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Abstract

In quasi-induced exposure (QIE) theory, the presence of hazardous driving action is the typi-

cal determinant of the driver’s responsibility for a crash. However, there is a lack of effort

available to analyze the impacts of hazardous actions on the QIE estimate, which may result

in estimation bias. Thus, the study aims to explore the difference in QIE to crashes involving

various hazardous driving actions. Chi-square test is conducted to examine the consistency

of non-responsible party distributions among the crashes involving various hazardous

actions. Multinomial logit model and nested logit model are employed to identify the dispari-

ties of contributing factors to the actions. Results indicate that: 1) the estimated exposures

appear to be inconsistent among the crashes with different hazardous actions, 2) driving

cohorts have differential propensities of performing various hazardous actions, and 3) fac-

tors such as driver-vehicle characteristics, time, area, and environmental condition signifi-

cantly affect the occurrence of hazardous actions while the directions and magnitude of the

effects show great disparities for various actions. It can be concluded that the QIE estimates

are significantly different for crashes involving various hazardous actions, which serves to

highlight the importance of clarifying the specific hazardous actions for responsibility assign-

ment in QIE theory.

Introduction

Crash exposure is an essential measure in traffic safety analysis that indicates the degree of

opportunity for a crash to occur. The exposure family mainly includes direct exposure (e.g.,

vehicle miles traveled (VMT) and average annual daily traffic (AADT)) and indirect exposure.

Quasi-induced exposure (QIE) is one of the indirect exposures that has attracted surging pop-

ularity among traffic safety researchers in recent decades. Compared to the traditional direct

exposures, the QIE poses a great advantage in indicating the crash opportunity of particular

driving cohorts at disaggregated levels such as specific periods and locations. Moreover, the

exposure estimation in the QIE framework only relies on a crash database without the need to

collect extra data such as traffic volume and traveling distance.
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Due to the advantages, the QIE method is popularly applied in traffic safety research, partic-

ularly in identifying the crash risks of particular driving cohorts such as young drivers, elderly

drivers, and commercial vehicles [1–4]. In the QIE theory, the crash risk of the specific driving

cohort is presented by the relative crash involvement ratio, which is calculated by the ratio of

the proportion of the cohort in the at-fault population to that in the not-at-fault population. In

the meanwhile, several studies employed the QIE method to analyze the specific crash types [5,

6]. For instance, Jiang et al. (2021) used the QIE method to interpret the disparity in the injury

severities between hit-and-run and non-hit-and-run crashes and found that the underlying

exposures are different for two crash types [5]. In addition, the QIE method can be adopted to

evaluate the safety effects of traffic measures such as automatic emergency braking systems [7],

signal coordination [8], and driver licensing programs [9, 10].

In the application of QIE theory, all crash-involved drivers should be classified into two cat-

egories including responsible and non-responsible drivers. Then, the crash exposure can be

estimated according to the distribution of the no-responsible driving parties which are

assumed to be representative of the overall driving population (i.e., the so-called “not-at-fault

assumption”). There has been a variety of studies [11–16] devoted to validating the not-at-fault

assumption of QIE theory. The relevant methods mainly include 1) comparing the QIE with

direct exposure (e.g., VMT) [11], 2) comparing the distributions of non-responsible parties

among crashes with different responsible cohorts [17], and 3) comparing the distributions of

non-responsible drivers between two- and three-or-more-vehicle crashes [12–15]. A large

body of studies have verified the “not-at-fault assumption” with the use of statistical testing

methods such as coefficients of variation [17], Chi-square [11, 12], Wilcoxon Mann-Whitney

[13], and Z tests [15]. In contrast, several studies [16, 18] reported that the underlying assump-

tion might not hold under several scenarios, e.g., specific injury severity levels, functional

roadway classification, and eco-regions. It needs to mention that the basic premise of the expo-

sure validation is that the crash responsibility has been accurately assigned to each crash-

involved driver. The different responsibility assignment methods can consequentially result in

a discrepancy in the validation results of the QIE assumption [19].

Typically, there are two kinds of evidence commonly adopted for the responsibility assign-

ment, i.e., the issuance of police citation and the presence of hazardous driving action before

the vehicular collision. For the former, a driver would be treated as the responsible party if he/

she received a police citation. Here, the citation is determined according to the police officer’s

judgment on the traffic violation of the driver. Several previous studies [19–21] pointed out

the potential issues of using police citations to allocate crash responsibility. For instance, the

issuance of police citations may be subject to “negative halo effects” [21] that specific cohorts

(e.g., with suspended/revoked driving licenses, drug usage, and alcohol involvement) have rel-

atively higher probabilities of receiving citations even though they do not cause the crashes.

Moreover, it is found that the issuance of police citations can be affected by several factors

such as driver gender, age, and injury severity [16, 19]. Particularly, the police officers would

not issue citations to the deceased drivers in most cases [18]. The aforementioned issues can

consequently bring about the bias of exposure estimation; thus, the police citation-based

assignment confronts great challenges in the application of the QIE technique. In this regard,

Zhang et al. [22] developed ensemble machine learning that considers both police citation and

relevant factors to improve the accuracy of citation-based responsibility assignments.

Another responsibility determination method is based on hazardous driving actions per-

formed by drivers. It is more recommended by safety researchers since the QIE is a behavior-

oriented technique [16, 22, 23] and hazardous driving action is the predominant factor affect-

ing traffic crashes [24–26]. Under this assignment method, a driver would be treated as the

responsible party if he/she performs any hazardous driving action that directly leads to the
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vehicle collision. Notwithstanding, the behavior-based method also faces potential concerns in

its application. There are many types of hazardous driving actions related to the risk of colli-

sion, such as speeding, running red lights, failing to yield, and improper turning. However,

these hazardous actions are difficult to be fully taken into account during the data collection.

According to the statistics of the Michigan crash data [27], about 4.2% of the information on

the driver’s hazardous actions is missing. Meanwhile, 5.2% of the hazardous actions are classi-

fied into the category of “others” because they could not be determined. Compared to the

police citation, the hazardous action for the responsibility assignment is more difficult to be

clearly defined [22]. The missing or unclear information on the hazardous actions may affect

the consequential validation of the not-at-fault assumption and QIE estimate. To the best

knowledge, there are few studies available to analyze the impacts of hazardous action selection

on the QIE estimates. The responsibility assignment based on different hazardous actions may

result in disparities in exposure estimates, which deserves to be paid more attention.

In summary, the comprehensive review has revealed that the majority of the existing studies

are devoted to validating the “not-at-fault assumption” of QIE theory, in which hazardous

driving actions are typically adopted as the determinant to assign crash responsibility to driv-

ers. The responsibility assignment is a key step that can considerably affect the assumption val-

idation and the exposure estimation. However, there are few studies available to discuss which

driving actions should be taken into account for responsibility assignment. To fill this gap, the

study aims to explore the difference in QIE estimates for crashes with various hazardous

actions. The Chi-square test would be employed to examine the consistency of the crash expo-

sures, in which the null hypothesis is that the exposures are consistent for crashes involving

different hazardous actions. Then, statistical regression models would be adopted to explore

the factors contributing to the occurrence of hazardous driving actions. The findings can serve

to clarify the specific hazardous actions for responsibility assignment in QIE theory.

Methodology

Quasi-induced exposure theory

QIE technique has been frequently employed to estimate the crash exposure of specific driving

cohorts. In the QIE theory, there are two underlying assumptions: 1) the responsibility for a

crash needs to be clearly assigned to each driver. Thus, all the crash-involved drivers are classi-

fied into two categories, i.e., the responsible drivers (D1) and the non-responsible drivers

(D2). Typically, the QIE theory is applied to two-vehicle crashes with a D1 driver and a D2

driver, and 2) the D2s in the crashes are assumed to be the random selection of the overall

driving population. Thus, D2 is the target exposure to be estimated.

According to the previous QIE studies [8, 28], the crash propensity of a specific driving

cohort is presented by the relative crash involvement ratio (IR).

IRi ¼
D1i=P

i
D1i

D2i=P
i
D2i ð1Þ

where IRi is the crash propensity of specific driving cohort i, D1i and D2i denote the number

of D1 and D2 drivers for cohort i, respectively, and ∑i D1i and ∑i D2i denote the total number

of D1 and D2 drivers in the two-vehicle crashes, respectively.

Chi-square test

The study attempts to employ the Chi-square test to examine the consistency of the exposures

to crashes with different hazardous actions. The Chi-square test has been developed and
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popularly used in previous QIE studies [13, 16]. In the framework of the Chi-square test, the

null hypothesis is that observations for comparison have the same distribution. Thus, the

study assumes that the estimated exposures (D2 distribution) are consistent for crashes involv-

ing different hazardous actions. The Chi-square χ2 can be calculated by:

w2 ¼
Pr

i¼1

Pc
j¼1

ðfij � eijÞ
2

eij
ð2Þ

where r is the total number of driver-vehicle categories, c is the total number of hazardous

action types, fij is the number of D2 for driving cohort i in the scenario of the jth hazardous

action, and eij is the expected number of D2 for driving cohort i in the scenario of the jth haz-

ardous action, which is defined as:

eij ¼ fi � fj=n ð3Þ

Where fi is the ith marginal row frequency, fj is the jth marginal column frequency, and n is the

total number of D2s. In the field of statistics, p value<0.05 is typically used to identify the sig-

nificant difference between comparative data. Particularly, a large number of previous QIE

studies adopted this criterion to reject the null hypothesis of the Chi-square test [5, 11, 16, 18].

Thus, the study uses p value <0.05 as evidence to reject the null hypothesis.

Statistical models

Since whether a driver would involve in a specific hazardous action is a discrete choice, two

discrete choice models, i.e., the multinomial logit model and nested logit model, are used to

reveal the differential factors contributing to the occurrence of various hazardous actions.

Multinomial logit model. The multinomial logit model is a typical discrete-choice model

that is frequently employed in previous traffic safety research [29–31]. In the multinomial logit

model, there is a hypothesis that the probability ratio for the two alternatives depends only on

their characteristics and not on those of others, which is called the IIA hypothesis. In this

study, we suppose that there are J different hazardous driving actions that drivers may per-

form. The individual driver is supposed to perform the action with the highest level of utility.

The utility of alternative action j is presented by

Uj ¼ b
⊺
j xj þ εj ¼ Vj þ εj ð4Þ

where b
⊺
j is the coefficient of the variable xj and εj is the error term that includes the impacts of

all the unobserved variables, which follows a Gumbel distribution. Then, the probability of

choosing alternative j can be calculated by

P jð Þ ¼
ej

P
keVk

ð5Þ

Model. It is worth mentioning that the IIA hypothesis of the multinomial logit model

does not always hold in fact. Compared to the standard multinomial logit model, the nested

logit model is more flexible for relaxing the IIA assumption. It is a generalization of the multi-

nomial logit model that is based on the idea that some alternatives (hazardous actions) can be

joined in several specific groups (called nests) that share unobserved impacts. The nested logit

model has also been developed in previous studies on traffic safety [32–34]. We suppose that

hazardous actions can be classified into M different nests. Then, the probability of choosing
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hazardous action j can be computed by

PðjÞ ¼ PðjjlÞ � PðlÞ ð6Þ

where the first term P(j|l) is the conditional probability of choosing hazardous action j if the

nest l is chosen. The second term P(l) is the marginal probability of choosing the nest l.

P jjlð Þ ¼
eZj=ll

P
k2Bl

eZk=ll
ð7Þ

P lð Þ ¼
eWlþll Il

PM
m¼1

eWmþlmIm
ð8Þ

where Zj and Wl are the parts of the utility being specific to the hazardous action j and the nest

l, respectively; Bl is the set of hazardous actions belonging to the nest l; λl indicates the correla-

tion of hazardous action in the nest l, which is also known as the IV parameter falling between

0 and 1. A higher value of IV means greater independence and less correlation; and

Il ¼ ln
P

k2Bl
eZk=ll , which is called the inclusive value.

Fig 1 illustrates the structure of the nested logit model in the study. All hazardous actions

are classified into five categories, including speed-related, right-of-way-related, improper, dis-

tance-related, and other actions. Here, the right-of-way-related actions include failing to yield

and disobeying traffic control devices (TCD). The improper actions can be further divided

into improper lane use, turning, and backing. The distance-related hazardous action means

failing to stop in assured clear distance (ACD).

Goodness of fit. Akaike Information Criterion (AIC) is employed to reflect the goodness

of fit of regression models [35–37].

AIC ¼ � 2 � lnðLÞ þ 2k ð9Þ

where L is the value of the likelihood and k is the number of regression parameters.

Data

The QIE estimation of particular driving cohorts is based on traffic crash data. The study

extracts the crashes from the Michigan crash database (2014) which is provided by the Michi-

gan Department of Transportation. Each traffic crash is investigated and recorded in the crash

database in standard procedures. The crash-related variables have been clearly defined and

coded in the crash database. According to the statistics, there are nearly 300,000 traffic crashes

occurred in Michigan State each year. The large sample size of crashes is sufficient to ensure

the stability of the exposure estimate. Moreover, the database contains detailed information on

Fig 1. Structure of the nested logit model.

https://doi.org/10.1371/journal.pone.0279387.g001
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each driving party involved in the crashes, such as the driver’s age, gender, hazardous driving

action, and vehicle type. The information on the hazardous action can be used as evidence for

crash responsibility assignment in QIE theory. In addition, the crash database also includes

extra information such as the time, location, and environmental condition, which can serve to

identify the factors influencing the propensity of specific hazardous actions.

According to the requirement of QIE theory, it is desirable to conduct data cleaning proce-

dures. The criteria are referred to previous QIE studies [16, 22], as follows.

1. it extracts two-vehicle crashes with a responsible driver and a non-responsible driver. Here,

the responsibility of a driver is determined according to the presence of hazardous action;

2. the crashes involving the missing variables of three key driver-vehicle characteristics (i.e.,

driver age, gender, and vehicle type) are removed from the database; and

3. the study focused on two-vehicle crashes, thus, the crashes involving motorcycles, bikes,

and animals are not included in the analysis.

After the data cleaning procedures, there are 114,666 crash samples finally remained for the

data analysis. The Michigan crash database recorded many types of hazardous actions involved

in the crashes. The study only focuses on the actions that are frequently observed including

speed too fast, failing to yield, disobeying TCD, improper lane use, improper turning,

improper backing, and failing to stop in ACD. The actions that are not clearly determined or

have few samples are classified into the category of “other actions.” As for the variable selec-

tion, the study considers three key driver-vehicle variables (e.g., driver age, gender, and vehicle

type) to analyze the exposures of specific driving cohorts. In addition, the road and environ-

mental conditions are also taken into account to identify the contributory factors affecting the

occurrence of hazardous driving actions. Table 1 presents the definitions of the variables in the

modeling exercises.

Table 1. Definitions of variables for the Michigan crash database.

Variables Definition

Hazardous

actions

The hazardous action associated with the at-fault driver (1 if speed too fast (H1), 2 if failing to

yield (H2), 3 if disobeying TCD (H3), 4 if improper lane use (H4), 5 if improper turning (H5), 6

if improper backing (H6), 7 if failing to stop in ACD (H7), 8 if other actions (H8))

D1Age The age of the responsible driver (1 if 15–30, 2 if 31–60, 3 if >60)

D1Gender The gender of the responsible driver (1 if male, 0 if female)

D1Type The vehicle type of the responsible party (1 if passenger car & van, 2 if pick up, 3 if heavy

vehicle)

D2Age The age of the non-responsible driver (1 if 15–30, 2 if 31–60, 3 if >60)

D2Gender The gender of the non-responsible driver (1 if male, 0 if female)

D2Type The vehicle type of the non-responsible party (1 if passenger car & van, 2 if pick up, 3 if heavy

vehicle)

Speed limit The speed limit on the roadway whether the crash occurs (1 if <35 mph, 2 if 35–50 mph, 3 if

>50 mph)

Peak hour Whether the crash occurs between 7–8 am or 5–7 pm (1 if yes, 0 if no)

Weekday Whether the crash occurs on a weekday (1 if yes, 0 if no)

Intersection Whether the crash occurs at an intersection (1 if yes, 0 if no)

Area Whether the crash occurs in the urban area (1 if yes, 0 if no)

Light The lighting condition when the crash occurs (1 if daylight, 0 if others)

Weather The weather condition when the crash occurs (1 if clear, 2 if cloudy, 3 if rainy & snowy)

https://doi.org/10.1371/journal.pone.0279387.t001
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Results

Comparison of D2 distribution

Fig 2 presents the D2 distribution in terms of three driver-vehicle characteristics disaggregated

by the hazardous action of D1. The information displayed indicates that the D2 distributions

appear to be different under various scenarios. In the aspect of driver age, young driver

accounts for the larger proportion (32.9%) in crashes involving failing to yield as opposed to

those in other scenarios. Elderly drivers have a larger proportion (18.7%) in crashes involving

disobeying traffic control devices compared to those involving other hazardous actions. With

respect to driver gender, male drivers typically have larger crash exposure than female drivers.

Particularly in the scenario of speeding-involved crashes, the proportion of male drivers is

more than 60%, which is obviously higher than those in other scenarios. As for the vehicle

type, the proportion of passenger cars & vans is typically larger than those of pickups and

heavy vehicles in all the scenarios since the majority of vehicles driven on the roads is passen-

ger car & van in reality. Notwithstanding, it is observed that pickups and heavy vehicles have

large exposures to be collided with a speeding vehicle as opposed to vehicles involving other

hazardous actions. It can be explained by the greater difference in traveling velocity between

the crash-involved vehicles that are more likely to incur traffic crashes [38]. The disparity in

D2 distribution implies that quasi-induced exposures are not consistent for crashes involving

various hazardous actions.

Table 2 presents the Chi-square tests of the D2 distribution in terms of three key character-

istics, i.e., driver age, gender, and vehicle type. The p values of Chi-square tests are consistently

less than 0.05, which verifies the significance of disparity in D2 distribution among the crashes

with different hazardous actions.

To further verify the results, Chi-square tests are also conducted for the D2 distribution

with the use of Michigan crash data (2012 and 2013). The results (shown in Tables A1 and A2

in S1 Appendix) indicate that p values are consistently less than 0.05 for driver age, gender,

and vehicle type, which are in good agreement with the findings from Table 2. Thus, it suffices

to demonstrate that the quasi-induced exposures are significantly different for crashes involv-

ing various hazardous actions.

Relative crash involvement ratio

Table 3 summarizes the IR values of various driving cohorts disaggregated by hazardous

action. The information displaced indicates that young drivers usually have a higher propen-

sity to cause traffic crashes, justified by the relatively higher IR values (>1). It may be attrib-

uted to the higher propensities of aggressive driving behaviors [9] and risk-taking attitudes

[17]. Especially for the hazardous action of speeding, the IR value of young drivers is up to

2.109. In contrast, the mid-age drivers have relatively lower crash risks for all the scenarios

since IR values are consistently less than 1. The reason is that mid-age drivers usually have rich

driving experiences and good physical conditions to avoid the risks of traffic crashes. As for

the elderly drivers, the IR values are not stable across the scenarios. To be specific, elderly driv-

ers are more likely to perform the actions of failing to yield, improper lane use, turning, and

backing while they have less propensity of speeding, disobeying traffic control devices, failing

to stop in ACD, and other actions. The phenomenon is possibly due to the poor physical con-

dition and good driving attitude of elderly drivers. In terms of driver gender, female drivers

have more likelihood of speeding while male drivers are inclined to involve improper backing

and failing to stop in ACD. As for vehicle type, passenger car & van is more likely to be

engaged in speeding as opposed to pickup and heavy vehicle. The pickup has a higher

PLOS ONE The difference in quasi-induced exposure to crashes involving various hazardous driving actions

PLOS ONE | https://doi.org/10.1371/journal.pone.0279387 February 2, 2023 7 / 17

https://doi.org/10.1371/journal.pone.0279387


Fig 2. D2 distribution disaggregated by hazardous action of D1. (a) driver age, (b) driver gender, (c) vehicle type.

https://doi.org/10.1371/journal.pone.0279387.g002
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propensity for improper backing, failing to stop in ACD, and other hazardous actions. Heavy

vehicles have a considerably high propensity for improper turning and backing. Especially for

improper backing, the IR value of heavy vehicles is extremely high (3.911). It is possibly due to

the large size and poor mobility that can interrupt traffic and lead to vehicle collisions [39, 40].

The differential IR values suggest that the specific driving cohorts have different propensities

for performing various dangerous driving actions and causing crashes.

Regression of statistical models

Tables 4 and 5 present the regression results of the multinomial logit and nested logit models,

respectively. Note that the variables of D2Age and D2Gender have been excluded from the

models because they are not significant contributors to the occurrence of hazardous actions

under most scenarios. For the remained variables, the estimates of the parameters appear to be

similar between the two models, which can somewhat serve to verify the validity of the

findings.

The results indicate that the influential factors show conspicuous diversities for different

hazardous actions. In the aspects of D1 characteristics, it is found that young drivers are more

likely to engage in risky behaviors such as speeding, failing to yield, disobeying TCD, and fail-

ing to stop in ACD while they have less propensity of performing improper backing. The

elderly drivers are identified to have significantly higher propensities of failing to yield,

Table 2. Chi-square tests of the D2 distribution.

Driver-vehicle groups H1 H2 H3 H4 H5 H6 H7 H8 Chi-square test

Age

15–30 1,857 10,677 1,832 1,761 944 924 11,849 2,299 χ2 = 814.91

31–60 4,701 16,793 3,197 3,597 1,732 1,900 27,982 5,059 p<0.001

>60 1,074 4,998 1,156 960 417 584 6,977 1,396

Gender

Female 2,896 15,459 2,940 2,809 1,419 1,684 23,187 3,820 χ2 = 439.42

Male 4,736 17,009 3,245 3,509 1,674 1,724 23,621 4,934 p<0.001

Vehicle type

Passenger car & van 5,664 27,863 5,252 5,284 2,629 2,991 40,675 6,928 χ2 = 1,682.9

Pickup 1,029 3,284 670 564 298 293 4,312 1,013 p<0.001

Heavy vehicle 939 1,321 263 470 166 124 1,821 813

https://doi.org/10.1371/journal.pone.0279387.t002

Table 3. IRs of driving cohorts.

Driver-vehicle groups H1 H2 H3 H4 H5 H6 H7 H8

Age

15–30 2.109 1.217 1.436 1.239 1.162 1.065 1.836 1.428

31–60 0.666 0.744 0.770 0.793 0.778 0.919 0.721 0.817

>60 0.546 1.397 0.944 1.336 1.556 1.161 0.699 0.959

Gender

Female 1.112 1.027 0.996 0.991 0.986 0.679 0.897 0.918

Male 0.932 0.975 1.003 1.007 1.012 1.313 1.101 1.063

Vehicle type

Passenger car & van 1.143 1.013 1.030 0.999 0.943 0.691 0.995 0.989

Pickup 0.889 0.973 0.899 1.004 0.990 2.922 1.152 1.186

Heavy vehicle 0.258 0.800 0.654 1.009 1.922 3.911 0.751 0.866

https://doi.org/10.1371/journal.pone.0279387.t003
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disobeying TCD, improper lane use, improper turning, and improper backing while they have

fewer propensities of speeding and failing to stop in ACD. Regarding the driver gender, female

drivers are generally prone to be involved with hazardous actions as opposed to male drivers,

except the improper backing. As for the vehicle types, pickups and heavy vehicles are inclined

to perform improper backing, while passenger cars & vans are more likely to be involved in

other hazardous actions. The above findings are generally consistent with the findings derived

from the IR values of specific driving cohorts. In addition, it is also found that the D2 vehicle

type can be a contributory factor to crashes with specific hazardous actions. Particularly, the

speeding vehicle is prone to collide with an innocent heavy vehicle as opposed to a passenger

car or van, which can be interpreted by the greater difference in traveling velocity between the

speeding vehicles and heavy vehicles.

Except for the driver-vehicle characteristics, the information displaced also suggests that

the propensities of various hazardous actions differ substantially for various circumstances.

The actions of failing to yield and stop in ACD are more likely to occur during peak hours,

while the actions of disobeying TCD and improper backing indicate the opposite. Another

temporal variable “Weekday” is also identified to have differential impacts on the various haz-

ardous actions. In terms of the spatial variables, most hazardous actions are prone to take

place on the roadway with a moderate limit (35–50 mph), e.g., failing to yield, disobeying

TCD, improper lane use, and failing to stop in ACD, while speeding is significantly linked to

the roadway with high-speed limit (>50 mph). Actions such as disobeying TCD, improper

turning, and failing to stop in ACD are more frequently observed in the intersection area. The

urban area is typically associated with the most hazardous action types (except the action of

Table 4. The result of multinomial logit model regression.

Variables H1 H2 H3 H4 H5 H6 H7

estimate p estimate p estimate p estimate p estimate p estimate p estimate p
α -1.20 <0.01 1.11 <0.01 -0.92 <0.01 -0.98 <0.01 -1.28 <0.01 -1.23 <0.01 0.38 <0.01

D1Age (base: 31–60)

15–30 0.39 <0.01 0.22 <0.01 0.21 <0.01 -0.05 0.20 0.03 0.52 -0.21 <0.01 0.26 <0.01

>60 -0.53 <0.01 0.47 <0.01 0.23 <0.01 0.29 <0.01 0.38 <0.01 0.23 <0.01 -0.36 <0.01

D1Gender -0.06 0.08 -0.23 <0.01 -0.15 <0.01 -0.09 0.01 -0.15 <0.01 0.12 0.01 -0.05 0.03

D1Type (base: passenger car & van)

Pickup -0.28 <0.01 -0.28 <0.01 -0.30 <0.01 -0.38 <0.01 -0.23 <0.01 0.81 <0.01 -0.23 <0.01

Heavy vehicle -1.09 <0.01 -0.75 <0.01 -0.91 <0.01 -0.04 0.55 0.45 <0.01 0.86 <0.01 -0.95 <0.01

D2Type (base: passenger car & van)

Pickup 0.13 0.01 -0.16 <0.01 -0.06 0.31 -0.24 <0.01 -0.17 0.02 -0.42 <0.01 -0.26 <0.01

Heavy vehicle 0.22 <0.01 -0.72 <0.01 -0.57 <0.01 -0.22 <0.01 -0.52 <0.01 -1.17 <0.01 -0.81 <0.01

Speed limit (base: 35–50 mph)

<35 mph -0.13 0.01 -0.39 <0.01 -0.21 <0.01 -0.31 <0.01 -0.02 0.7 0.96 <0.01 -0.62 <0.01

>50 mph 0.96 <0.01 -0.55 <0.01 -0.54 <0.01 -0.28 <0.01 -0.97 <0.01 -0.73 <0.01 -0.15 <0.01

Peak hour -0.01 0.87 0.07 0.02 -0.17 <0.01 -0.02 0.52 <0.01 0.98 -0.15 <0.01 0.24 <0.01

Weekday 0.09 0.04 0.13 <0.01 -0.12 <0.01 0.17 <0.01 -0.03 0.61 0.07 0.18 0.36 <0.01

Intersection -0.12 <0.01 0.64 <0.01 1.54 <0.01 -0.04 0.24 0.58 <0.01 -0.13 <0.01 0.36 <0.01

Area 0.07 0.08 0.07 0.02 0.17 <0.01 0.96 <0.01 0.35 <0.01 -1.11 <0.01 0.84 <0.01

Light 0.08 0.03 0.21 <0.01 -0.08 0.03 0.26 <0.01 0.13 0.01 0.46 <0.01 0.46 <0.01

Weather (base: clear)

Cloudy 0.34 <0.01 0.05 0.12 -0.12 <0.01 -0.08 0.04 -0.17 <0.01 -0.07 0.14 0.01 0.62

Rainy & snowy 1.57 <0.01 -0.22 <0.01 -0.46 <0.01 -0.40 <0.01 -0.38 <0.01 -0.29 <0.01 0.08 0.01

https://doi.org/10.1371/journal.pone.0279387.t004
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improper backing) compared to the rural area. As for the environmental condition, the dark

condition is a factor significantly increasing the probability of disobeying TCD. While other

hazardous actions are generally inclined to take place under daylight conditions. Hazardous

actions such as speeding and failing to stop in ACD are more likely to be performed when it is

rainy & snowy. The finding can be reasonably explained that vehicles required longer stopping

distances to avoid collisions on slippery roads [41, 42]. In contrast, actions such as disobeying

TCD, improper lane use, turning, and backing are more likely to occur when it is cloudy.

Model comparison

To validate the reliability of the regression results, several discrete choice models are con-

ducted for the model comparison, including the multinomial probit model, stereotype logit

model, and random parameter multinomial logit model. All these models are suitable for the

Table 5. The result of nested logit model regression.

Variables H1 H2 H3 H4 H5 H6 H7

estimate p estimate p estimate p estimate p estimate p estimate p estimate p
α -1.20 <0.01 1.13 <0.01 -0.63 <0.01 -0.83 <0.01 -1.08 <0.01 -1.07 <0.01 0.38 <0.01

D1Age (base: 31–60)

15–30 0.39 <0.01 0.22 <0.01 0.21 <0.01 -0.05 0.17 0.02 0.69 -0.19 <0.01 0.26 <0.01

>60 -0.53 <0.01 0.47 <0.01 0.25 <0.01 0.29 <0.01 0.37 <0.01 0.24 <0.01 -0.36 <0.01

D1Gender -0.06 0.08 -0.22 <0.01 -0.16 <0.01 -0.09 0.01 -0.14 <0.01 0.10 0.03 -0.05 0.03

D1Type (base: passenger car & van)

Pickup -0.28 <0.01 -0.28 <0.01 -0.30 <0.01 -0.34 <0.01 -0.20 <0.01 0.74 <0.01 -0.23 <0.01

Heavy vehicle -1.09 <0.01 -0.75 <0.01 -0.89 <0.01 <0.01 0.99 0.43 <0.01 0.81 <0.01 -0.95 <0.01

D2Type (base: passenger car & van)

Pickup 0.13 0.01 -0.16 <0.01 -0.07 0.2 -0.25 <0.01 -0.18 0.01 -0.41 <0.01 -0.26 <0.01

Heavy vehicle 0.22 <0.01 -0.71 <0.01 -0.59 <0.01 -0.25 <0.01 -0.51 <0.01 -1.10 <0.01 -0.81 <0.01

Speed limit (base: 35–50 mph)

<35 mph -0.13 0.01 -0.38 <0.01 -0.23 <0.01 -0.25 <0.01 <0.01 1.00 0.87 <0.01 -0.62 <0.01

>50 mph 0.96 <0.01 -0.54 <0.01 -0.56 <0.01 -0.31 <0.01 -0.91 <0.01 -0.72 <0.01 -0.15 <0.01

Peak hour -0.01 0.87 0.06 0.03 -0.14 <0.01 -0.03 0.48 -0.01 0.88 -0.14 <0.01 0.24 <0.01

Weekday 0.09 0.04 0.13 <0.01 -0.10 0.02 0.16 <0.01 -0.01 0.81 0.07 0.16 0.36 <0.01

Intersection -0.12 <0.01 0.65 <0.01 1.43 <0.01 -0.03 0.41 0.51 <0.01 -0.10 0.03 0.36 <0.01

Area 0.07 0.09 0.07 0.02 0.16 <0.01 0.86 <0.01 0.32 <0.01 -0.96 <0.01 0.84 <0.01

Light 0.08 0.03 0.20 <0.01 -0.05 0.21 0.26 <0.01 0.15 <0.01 0.44 <0.01 0.46 <0.01

Weather (base: clear)

Cloudy 0.34 <0.01 0.04 0.15 -0.10 0.01 -0.08 0.03 -0.16 <0.01 -0.07 0.11 0.01 0.61

Rainy & snowy 1.57 <0.01 -0.22 <0.01 -0.43 <0.01 -0.40 <0.01 -0.38 <0.01 -0.29 <0.01 0.08 0.01

IV 0.87 <0.01

https://doi.org/10.1371/journal.pone.0279387.t005

Table 6. Comparison of the statistical models.

Models AIC Log-likelihood

Multinomial logit model 343,364.4 -171,560

Nested logit model 343,363.2 -171,560

Multinomial probit model 343,521.5 -171,642

Stereotype logit model 355,979.7 -177,961

Random parameter multinomial logit model 343,364.4 -171,560

https://doi.org/10.1371/journal.pone.0279387.t006
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regression with categorical dependent variables, e.g., the different hazardous actions in this

study. Note that the random parameter models are the state-of-the-art methods applied in traf-

fic safety research that consider the unobserved heterogeneity of variables [43–45]. In the ran-

dom parameter models, the coefficients of variables are assumed to be random to take into

account the unobserved heterogeneity of variables. Table 6 presents the Log-likelihood and

AIC values to test the goodness of fits of the statistical models. Compared to the multinomial

probit model and stereotype logit model, the multinomial logit model appears to has a rela-

tively better goodness of fit according to the larger Log-likelihood value and lower AIC value.

The performance indexes of the random parameter multinomial logit model are similar to

those of the multinomial logit model. Thus, it can be inferred that the goodness of fit cannot

be improved by setting random parameters and the unobserved heterogeneity of variables is

not significant in this study. Nonetheless, it is found that the goodness of fit can be improved

in the nested logit model in which some hazardous actions are joined in specific groups to

share unobserved impacts. The results can be reasonably explained by the existence of correla-

tions among the hazardous actions in certain groups.

Discussion

Quasi-induced exposure (QIE) theory requires the clear-cut assignment of crash responsibility

for the crash-involved drivers which is typically determined by hazardous driving actions. The

study explores the disparities of QIE to crashes involving different hazardous actions and

examines the factors contributing to the occurrence of various hazardous actions. The findings

can serve to highlight the importance of clarifying the specific hazardous actions for responsi-

bility assignment in QIE theory.

The Chi-square tests demonstrate that the estimated exposures of driver-vehicle cohorts are

significantly different for the crashes with various hazardous actions. Cohorts such as male

and mid-age drivers, pickups, and heavy vehicles have relatively larger exposure to crashes

involving speeding than those involving other hazardous actions. A feasible interpretation is

that the specific driving cohorts are expected to occur in the locations where the corresponding

hazardous actions are frequently performed. For instance, heavy vehicles usually travel on spe-

cific routes such as freeways where speeding behavior is prone to occur while other hazardous

actions have fewer opportunities to be performed [46, 47]. This can be verified by the results of

statistical regression that the roadway with a high-speed limit (>50 mph) is significantly linked

to the higher probability of speeding while it has negative impacts on all the other risky behav-

iors. In addition, the psychosocial environment [48] and stress reactions [49] may be different

for the driving cohorts, which may eventually affect risky driving behaviors and crash expo-

sures. According to the differential exposure to crashes with various hazardous actions, it can

be inferred that the QIE estimate would be biased if some hazardous actions are overlooked

during the crash investigation and data collection. Thus, the study emphasizes the importance

of fully taking into account the various hazardous actions during the data collection.

The results of the IR calculation indicate that the particular driving cohorts have different

propensities for performing various hazardous actions. As anticipated, young drivers have rel-

atively higher risks of involving all kinds of hazardous actions (especially speeding) while mid-

age drivers indicate the opposite, which is in line with previous QIE studies [8, 50–52]. A feasi-

ble interpretation is that young drivers generally have higher propensities of aggressive driving

behaviors and risk-taking attitudes [9, 17]. While for elderly drivers, the propensities of differ-

ent hazardous actions show noticeable diversities, which implies that QIE estimation and

crash risk evaluation for elderly drivers might be biased if the hazardous actions were not fully

considered. Similar findings are observed for the driving cohorts of specific driver gender and
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vehicle types. Particularly, the propensities of improper turning and backing are extremely

high for heavy vehicles. Considering the discrepancy of IR values, the study suggests that safety

analysis of driving cohorts can be disaggregated by hazardous actions, which can help to iden-

tify the specific crash risks associated with the driving cohorts.

The regressions of the multinomial logit and nested logit models indicate that the influen-

tial factors show great disparities for the various hazardous actions. Particularly for driver-

vehicle characteristics of the responsible parties, it is observed that the direction and the mag-

nitude of the impacts are not consistent across the various scenarios, which can somewhat

serve to warrant the presence of disparities in the propensity of involving various actions for

specific cohorts. The vehicle types of the innocent parties can also be significant contributors

to crashes with specific hazardous actions. Generally, passenger cars & vans are more likely to

be collided as opposed to pickups and heavy vehicles. An opposing finding is that speeding

vehicles are prone to collide the pickups and heavy vehicles. The displayed information also

indicates that the occurrences of hazardous actions are affected by a number of factors regard-

ing time, location, and environmental conditions. Actions such as failing to yield, disobeying

TCD, and improper turning are usually performed in the intersection area; thus, the intersec-

tion area is identified to be the contributory factor to these driving actions in the regression

results. In terms of the light condition, all hazardous actions are inclined to occur under day-

light except for the action of disobeying TCD. The finding is somewhat inconsistent with a

previous QIE study on red light running crashes that the crash risk is higher in the daytime

[53]. A possible reason is that the action of disobeying TCD in the study includes not only run-

ning red lights but also other violations related to traffic control devices. As for the weather

condition, most hazardous actions are inclined to occur when it is clear. In contrast, crashes

involving speeding and failing to stop in ACD are prone to occur when it is rainy or snowy.

due to the longer stopping distance required to avoid vehicle collisions [41, 42].

The estimated parameters are similar in the statistical models, which serves to further dem-

onstrate the validity of the findings. Notwithstanding, it is found that the nested logit model

has a relatively lower AIC value than the multinomial logit model, which suggests that the

nested logit model has better goodness of fit. This may be attributable to the different correla-

tions among the various hazardous actions. In the nested logit model, the hazardous actions in

the same nests generally have stronger correlations than those in the different nests. For exam-

ple, both the actions of failing to yield and disobeying TCD are closely related to the right of

way and are prone to occur in intersection areas. Nonetheless, considering that there are a

variety of hazardous action types, further efforts can be directed to explore the different classi-

fications of hazardous actions for the nests to achieve better goodness of fit. To further under-

stand the characteristics of hazardous actions, it also calls for developing advanced analytic

methods to identify the heterogeneity [54] and spatial effects of hazardous actions (e.g., spatial

correlation, spatial heterogeneity, and spillover effect) [55]. In addition, the real-time safety

evaluation method is encouraged to be explored to diminish the hazardous actions in time

[56].

Conclusion

Hazardous driving actions are the typical determinant for crash responsibility assignment in

QIE theory. With the use of Michigan crash data, the study explores the difference in QIE for

crashes with various hazardous actions. The analytic results demonstrate that 1) the exposures

are inconsistent among the crashes involving different hazardous actions, 2) driving cohorts

have differential propensities for performing the various hazardous driving action, and 3) the

occurrences of hazardous actions are influenced by many factors such as driver-vehicle
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characteristics, time, area, and environmental condition. The findings serve to highlight the

importance of clarifying the specific hazardous actions for responsibility assignment so as to

improve the accuracy of QIE estimation.

The limitation of the study is that it only compares the exposures between crashes with dif-

ferent hazardous actions, while does not assess the accuracy of exposure estimates by compari-

son with the exposure truth (e.g., VMT and AADT) due to the lack of relevant data. Future

work can be directed to further validate the accuracy of the exposure estimation under specific

responsibility assignment criteria when the data of exposure truth is available.
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