005;

11(1–2): 13–29. https://doi.org/10.1162/1064546053278973 PMID: 15811218

4. Rosch E, Mervis CB, Gray WD, Johnson DM, Boyes-Braem P. Basic objects in natural categories. Cog-

nitive Psychol. 1976; 8: 382–439.

5. Cutzu F, Tarr MJ. The representation of three-dimensional object similarity in human vision. In SPIE

Proceedings From Electronic Imaging: Human Vision & Electronic Imaging II. 1997; 3016: 460–471.

San Jose, CA: SPIE.

PLOS ONE Training with blurred images improves basic-level category learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0280145 January 6, 2023 22 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0280145.s001
https://github.com/ojinsi/startingblurry
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0280145.s002
https://github.com/ojinsi/startingblurry
https://doi.org/10.1073/pnas.1506752113
http://www.ncbi.nlm.nih.gov/pubmed/27217560
https://doi.org/10.1162/1064546053278973
http://www.ncbi.nlm.nih.gov/pubmed/15811218
https://doi.org/10.1371/journal.pone.0280145


6. Gdalyahu Y, Weinshall D. Measures for silhouettes resemblance and representative silhouettes of

curved objects. BT—Computer Vision—ECCV. 1996; 361–375. Springer Berlin Heidelberg.

7. Quinn PC, Eimas PD, Tarr MJ. Perceptual categorization of cat and dog silhouettes by 3-to 4-month-old

infants. J Exp Child Psychol. 2001; 79(1): 78–94. https://doi.org/10.1006/jecp.2000.2609 PMID:

11292312

8. French RM, Mermillod M, Chauvin A, Quinn PC, Mareschal D. The importance of starting blurry: Simu-

lating improved basic-level category learning in infants due to weak visual acuity. Proceedings of the

Annual Meeting of the Cognitive Science Society. 2002; 24.

9. Hubel DH, Wiesel TN. Receptive fields of single neurons in the cat’s striate cortex. J Physiol. 1959;

148: 574–591.

10. Marr D, Hildreth E. Theory of edge detection. Proc R Soc Lond B. 1980; 207: 187–217. https://doi.org/

10.1098/rspb.1980.0020 PMID: 6102765

11. Gauthier I, Tarr MJ. Visual object recognition: do we (finally) know more now than we did? Annu Rev

Vis Sci. 2016; 2: 377–396. https://doi.org/10.1146/annurev-vision-111815-114621 PMID: 28532357

12. Wang AY, Kay K, Naselaris T, Tarr MJ, Wehbe L. Incorporating natural language into vision models

improves prediction and understanding of higher visual cortex. BioRxiv. 2022; 2022.09.27.508760.

13. Brown AM, Lindsey DT. Contrast insensitivity: the critical immaturity in infant visual performance.

Optom Vis Sci. 2009; 86(6): 572–576. https://doi.org/10.1097/OPX.0b013e3181a72980 PMID:

19483510

14. Dobson V, Teller DY. Visual acuity in human infants: A review and comparison of behavioral and

electrophysiological studies. Vision Research. 1978; 18(11): 1469–1483. https://doi.org/10.1016/0042-

6989(78)90001-9 PMID: 364823

15. Banks MS, Shannon E. Spatial and chromatic visual efficiency in human neonates. In Granrud C (Ed.),

Visual perception and cognition in infancy. Lawrence Erlbaum Associates, Inc, 1993; 1–46.

16. Allen D, Banks MS, Norcia AM. Does chromatic sensitivity develop more slowly than luminance sensi-

tivity? Vision Res. 1993; 33(17): 2553–2562. https://doi.org/10.1016/0042-6989(93)90134-i PMID:

8249334

17. Bornstein MH. Qualities of color vision in infancy. Journal of Experimental Child Psychology, 1975; 19

(3): 401–419. https://doi.org/10.1016/0022-0965(75)90070-3 PMID: 1176886

18. Bornstein MH, Kessen W, Weiskopf S. Color vision and hue categorization in young human infants.

Journal of Experimental Psychology: Human Perception and Performance, 1976; 2(1): 115–129.

https://doi.org/10.1037//0096-1523.2.1.115 PMID: 1262792

19. Franklin A, Davies IRL. New evidence for infant colour categories. British Journal of Developmental

Psychology. 2004; 22(3): 349–377.

20. Kimura A, Wada Y, Yang J, Otsuka Y, Dan I, Masuda T, et al. Infants’ recognition of objects using

canonical color. Journal of Experimental Child Psychology, 2010; 105(3), 256–263. https://doi.org/10.

1016/j.jecp.2009.11.002 PMID: 20015514

21. Elman JL. Learning and development in neural networks: The importance of starting small. Cognition.

1993; 48: 71–99. https://doi.org/10.1016/0010-0277(93)90058-4 PMID: 8403835

22. Bambach S, Crandall D, Smith L, Yu C. (2018). Toddler-inspired visual object learning. Adv Neural Inf

Process Syst. 2018; 31.

23. Maurer D, Mondloch CJ, Lewis TL. Effects of early visual deprivation on perceptual and cognitive devel-

opment. Progress in brain research. 2007; 164: 87–104. https://doi.org/10.1016/S0079-6123(07)

64005-9 PMID: 17920427

24. Bengio Y, LeCun Y, Hinton G. Deep learning. Nature. 2015; 521(7553): 436–444. https://doi.org/10.

1038/nature14539 PMID: 26017442

25. Yamins DLK, DiCarlo JJ. Using goal-driven deep learning models to understand sensory cortex. Nat

Neurosci. 2016; 19: 356–365. https://doi.org/10.1038/nn.4244 PMID: 26906502

26. Serre T. Deep learning: the good, the bad, and the ugly. Annu Rev Vis Sci. 2019; 5: 399–426. https://

doi.org/10.1146/annurev-vision-091718-014951 PMID: 31394043

27. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image data-

base. IEEE Conference on Computer Vision and Pattern Recognition, 2009; 248–255.

28. Mehrer J, Spoerer CJ, Jones EC, Kriegeskorte N, Kietzmann TC. An ecologically motivated image data-

set for deep learning yields better models of human vision. P Natl Acad Sci USA. 2021; 118. https://doi.

org/10.1073/pnas.2011417118 PMID: 33593900

29. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016; 770–778.

PLOS ONE Training with blurred images improves basic-level category learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0280145 January 6, 2023 23 / 25

https://doi.org/10.1006/jecp.2000.2609
http://www.ncbi.nlm.nih.gov/pubmed/11292312
https://doi.org/10.1098/rspb.1980.0020
https://doi.org/10.1098/rspb.1980.0020
http://www.ncbi.nlm.nih.gov/pubmed/6102765
https://doi.org/10.1146/annurev-vision-111815-114621
http://www.ncbi.nlm.nih.gov/pubmed/28532357
https://doi.org/10.1097/OPX.0b013e3181a72980
http://www.ncbi.nlm.nih.gov/pubmed/19483510
https://doi.org/10.1016/0042-6989%2878%2990001-9
https://doi.org/10.1016/0042-6989%2878%2990001-9
http://www.ncbi.nlm.nih.gov/pubmed/364823
https://doi.org/10.1016/0042-6989%2893%2990134-i
http://www.ncbi.nlm.nih.gov/pubmed/8249334
https://doi.org/10.1016/0022-0965%2875%2990070-3
http://www.ncbi.nlm.nih.gov/pubmed/1176886
https://doi.org/10.1037//0096-1523.2.1.115
http://www.ncbi.nlm.nih.gov/pubmed/1262792
https://doi.org/10.1016/j.jecp.2009.11.002
https://doi.org/10.1016/j.jecp.2009.11.002
http://www.ncbi.nlm.nih.gov/pubmed/20015514
https://doi.org/10.1016/0010-0277%2893%2990058-4
http://www.ncbi.nlm.nih.gov/pubmed/8403835
https://doi.org/10.1016/S0079-6123%2807%2964005-9
https://doi.org/10.1016/S0079-6123%2807%2964005-9
http://www.ncbi.nlm.nih.gov/pubmed/17920427
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1038/nn.4244
http://www.ncbi.nlm.nih.gov/pubmed/26906502
https://doi.org/10.1146/annurev-vision-091718-014951
https://doi.org/10.1146/annurev-vision-091718-014951
http://www.ncbi.nlm.nih.gov/pubmed/31394043
https://doi.org/10.1073/pnas.2011417118
https://doi.org/10.1073/pnas.2011417118
http://www.ncbi.nlm.nih.gov/pubmed/33593900
https://doi.org/10.1371/journal.pone.0280145
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