
RESEARCH ARTICLE

UniCon: A unified star-operation to efficiently

find connected components on a cluster of

commodity hardware

Chaeeun KimID, Changhun Han, Ha-Myung ParkID*

Kookmin University, Seoul, Republic of Korea

* hmpark@kookmin.ac.kr

Abstract

With a cluster of commodity hardware, how can we efficiently find all connected components

of an enormous graph containing hundreds of billions of nodes and edges? The problem

of finding connected components has been used in various applications such as pattern rec-

ognition, reachability indexing, graph compression, graph partitioning, and random walk.

Several studies have been proposed to efficiently find connected components in various

environments. Most existing single-machine and distributed-memory algorithms are limited

in scalability as they have to load all data generated during the process into the main mem-

ory; they require expensive machines with vast memory capacities to handle large graphs.

Several MapReduce algorithms try to handle large graphs by exploiting distributed storage

but fail due to data explosion problems, which is a phenomenon that significantly increases

the size of data as the computation proceeds. The latest MapReduce algorithms resolve the

problem by proposing two distinguishing star-operations and executing them alternately,

while the star-operations still cause massive network traffic as a star-operation is a distrib-

uted operation that connects each node to its smallest neighbor. In this paper, we unite the

two star-operations into a single operation, namely UniStar, and propose UniCon, a new dis-

tributed algorithm for finding connected components in enormous graphs using UniStar.

The partition-aware processing of UniStar effectively resolves the data explosion problems.

We further optimize UniStar by filtering dispensable edges and exploiting a hybrid data

structure. Experimental results with a cluster of 10 cheap machines each of which is

equipped with Intel Xeon E3-1220 CPU (4-cores at 3.10GHz), 16GB RAM, and 2 SSDs of

1TB show that UniCon is up to 13 times faster than competitors on real-world graphs. Uni-

Con succeeds in processing a tremendous graph with 129 billion edges, which is up to 4096

times larger than graphs competitors can process.

Introduction

Given a large graph containing hundreds of billions of nodes and edges, how can we find

all connected components efficiently on a cluster of commodity hardware? A connected

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kim C, Han C, Park H-M (2022) UniCon: A

unified star-operation to efficiently find connected

components on a cluster of commodity hardware.

PLoS ONE 17(11): e0277527. https://doi.org/

10.1371/journal.pone.0277527

Editor: Dhananjay Singh, Hankuk University of

Foreign Studies, KOREA, REPUBLIC OF

Received: December 22, 2021

Accepted: October 28, 2022

Published: November 30, 2022

Copyright: © 2022 Kim et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

this study have been uploaded to GitHub and are

accessible using the following link: https://github.

com/UniCon2021/UniCon.

Funding: This work was supported by the National

Research Foundation of Korea(NRF) grant funded

by the Korea government(MSIT) (No.

2020R1F1A1065224). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-4715-7836
https://orcid.org/0000-0002-6421-8880
https://doi.org/10.1371/journal.pone.0277527
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277527&domain=pdf&date_stamp=2022-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277527&domain=pdf&date_stamp=2022-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277527&domain=pdf&date_stamp=2022-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277527&domain=pdf&date_stamp=2022-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277527&domain=pdf&date_stamp=2022-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0277527&domain=pdf&date_stamp=2022-11-30
https://doi.org/10.1371/journal.pone.0277527
https://doi.org/10.1371/journal.pone.0277527
http://creativecommons.org/licenses/by/4.0/
https://github.com/UniCon2021/UniCon
https://github.com/UniCon2021/UniCon

component in a graph is a maximal subset of nodes connected by paths. Finding connected

components is one of the most important tasks in the field of graph analysis with various appli-

cations including pattern recognition [1, 2], reachability indexing [3–5], graph compression

[6–8], graph partitioning [9–11], random walk [12], etc. Meanwhile, billion to trillion-scale

graphs have emerged recently, which are very challenging to handle because of the enormity.

Various methods have been proposed to efficiently find connected components in large

graphs, which are common these days with the expansion of data on the Web. Parallel algo-

rithms [13–15], external algorithms [16–19], and distributed-memory algorithms [20–25] run

quickly on moderate-sized graphs. However, these algorithms fail when the graph is large

because they have to load all data generated during the process, including the entire input

graph, into the main memory (see Fig 14). Like in [15, 26] and [25], some algorithms report-

edly handle a hundred billion scale graphs by exploiting expensive machines, but such

machines are unaffordable for common data scientists.

Several MapReduce algorithms [26–31] try to handle large graphs by exploiting distributed

storage but fail because they execute distributed operations a lot or suffer from data explosion

problems, which significantly increase the size of data as the computation proceeds which

leads to a massive disk and network I/O. To resolve these problems, recent MapReduce algo-

rithms [32–34] propose two distinguishing star-operations and conduct them alternately,

where a star-operation is a distributed operation that transforms the input graph into another

one keeping the connectivity. Then, our question is: Is there any way to improve the perfor-
mance of the MapReduce algorithms by merging the two star-operations into one? The data

explosion problem occurs again if we combine two star-operations carelessly.

In this paper, we propose UniStar, a unified star-operation, and UniCon, a new distributed

algorithm using UniStar. UniStar avoids the data explosion problem by partition-aware pro-
cessing, which partitions nodes and processes nodes in each partition together. We further

optimize UniStar in two ways: 1) filtering dispensable edges to reduce intermediate data and 2)

minimizing the memory consumption in workers by a custom data structureHybridMap. We

summarize the main contributions of this paper as follows:

• Algorithm. We propose UniStar, a unified star-operation avoiding data explosion problem.

We also propose UniCon, a fast and scalable distributed algorithm using UniStar for finding

connected components in an enormous graph.

• Theory. We prove the correctness and various properties of UniCon. We guarantee that the

expected memory usage of a worker by UniCon is O((|V| + |E|)/ρ) where |V|, |E|, and ρ are

the numbers of nodes, edges, and partitions, respectively.

• Experiment. Extensive experiments show that UniCon outperforms the state-of-the-art dis-

tributed algorithms; UniCon runs as fast as distributed-memory algorithms and succeeds in

processing a tremendous graph with 129 billion edges, using only 10 cheap machines each of

which is equipped with Intel Xeon E3-1220 CPU (4-cores at 3.10GHz), 16GB RAM, and 2

SSDs of 1TB.

The codes and datasets used in this paper are available in https://github.com/UniCon2021/

UniCon.

Related work

In this section, we review and compare existing methods for finding connected components in

three categories: single-machine algorithms, distributed-memory algorithms, and MapReduce

algorithms. We also describe how the proposed method is improved over the existing algorithms.

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 2 / 22

https://github.com/UniCon2021/UniCon
https://github.com/UniCon2021/UniCon
https://doi.org/10.1371/journal.pone.0277527

Single-machine algorithms

Traditional graph traversal algorithms such as breadth-first search and depth-first search find

connected components in linear time on the size of the graph. Loading the entire graph into

the memory, they require O(|V| + |E|) memory space where |V| and |E| are the numbers of

nodes and edges in the graph, respectively. Union-Find based algorithms [35–37] reduce

required memory space to O(|V|) by exploiting a parent pointer tree data structure. Our pro-

posed method UniCon uses Rem [37], a Union-Find based single machine algorithm, with

modification as a module. Multi-core algorithms [13–15] reduce the running time by exploit-

ing multi-core CPUs. ConnectIt [15] is the state-of-the-art multi-core algorithm showing the

fastest performance by advanced optimization techniques such as edge sampling, tree linking,

and tree compression. However, the multi-core algorithms, including ConnectIt, are limited

in scalability because they require loading the entire graph into the main memory. To process

a large graph using the above multi-core algorithms, we have to prepare an expensive machine

with a huge memory capacity. For example, in [15], the authors use a machine with 72 cores

and 1TB memory to process billion-scale graphs; our experiments show that ConnectIt fails to

process large graphs on a commodity machine (see Section “Results on Real-world Datasets”).

Distributed-memory algorithms

For the purpose of improving the speed and scalability, distributed-memory algorithms exploit

the main memory of multiple machines to store all the input and the intermediate data gener-

ated during the process. Pregel-like systems [18, 20–23, 38, 39] describe graph algorithms,

including connected component computation, as a set of node-centric operations that propa-

gate the value of a node to neighboring nodes repeatedly. FastSV [25], the state-of-the-art dis-

tributed-memory algorithm, and LACC [24] compute connected components in a linear

algebraic way; they implement the Awerbuch-Shiloach algorithm [40] using the Combinatorial

BLAS library [41], which provides several primitives to represent graph algorithms. However,

the above distributed-memory algorithms fail when the intermediate data does not fit into the

memory. To process a large graph with distributed-memory algorithms, we need an expensive

cluster with massive memory capacity. For example, LACC and FastSV use Cray XC40, the

supercomputer composed of more than 4,000 nodes (262,000 cores, 360 TB main memory), to

process a graph of 50 billion edges. We show that LACC and FastSV fail to process large graphs

on a cluster of commodity hardware (see Section “Results on Real-world Datasets”).

MapReduce algorithms

MapReduce [42] is a framework for processing large data using a cluster that consists of multi-

ple commodity machines. While distributed-memory algorithms are limited to moderate-

sized graphs, MapReduce is suitable for handling enormous graphs as it processes data in an I/

O efficient manner on a distributed file system. Several MapReduce algorithms [26–30, 32–34]

have been proposed to find connected components in enormous graphs. Pegasus [27] propa-

gates the label of each node to its neighbors using a distributed operation each round. The

number of rounds required by Pegasus is O(d) where d is the diameter of the graph. As each

distributed operation takes non-trivial time, Pegasus does not scale well to large graphs. Hash-

Greater-to-Min [28] reduces the number of rounds to O(log|V|), while Hash-to-Min, proposed

in the same paper, runs faster in practice. Hash-to-min builds initial clusters each of which

consists of a node and its neighbors, and then unions the clusters each round. Hash-to-Min,

however, suffers from the problems of data explosion and load balancing. The alternating algo-

rithm [32] resolves the data explosion problem by dividing the union operation of Hash-to-

Min into two distributed operations, namely star-operation, and by executing them alternately.

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 3 / 22

https://doi.org/10.1371/journal.pone.0277527

PACC [34] resolves the load balancing problem by redesigning the star-operations to partition

the nodes; however, PACC still generates a large amount of intermediate data as it alternates

the two star-operations as the alternating algorithm does. Note that our method UniCon elab-

orately unifies the two distributed operations to reduce the amount of intermediate data with-

out load balancing problems. Cracker [31] also improves on the alternating algorithm via

vertex pruning and edge reduction. Stergiou et al. [26] propose a label-propagation based dis-

tributed method guarantees a logarithmic round number by shortcutting. The algorithm is

reported to handle the largest dataset to date exploiting a large-scale cluster that contains 5000

workers, each of which has 128GB memory. Unfortunately, the algorithm is not tested in our

experiments because it is not publicly available and not reproducible; it is implemented on

Yahoo’s private graph processing system. We believe that the method can’t handle large graphs

on commodity machines because it requires loading the entire graph on memory every round

to examine every edge in the graph at each iteration as described in [26].

Preliminaries

In this section, we define the problem of finding all connected components. Symbols fre-

quently used in this paper are listed in Table 1.

Problem definition

Let G = (V, E) denote an undirected graph where V and E are the sets of nodes and edges,

respectively. The nodes in V are totally ordered; u< v indicates that u precedes v (or v follows

u). An edge between two nodes u and v is denoted as an ordered pair: (u, v) if u> v, (v, u) oth-

erwise. We say two nodes u and v are connected if G contains a path from u to v. A connected

component, shortly a component, of G is a maximal subset of V where all pairs are connected

in G. Every node belongs to exactly one component. We denote the component containing

node u by Λ(u, G). The problem of interest in this paper is finding all components in a given

graph. This problem is equivalent to mapping each node u to the representative node in Λ(u,

G). Even though any node in a component can be the representative node, we consider the

most preceding node in the component to be the representative node. For a node set S, we

denote the most preceding node in S bym(S). Then, we formally define the problem of finding

connected components as follows:

Table 1. Table of symbols.

Symbol Definition

G = (V, E) Undirected graph with node set V and edge set E
u, v, w Nodes

(u, v) Edge between u and v such that u > v
Λ(u, G) Connected component containing node u in G
m(S) Most preceding node in node set S
Γ−(u, G) Set of preceding neighbors of u in graph G: {v|(u, v)2E}

Γ+(u, G) Set of following neighbors of u in graph G: {v|(v, u)2E}

Γ(u, G) Set of all neighbors of u in graph G: Γ+(u, G)[Γ−(u, G)

Γ?(u, G) Set of neighbors v of node u in graph G = (V, E) such that the edge between u and v is not intact

ρ Number of partitions

[ρ] Set of partition ids: {0, . . ., ρ − 1}

ξ(u) Partition of node u
[S]i i-th partition of node set S: {v 2 S|ξ(v) = i}

https://doi.org/10.1371/journal.pone.0277527.t001

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 4 / 22

https://doi.org/10.1371/journal.pone.0277527.t001
https://doi.org/10.1371/journal.pone.0277527

Definition 1. (Finding All Connected Components) Given an undirected graph G = (V, E),

the problem of finding all connected components is to map each node u 2 V to the most preceding
node m(Λ(u, G)) in the component containing u.

We define several symbols that are used to describe our method. For a graph G = (V, E) and

a node u 2 V, we denote by Γ−(u, G) = {v|(u, v)2E} the set of preceding neighbors of u. Simi-

larly, we denote by Γ+(u, G) = {v|(v, u)2E} the set of following neighbors of u. Γ(u, G) = Γ−(u,

G)[Γ+(u, G) denotes the set of all neighbors of u. UniCon partitions the nodes by a random

hash function ξ: V! [ρ] where ρ is the number of partitions and [ρ] = {0, . . ., ρ − 1} is the set

of partition ids. ξ(u) is the partition id of node u. For a node set S, [S]i = {v 2 S|ξ(v) = i} denotes

the i-th partition of node set S. Each partition [V]i of node set V is totally ordered.

Proposed method

In this section, we propose UniCon, a new distributed algorithm for finding connected com-

ponents. UniCon achieves high-speed and high-scalability by dealing with the following

challenges.

1. To avoid data explosion problems, existing MapReduce algorithms [32–34] divide the

union operation of Hash-to-Min [28] into two star-operations, which still transfer massive

data via the network. How do we reunite two star-operations into one while resolving

data explosion problems? We propose a new star-operation UniStar that alleviates data

explosion problems by partition-aware processing; it removes duplicate edges in each par-

tition and leads to early convergence as nodes jump to near the representative node through

the edges in each partition. (Section “UniStar: The Unified Star Operation”)

2. UniStar reads and writes all edges of the input graph but most edges do not change any-

more after several rounds. How do we figure out such edges during the process and filter

out them to minimize the size of data I/O? We elaborately design three types of edges that

no longer contribute to updating the graph. UniCon filters out such dispensable edges

and reduces the intermediate data size significantly. (Section “UniStar-opt: Filtering Out

Dispensable Edge”)

3. In UniStar, each worker uses a data structure to keep the preceding node for each node. It

is easy to run out of memory if the data structure is inadequately designed, especially on

commodity machines. How do we efficiently design the data structure and guarantee the

memory consumption of UniCon? A hybrid data structure of an array and a hash table

ensures that the expected memory size required by each worker is O((|V| + |E|)/ρ) while

showing the fast performance in practice, where ρ is the number of partitions. (Section “A

Hybrid Map Data Structure”)

We describe the overall structure of UniCon. Algorithm 1 is the pseudocode of UniCon.

UniCon consists of three steps: sketching, partitioning, and finishing. Fig 1 is an example

showing the input and output of each step. The sketching step, proposed in [34], computes

connected components on each chunk of the input graph to reduce the graph size and does a

load balancing work (line 2), where a chunk is a subset of edges existing consecutively in stor-

age. In the partitioning step, UniCon partitions the input graph into the number of partitions

ρ overlapping subgraphs by iteratively running the unified star-operation UniStar or the opti-

mized version UniStar-opt (lines 3-9). If the number of input edges is less than a threshold τ,
UniCon runs Rem instead of UniStar to reduce the number of rounds (lines 4-8). After the

partitioning step, the nodes in each subgraph are connected to the representative node by

paths so that the finishing step computes connected components correctly by independently

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 5 / 22

https://doi.org/10.1371/journal.pone.0277527

processing each subgraph using Rem (line 10). We describe UniStar in Section “UniStar: The

Unified Star Operation” and UniStar-opt in Section “UniStar-opt: Filtering Out Dispensable

Edges” in detail.

Algorithm 1: UniCon
Input: E as an edge list and V where G = (V, E)
Output: {(u, m(Λ(u, G)))|u 2 V}
1 F ;;
2 E Sketching(E) // of [34]
3 repeat
4 if |E| > τ then
5 E, ‘sep’ UniStar-opt(E) // Algorithm 2
6 F F[‘sep’;
7 else
8 E Rem(E) // of [37]
9 until Convergence;
10 return Finishing(V, E, F)

UniStar: The unified star operation

We first demonstrate that combining two star-operations in a simple way causes data explo-

sion problems. After that, we propose UniStar, a unified star-operation that resolves the data

explosion problems.

UniStar-naïve. One simple method to combine two distributed operations is UniStar-

naïve. For each node u, UniStar-naïve connects each neighbor v 2 Γ(u, G) [{u} tom(Γ(u, G)

[{u}), but if v 6¼m([Γ(u, G) [{u}]ξ(v)) then connects v tom([Γ(u, G) [{u}]ξ(v)) for load bal-

ancing, like in [33]. In round 1 of Fig 2, for example, the neighbors Γ(4, G) [{4} = {1, 2, 4, 5, 6,

8} of node 4 are connected tom([Γ(4, G) [{4}]0) = 2 orm([Γ(4, G) [{4}]1) = 1, andm([Γ(4,

G) [{4}]0) = 2 is connected tom(Γ(4, G) [{4}) = 1.

Simply combining two distributed operations, however, causes a data explosion problem,

which prolongs the running time significantly or leads to failure. Fig 2 shows the demonstra-

tion of the data explosion problem caused by UniStar-naïve. The number of edges rises to 29

in Round 2, while the number of input edges is 14. The reason the number of edges increases

is that each edge is processed on both side nodes. For example, UniStar-naïve of round 1 cop-

ies edge (17, 16) in the original graph to edges (17, 12) and (17, 16) sincem(Γ(16, G) [{16}) =

12 andm(Γ(17, G) [{17}) = 16. The copied edges are copied again and again in subsequent

rounds, causing the data explosion problem.

Fig 1. An example showing the input and output for each step of UniCon.

https://doi.org/10.1371/journal.pone.0277527.g001

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 6 / 22

https://doi.org/10.1371/journal.pone.0277527.g001
https://doi.org/10.1371/journal.pone.0277527

UniStar. UniStar avoids the data explosion problem in two ways: partition-aware process-
ing and excluding intact-edge.

Partition-aware processing. For each partition i, partition-aware processing is to handle

the nodes in partition i and their incident edges together on the same machine. Partition-

aware processing has two advantages; it significantly reduces the number of edges by removing

duplicate edges made in each partition and accelerates convergence by providing opportunities

for each node u to jump to nearm(Λ(u, G)) through the edges in each partition. Let Gi = (Vi,
Ei) be the subgraph of G induced by the set Ei of edges incident to the nodes in partition i.
UniStar computes G0i by connecting each node u tom(Λ(u, Gi)), but if u 6¼m([Λ(u, Gi)]ξ(u))

then u tom([Λ(u, Gi)]ξ(u)) for load balancing where Λ(u, Gi) is Gi’s connected component

that contains u. Then, the output graph of UniStar is G0 = (V0, E0) where V 0 ¼
S

i2½r�V
0
i and

E0 ¼
S

i2½r�E
0
i. Fig 3 shows an illustration of UniStar when the number ρ of partitions is 2.

Fig 2. UniStar-naïve causes a data explosion problem. The more edges, the darker the background color in red. The blue lines show how edge (17, 16)

propagates; the edge is copied every round. The dashed-line is the partition.

https://doi.org/10.1371/journal.pone.0277527.g002

Fig 3. An example of UniStar when the number of partitions ρ = 2. Red and blue areas represent 0 and 1, respectively. UniStar divides G into

overlapping subgraphs G0 and G1, computes G0
0

from G0 by connecting each node u 2 V0 tom(Λ(u, G0)) = 1 orm([Λ(u, G0)]ξ(u)) = 2, and computesG0
1

in the same way. Then, G0 is the union of G0
0

and G0
1
.

https://doi.org/10.1371/journal.pone.0277527.g003

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 7 / 22

https://doi.org/10.1371/journal.pone.0277527.g002
https://doi.org/10.1371/journal.pone.0277527.g003
https://doi.org/10.1371/journal.pone.0277527

In this example, nodes 20 and 2 in G0
0

are connected to nodes 2 and 1, respectively, because

Λ(20, G0) = {1, 2, 4, 5, 6, 8, 11, 12, 16, 17, 20},m([Λ(20, G0)]ξ(20)) = 2, andm(Λ(2, G0)) = 1.

Theorem 1. The output graph G0 = (V0, E0) of UniStar has the same connectivity as the input
graph G = (V, E).

Proof. If nodes u and v in Gi are connected by a path, thenm(Λ(u, Gi)) =m(Λ(v, Gi)). All

nodes u in G0i are connected tom(Λ(u, Gi)) directly or throughm([Λ(u, Gi)]ξ(u)). It indicates

that Gi and G0i have the same connectivity. G and G0 also have the same connectivity as

E =
S
i2[ρ] Ei and E0 ¼

S
i2½r�E

0
i by definition.

Excluding intact-edge. UniStar reduces the amount of data to process by excluding several

intact edges when dividing the input graph G into overlapping subgraphs Gi for i 2 [ρ]. We

say an edge is intact if the edge has not changed when transforming Gi to G0i, and we let Ii ¼
E0i \ Ei be the set of intact edges from partition i. An intact edge (u, v)2Iξ(v) for ξ(u)6¼ξ(v)
implies that u has no path to another node through node v, and thus UniStar excludes the edge

from Gξ(u) in the next round. In Fig 4, for example, blue edges in round r are intact, and the

intact edge sets are I0 = {(4, 2)} and I1 = {(4, 1), (11, 9), (13, 9), (17, 16)}. Let G(r), G0(r), Gi(r),
and G0iðrÞ be G, G0, Gi, and G0i in round r, respectively. Similarly, Let Ii(r) be Ii in round r. The

output of round r is the input of round r + 1, i.e., G0(r) = G(r+ 1). UniStar divides G(r+ 1) into

Gi(r+ 1) for i 2 [ρ], and each edge (u, v) in G(r + 1) exists in two subgraphs Gξ(u)(r+ 1) and Gξ
(v)(r+ 1) if ξ(u)6¼ξ(v). If edge (u, v) is an intact edge in Ii(r), meanwhile, UniStar excludes (u, v)
from Gj(r+ 1) for j 6¼ i. In Fig 4, edge ð2; 1Þ 2 G0

0
ðrÞ n I0ðrÞ exists in both G0(r + 1) and

G1(r + 1), but edge (4, 1)2I1(r) does only in G1(r + 1) and is excluded from G0(r + 1).

A MapReduce version of UniStar is listed in Algorithm 2 (ignore the blue lines). Given an

edge (u, v) such that u> v, the map function of UniStar emits hξ(u);(u, v)i and hξ(v);(u, v)i
(lines 1-4) so that the input of the reduce function is the edge set Ei. If node u (or v) has a tag

that tells the edge (u, v) is intact in the previous round, UniStar doesn’t emit hξ(u);(u, v)i (or

hξ(u);(u, v)i), because edge (u, v) is excluded from Gξ(u) (or Gξ(v)). The tag is attached during

the reduce function of UniStar in the previous round (lines 17 and 19). Given Ei, the reduce

function of UniStar first findsm(Λ(u, Gi)) as p(u) for each node u 2 Vi using the Rem algo-

rithm (line 8) where Gi = (Vi, Ei) is the subgraph induced by Ei. A node u 2 cmeans edge

(u, p(u)) has changed. For each node v in each connected component pu of Gi where u =m
(pu), UniStar emits hv, ui if v =m([pu]ξ(v)), otherwise it emits hv,m([pu]ξ(v))i (lines 9-11, 15-19,

Fig 4. Intact edges in round r are marked in blue. The output of UniStar in round r becomes the input in round r + 1. Intact edge (u, v) in round r
such that ξ(u)6¼ξ(v) is excluded in a subgraph of round r + 1. The excluded intact edges are marked with red dashed lines.

https://doi.org/10.1371/journal.pone.0277527.g004

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 8 / 22

https://doi.org/10.1371/journal.pone.0277527.g004
https://doi.org/10.1371/journal.pone.0277527

and 22-23). If v =m([pu]ξ(v)) and v =2 c, UniStar attaches a tag to the emitted pair hv;uimeaning

that edge (v, u) is intact (lines 15-19). The tag is used for excluding intact edges in the next

round.

Algorithm 2: UniStar-opt
Map: input hu;vi such that u > v
1 if u has no tag B then
2 emit hξ(u);(u, v)i
3 if v has no tag and ξ(u)6¼ξ(v) then
4 emit hξ(v);(u, v)i
Reduce: input hi;Eii

5 Let Gi = (Vi, Ei) be the subgraph induced by Ei
6 Compute |Γ+(u, Gi)| and |Γ?(u, Gi)| for each u 2 Vi \ [V]i
7 Clear all tags in Ei
/� p: set of key-value pairs where each key is a node u and the value

p(u) is m(Λ(u, Gi)) �/
/� c: set of keys of changed pairs in p: (u, p(u)) =2 Ei if u 2 c �/

8 p, c findCCInPartition(Ei) // Rem [37] with change
tracking
9 foreach u2 the set of unique values in p do
10 let pu be the set of all keys whose value is u in p
11 foreach v 2 pu\{u} do
12 if ξ(v) = i and |Γ?(v, Gi)| = |Γ+(v, Gi)| = 0 then

// case 3: do nothing
13 else if ξ(u) = i and |Γ?(u, Gi)| = 0 then
14 emit hv, ui to ‘sep’ // case 2
15 else if v = m([pu]ξ(v)) then
16 if v =2 c and ξ(v) = i and ξ(u) 6¼ i then
17 emit hv;u with a tagi
18 else if v =2 c and ξ(v) 6¼ i then
19 emit hv with a tag;ui
20 else if ξ(v) = i and |Γ+(v, Gi)| = 0 the
21 emit hv, m([pu]ξ(v))i to ‘sep’ // case 1
22 else
23 emit hv, m([pu]ξ(v))i

UniStar-opt: Filtering Out Dispensable Edges

In this section, we propose UniStar-opt that reduces the size of processed data significantly by

filtering out dispensable edges. We have noticed that, even if we filter out a considerable num-

ber of edges during UniStar, UniCon is able to compute the connected components of a graph

correctly. UniStar-opt excludes such filtered edges from the input of subsequent rounds so

that the amount of disk and network I/Os decreases dramatically (see Fig 10). UniStar-opt fil-

ters out an edge ðu; vÞ 2 E0i in three cases:

Case 1. ξ(u) = ξ(v) = i and Γ+(u, Gi) = ; where Γ+(u, Gi) = {w|(w, u)2Ei}

Case 2. ξ(v) = i and Γ?(v, Gi) = ; where Γ?(v, Gi) = {w|w has no tag, (w, v)2Ei}[{w|w has no

tag, (v, w)2Ei}

Case 3. ξ(u) = i and Γ?(u, Gi) = Γ+(u, Gi) = ;

UniStar-opt accumulates the edges of cases 1 and 2 over several rounds into ‘sep’ and uses

‘sep’ as the input of the finishing step. The edges of case 3 are just discarded. In case 1, edge (u,

v) belongs to partition i entirely, and node u has no following neighbor. By the definition of Gi,
all edges incident to node u in G are also incident to node u in Gi if ξ(u) = i; this fact guarantees

that, if node u has no following neighbor in Gi, there is no node w connected tom(Λ(w, G))

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 9 / 22

https://doi.org/10.1371/journal.pone.0277527

through (u, v). Thus, it is safe for UniStar-opt to exclude the edge (u, v) from the input of the

next round. Note that, even if node u is not yet connected tom(Λ(u, G)), the finishing step

connects u tom(Λ(u, G)) finally. Cases 2 and 3 are for the edges that remain unchanged in sub-

sequent rounds of UniStar since they are in the connected components already discovered. In

case 2, every edge incident to node v is intact in Gi where ξ(v) = i. In this case, v ism(Λ(v, G))

and all w 2 Λ(v, Gi) are directly connected to v. That is, the edges do not change anymore,

and UniStar-opt filters them out safely. In case 3, the only edge incident to node u is (u, v)
that is intact in Gi where ξ(u) = i. UniStar-opt discards (u, v) from G0i because node v has no

chance to connect with another node through node u and the same edge also exists in Gξ(v).
Theorem 2. For an edge (u, v) such that ξ(u)6¼ξ(v), if (u, v) is the only edge incident to node u

in Gξ(u), (u, v) also exists in Gξ(v).
Proof. A logically equivalent claim: if (u, v) is in Eξ(u), then (u, v)2Eξ(v) or (u, w)2Eξ(u) for

some w 6¼ v. The claim is directly true for non-intact edges by the definition of Ei: a non-intact

edge (u, v) exists in both Eξ(u) and Eξ(v) if ξ(u)6¼ξ(v). All edges in the original graph are non-

intact. Assume that a non-intact edge (u, v) changes to an intact edge in partition ξ(u) of

round r, i.e., (u, v)=2Iξ(u)(r − 1) and ðu; vÞ 2 ExðuÞðrÞ \ E0xðuÞðrÞ. Edge (u, v) also exists in Eξ(v)(r)
as (u, v) is non-intact. If (u, v) is in E0

xðvÞðrÞ, (u, v) belongs to Iξ(v)(r) and (u, v) exists in both

Eξ(u)(r + 1) and Eξ(v)(r + 1), following the claim. If (u, v) is not in E0
xðvÞ, it implies (u, w) is in

E0
xðvÞ such that w 6¼ v. Then, (u, w) belongs to Eξ(u)(r + 1), following the claim.

Fig 5 shows an illustration of UniStar-opt when the threshold τ is 4. The edges filtered by

cases 1, 2, and 3 are marked with orange, green, and purple dashed lines, respectively. Blue

lines are intact edges. Fig 5(a) is an input graph G consists of 4 connected components and 11

edges. In round 1 of Fig 5(b), edges (4, 2) and (20, 12) in G0
0

and edges (15, 9) and (19, 9) in G0
1

are filtered by case 1. For example, edge (4, 2) is in case 1 because node 4 has no following

neighbor and nodes 2 and 4 are in partition i. In round 2 of Fig 5(c), edge (6, 5) in G0
1

is filtered

by case 2 because ξ(5) = 1 and all edges incident to node 5 in G1 is intact. In the same round,

edge (6, 5) in G0
0

is discarded by case 3 because ξ(6) = 0 and edge (6, 5) is intact and the only

edge incident to node 6 in G0. The number of remaining edges shrinks every round quickly,

and round 3 is the last round because the number of remaining edges is less than τ = 4. After

running the Rem algorithm on the graph induced by the remaining edges, the output edges of

Rem and the edges filtered by cases 1 and 2 together become the input of the finishing step as

in Fig 5(e). In this example, the input and output of Rem are the same.

A MapReduce version of UniStar-opt, the optimized version of UniStar, is listed in Algo-

rithm 2; added or modified lines from the UniStar are marked in blue. The reduce function

processes the edges of the three filtering cases at lines 20-21 (case 1), lines 13-14 (case 2), and

line 12 (case 3), respectively. Computing |Γ+(u, Gi)| and |Γ?(u, Gi)| for each node u 2 Vi\[V]i

Fig 5. An example of UniStar-opt when the threshold τ = 4. Intact edges are represented as blue lines. The edges filtered by cases 1, 2, and 3 are

marked with orange, green, and purple dashed lines, respectively. As the number of remaining edges after round 3 is less than τ = 4, the output edges of

Rem on the graph induced by the remaining edges and the edges filtered by cases 1 and 2 become the input of the finishing step.

https://doi.org/10.1371/journal.pone.0277527.g005

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 10 / 22

https://doi.org/10.1371/journal.pone.0277527.g005
https://doi.org/10.1371/journal.pone.0277527

in advance (lines 5-6), UniStar-opt checks within a constant time that in which case each

edge is.

A hybrid map data structure

To figure outm(Λ(u, Gi)) for each node u, UniStar (as well as UniStar-opt) uses the Rem algo-

rithm with modification for tracking changes. The original Rem algorithm uses an array of

size |V| for the mapping table p that maps each node u tom(Λ(u, Gi)). If UniStar uses the origi-

nal Rem algorithm, each worker processing a subgraph Gi = (Vi, Ei) requires |V| memory space

for the mapping table p and causes an out-of-memory error when |V| exceeds the memory size

of a worker; even though |Vi| is much smaller than |V|, the array size for p should be |V| since

every node has a possibility of belonging to Vi. One easy solution to avoid an out-of-memory

error is using a hash table for p instead of an array; it is guaranteed that the memory space

required by a hash table is O(|Vi|). However, accessing values by key from a hash table is 10 to

100 times slower than accessing values by index from an array.

We propose HybridMap, a data structure that guarantees fast performance and low mem-

ory usage by using the fact that Gi is induced by Ei. HybridMap takes advantage of both an

array and a hash table; an array is used for nodes in [V]i, and a hash table is used for nodes not

in [V]i. As Ei is the set of edges incident to nodes in [V]i, most nodes in Vi are in [V]i. It sug-

gests that most accesses to p are performed quickly on the array while suggesting much fewer

accesses to the hash table. HybridMap requires as much memory space as the size of the array

plus the number of items on the hash table. The array size equals the cardinality of [V]i as the

nodes are totally ordered. The number of items in the hash table is |Vi\[V]i|, and it is bounded

by |Ei| = O(|V|/ρ); the initialization step of UniCon makes |E| to be α|V| for a constant α [34].

The hash table size |Vi\[V]i| is much smaller than the array size |[V]i| in practice (see Section

“Efficacy of HybridMap”).

Theorem 3. UniStar with HybridMap requires O((|V| + |E|)/ρ)memory space to compute G0i
from Gi.
Proof. UniStar stores one value for each node of Vi in HybridMap. HybridMap uses an

array for nodes in [V]i and a hash table for nodes in [V]i\Vi. As UniStar partitions the nodes

randomly, the expected size of [V]i is |V|/ρ. As Gi is induced by Ei, |[V]i\Vi| is at most |Ei| when

every edge contains a distinct node not belonging to [V]i. Assuming that the edges are evenly

distributed by a random hash function, the expected size of Ei is 2|E|/ρ; every edge can be in

two subgraphs. Thus, HybridMap requires O(|[V]i| + |[V]i\Vi|) = O((|V| + |E|)/ρ).

UniStar with HybridMap avoids an out-of-memory error by setting ρ to be O((|V| + |E|)/

M) whereM is the memory size of a worker. Large ρ decreases the benefit of UniStar’s parti-

tion-aware processing and increases the running time. Thus, setting ρ as low as possible is

good for performance, even though the running time does not increase much as ρ increases

(see Fig 7).

Experiments

In this section, we aim to answer the following questions from the experiments:

Q1 Efficacy of UniStar (Section “Efficacy of UniStar”). How much intermediate data does

UniStar reduce to resolve the data explosion problem?

Q2 Efficacy of edge filtering (Section “Efficacy of Edge Filtering”). How many edges are fil-

tered by the edge filtering of UniStar-opt?

Q3 Efficacy of HybridMap (Section “Efficacy of HybridMap”). How efficient is UniCon

using HybridMap compared to using an array or a hash table?

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 11 / 22

https://doi.org/10.1371/journal.pone.0277527

Q4 Scalability (Section “Scalability”). How does UniCon scale up in terms of the number of

machines and the data size?

Q5 Performance on real-world datasets (Section “Results on Real-world Datasets”). How

well does UniCon perform on real-world graphs compared to state-of-the-art algorithms?

Experimental settings

Datasets. We evaluate UniCon with real-world graphs summarized in Table 2. TW is a

follower-followee network in Twitter. LJ and FS are friendship networks in social networking

services LiveJournal and Friendster, respectively. SD is a domain level hyperlink network.

GSH, CW, and HL are page level hyperlink networks. RMAT-k for k 2 {21, 23, 25, 27, 29, 31,

33} is a synthetic graph following RMAT model [43], and we generate it using TeGViz [44], a

distributed graph generator. We set RMAT parameters (a, b, c, d) to (0.57, 0.19, 0.19, 0.05).

Machines. The cluster used in the experiment consists of 10 machines, and each machine

is equipped with Intel Xeon E3-1220 CPU (4-cores at 3.10GHz), 16GB RAM, and 2 SSDs of

1TB. Hadoop v3.2.1, Spark v3.0.1, and MPICH v3.3 are installed. One machine of the cluster

acts as the master and also as a worker, and the others act as workers. Single machine algo-

rithms are tested on the master node.

Algorithms. We implement three versions of UniCon (UniCon-naïve, UniCon-base,

UniCon-opt) on Hadoop. For a fair comparison, we use the original codes from the authors of

the competitors: Cracker, FastSV, LACC, PowerGraph, PACC, and ConnectIt. All codes are

publicly available on the Web. Rem is implemented with C++11.

• UniCon-naïve: the naïve version of the proposed method described in Section “UniStar-

naïve”.

• UniCon-base: the proposed method in Section “UniStar”.

• UniCon-opt: the proposed method in Section “UniStar-opt: Filtering Out Dispensable

Edges”.

• PACC [34]: the state-of-the-art MapReduce algorithm.

• Cracker [30]: a MapReduce algorithm implemented in Apache Spark. We add Cracker here

because Cracker and PACC have not been tested together so far.

• PowerGraph [22]: the connected component algorithm implemented on PowerGraph, a rep-

resentative pregel-like distributed-memory graph processing system.

• LACC [24], FastSV [25]: the state-of-the-art distributed-memory algorithms.

• ConnectIt [15]: the state-of-the-art multi-core algorithm. UF-Rem-CAS and LDD sampling

are used since the combination is the fastest according to [15].

• Rem [37]: the fastest sequential algorithm based on Union-Find according to [35].

Parameters. Unless otherwise noted, we use all 10 workers. To find the optimal condition

for each method, we vary the parameter values and compare the running time. Fig 6 shows the

effect of threshold τ on the running time of UniCon-opt on each dataset. When processing

GSH,CW, and HL with τ = 2000M, UniCon-opt gets an out-of-memory error as it tries to han-

dle large data using only a single machine. We use the optimal τ for UniCon-opt unless other-

wise noted.

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 12 / 22

https://doi.org/10.1371/journal.pone.0277527

Fig 7 shows the running time of UniCon-opt and UniCon-base with various partition num-

bers ρ. The running time soars when ρ is too small because the methods do not exploit all the

workers. Also, the running time tends to increase as ρ increases because of computational

overhead, but the increase in running time is marginal when the graph is large enough e.g.,

GSH, CW, and HL. It implies that, when the graph is enormous, UniCon can avoid an out-of-

memory error by increasing ρ, with a slight increase in running time. Accordingly, we set the

number of partition ρ to 280 for CW. Both PACC and Cracker perform the best when the

number of partitions is 20, and PowerGraph, LACC, and FastSV do the best when the number

of processors is 10, 4, and 36, respectively; thus, we use them as the default values.

Efficacy of UniStar

We compare UniCon-base and UniCon-naïve to show the effects made by UniStar; UniCon-

base uses UniStar and UniCon-naïve does UniStar-naïve. For the two operations, Fig 8 shows

Fig 6. The running time of UniCon-opt on various τ.

https://doi.org/10.1371/journal.pone.0277527.g006

Table 2. The summary of datasets.

Dataset # nodes # edges Source

LJ 4,847,571 68,993,773 SNAP

TW 41,652,230 1,468,365,182 Kwak et al. [45]

FS 65,608,366 1,806,067,135 SNAP

SD 89,247,739 2,043,203,933 Web Data Commons

GSH 988,490,691 33,877,399,152 WebGraph

CW 6,257,706,595 71,746,553,402 LemurProject

HL 3,443,082,324 128,736,914,167 Web Data Commons

RMAT-21 1,114,816 31,457,280 7� N/A (Synthetic graphs)

RMAT-23 4,120,785 125,829,120

RMAT-25 15,212,447 503,316,480

RMAT-27 56,102,002 2,013,265,920

RMAT-29 207,010,037 8,053,063,680

RMAT-31 762,829,446 32,212,254,720

RMAT-33 1,090,562,291 128,849,018,880

https://doi.org/10.1371/journal.pone.0277527.t002

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 13 / 22

https://doi.org/10.1371/journal.pone.0277527.g006
https://doi.org/10.1371/journal.pone.0277527.t002
https://doi.org/10.1371/journal.pone.0277527

the input and intermediate data sizes each round where the intermediate data is the output of

the Map step in the MapReduce implementation. Thanks to the partition-aware processing

and excluding intact-edges, UniStar effectively resolves the data explosion problem that Uni-

Star-naïve suffers from. UniStar reduces the input data and intermediate data sizes signifi-

cantly up to 4× and 8×, respectively. UniStar-naïve fails to process CW and HL because of

massive intermediate data.

Fig 9 shows the running time of UniStar and UniStar-naïve, and the cumulative sums of

them. UniStar is 2-5 times faster than UniStar-naïve in every case and UniCon-base takes

fewer rounds than UniCon-naïve; accordingly, UniCon-base reduces the total running time

by up to 4.3× compared to UniCon-naïve.

Fig 7. The running time of UniCon-opt and UniCon-base on various partition number ρ. With large data like GSH, CW, and HL, when ρ is greater

than each optimal value, the running time of UniCon increases marginally as ρ increases.

https://doi.org/10.1371/journal.pone.0277527.g007

Fig 8. The input and intermediate data sizes of UniStar and UniStar-naïve each round. UniStar reduces both sizes by up to 4× and 8×, respectively,

compared to UniStar-naïve.

https://doi.org/10.1371/journal.pone.0277527.g008

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 14 / 22

https://doi.org/10.1371/journal.pone.0277527.g007
https://doi.org/10.1371/journal.pone.0277527.g008
https://doi.org/10.1371/journal.pone.0277527

Efficacy of edge filtering

The lines in Fig 10 show the numbers of input edges to UniCon-opt (τ = 0) and UniCon-base

each round. We fix τ to be 0 to show the efficacy of edge filtering, which is applied to UniCon-

opt. The edge filtering of UniCon-opt decreases the input size rapidly for every dataset. Mean-

while, UniCon-base, which is not accompanied by edge filtering, takes a huge amount of input

every round. In round 12 of UniCon-opt, the number of input edges increases because the last

round of UniCon-opt is the finishing step; it takes as input the output edges of the partitioning

step and filtered edges by cases 1 and 2. UniCon-opt shrinks the input size by 80.4% on average

Fig 9. The running time of UniStar and UniStar-naïve, and its’ cumulative sums, respectively. UniStar is faster than UniStar-naïve in all rounds and

requires fewer rounds.

https://doi.org/10.1371/journal.pone.0277527.g009

Fig 10. The number of input edges (denoted by lines) for UniCon-opt (τ = 0) and UniCon-base each round. Filtering dispensable edges (denoted by

bars), UniCon-opt shrinks the input size by 80.4% on average every round on CW.

https://doi.org/10.1371/journal.pone.0277527.g010

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 15 / 22

https://doi.org/10.1371/journal.pone.0277527.g009
https://doi.org/10.1371/journal.pone.0277527.g010
https://doi.org/10.1371/journal.pone.0277527

every round. The bars in four colors represent the decreased input sizes by four cases: excluded

intact edges (Section “UniStar: The Unified Star Operation”) and filtered edges by three cases

in Section “UniStar-opt: Filtering Out Dispensable Edges”. All four cases contribute greatly to

reducing the size of the input data. Note that TW, FS, and GSH have only one connected com-

ponent, so there are no edges filtered by case 2, in which edges belonging to early discovered

connected components are filtered.

Fig 11 shows the running time of UniStar-opt (τ = 0) and UniCon-base, and the cumulative

sums of them each round. The running time of UniStar-opt drops dramatically as the input

size plummets every round.

Efficacy of HybridMap

UniCon-opt uses HybridMap to keep the connectivity of nodes in each partition. To show the

effectiveness of HybridMap, we compare the original UniCon-opt with the versions where

HybridMap is replaced with arrays and hash tables, respectively. Fig 12 shows the average size

of data that UniCon-opt (τ = 0) stores in memory on each worker, and Fig 13 does the running

time of UniCon-opt when the underlying data structure used by UniCon-opt is HybridMap,

an array, and a hash table, respectively. HybridMap only takes O((|V| + |E|)/ρ) for each worker

each round as analyzed theoretically in Theorem 3, while UniCon-opt with arrays fails in pro-

cessing GSH, CW, and HL because |V| of GSH, CW, and HL exceeds the memory size of a

worker. Although HybridMap takes more space than a stand-alone hash table, it is sufficiently

small already, and HybridMap reduces the running time by using an array for frequently

accessed nodes. The size of data actually stored in the hash table of HybridMap is much smaller

than the theoretical result O(|E|/ρ). UniCon-opt with HybridMap shows the best performance

in terms of speed every round, and its cumulative sum is also the lowest, except on LJ and TW.

UniCon-opt with arrays shows the long running time even though an access to array is much

faster than an access to a hash table because it loads an array of size |V| to every worker, taking

a long time for memory allocation. The running time of UniCon-opt with HybridMap is

22.7% is lower than UniCon-opt with hash tables on CW.

Fig 11. The running time of UniStar-opt and UniStar each round. By the edge filtering, the running time of UniStar-opt drops quickly.

https://doi.org/10.1371/journal.pone.0277527.g011

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 16 / 22

https://doi.org/10.1371/journal.pone.0277527.g011
https://doi.org/10.1371/journal.pone.0277527

Scalability

Fig 14 shows (left) the data scalability and (right) the machine scalability of all algorithms in

Section “Algorithms”. In the left figure, RMAT graphs with various sizes are used for the data

scalability analysis. Both axes are in a log scale. UniCon and PACC show sub-linear scalability

with slopes under 1. This can be interpreted as Hadoop takes a long time when processing

small data due to the start-up and clean-up overheads. Distributed-memory algorithms

(PowerGraph, LACC, FastSV), Cracker, ConnectIt, and Rem show near-linear scalability but

fail on medium-sized graphs because of out-of-memory errors. As a result, UniCon processes

Fig 12. The numbers of data stored in HybridMap, a hash table, and an array each round of UniCon-opt. The Y-axis is in a log scale. HybridMap

significantly reduces the data stored in memory compared to an array, letting UniCon-opt succeed in processing large graphs: GSH, CW, and HL.

HybridMap and a hash table have no significant difference in terms of the peak number of stored data.

https://doi.org/10.1371/journal.pone.0277527.g012

Fig 13. The running time of UniStar-opt with HybridMap, a hash table, and an array, respectively, each round. UniCon-opt with HybridMap

outperforms Unicon-opt with hash tables when the graph is large enough (FS, SD, GSH, CW, and HL) thanks to fast random accesses of HybridMap.

UniCon-opt with arrays fails on large graphs (GSH, CW, and HL) because of an out-of-memory error.

https://doi.org/10.1371/journal.pone.0277527.g013

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 17 / 22

https://doi.org/10.1371/journal.pone.0277527.g012
https://doi.org/10.1371/journal.pone.0277527.g013
https://doi.org/10.1371/journal.pone.0277527

4096× larger graph than LACC and FastSV, 1024× larger graph than PowerGraph and Con-

nectIt, 256× larger graph than Cracker, and 4× larger graph than Rem. Even though Rem is a

sequential algorithm, Rem handles larger graphs than distributed-memory algorithms because

Rem stores only nodes in memory while the distributed-memory algorithms require to store

the entire graph in memory. According to papers [25] and [15], LACC, FastSV, and ConnectIt

reportedly can process graphs with 100 billion edges when expensive machines are available

(e.g., a supercomputer with 262K cores for LACC and FastSV, and an expensive server com-

puter with 72 cores and 1TB memory for ConnectIt). On a commodity cluster of 10 cheap

machines used in this experiment, however, they cannot even process a graph containing only

a billion edges.

In the right figure, the machine scalability analysis shows the running time on a various

number of machines. TW is used. Both axes are in a log scale. All distributed-memory algo-

rithms and MapReduce algorithms are tested, but Cracker, PowerGraph, LACC, and FastSV

are omitted here because they fail to process TW because of out-of-memory errors. UniCon-

opt shows the best performance regardless of the number of machines. The slope of UniCon-

opt from 2 to 10 machines is -0.67, meaning that the running time decreases by 1.59× when

the number of machines doubles.

Results on Real-world Datasets

Fig 15 shows the relative running time, compared to UniCon-opt, of all the algorithms in Sec-

tion “Algorithms” on the real-world graphs listed in Table 2. UniCon-opt shows the best per-

formance on all graphs except LJ. All distributed-memory algorithms (PowerGraph, LACC,

FastSV), ConnectIt, and Cracker fail on all graphs except LJ because of out-of-memory errors.

Even on LJ, UniCon-opt is faster than LACC and FastSV, while ConnectIt is the fastest. Only

UniCon and PACC succeed in processing CW, the largest real-world graph tested in this

experiment. UniCon-opt outperforms PACC for all graphs; the speed of UniCon-opt is 143%

of PACC’s.

Fig 14. Data and machine scalability. (left) UniCon handles up to 4096× larger graphs than competitors. (right) UniCon-opt shows the best

performance regardless of the number of machines.

https://doi.org/10.1371/journal.pone.0277527.g014

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 18 / 22

https://doi.org/10.1371/journal.pone.0277527.g014
https://doi.org/10.1371/journal.pone.0277527

Fig 16 shows the numbers of rounds required by all algorithms except Rem on real-world

graphs. For PACC, one execution of a star-operation is counted as one round. Thanks to parti-

tion-aware processing, UniCon-opt requires a smaller number of rounds than PACC, Cracker,

FastSV, and LACC, and reduces up to 11 rounds compared to competitors. UniCon-opt runs

more rounds than PACC on CW because the optimal τ = 2M of Unicon-opt is small. It implies

that UniStar-opt is more efficient than PACC’s star-operations, and thus UniCon-opt per-

forms a single machine algorithm only when the data size is reduced sufficiently.

Conclusion

In this paper, we propose UniStar, a unified star-operation, and UniCon, a new distributed

algorithm finding connected components in an enormous graph using UniStar. The partition-

Fig 15. The relative running time, compared to UniCon-opt, of competitors on real-world graphs. o.o.m.: out-of-memory error. UniCon-opt with

optimal τ outperforms all competitors on all graphs except for LJ. Rem, ConnectIt, and PowerGraph are faster than UniCon-opt on LJ but fail on all

other graphs because of out-of-memory errors.

https://doi.org/10.1371/journal.pone.0277527.g015

Fig 16. The numbers of rounds required by all algorithms except Rem on real-world graphs. UniCon-opt requires up to 11 fewer rounds than

competitors.

https://doi.org/10.1371/journal.pone.0277527.g016

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 19 / 22

https://doi.org/10.1371/journal.pone.0277527.g015
https://doi.org/10.1371/journal.pone.0277527.g016
https://doi.org/10.1371/journal.pone.0277527

aware processing of UniStar effectively avoids the data explosion problem reducing the inter-

mediate data size by up to 87.5% compared to UniStar-naïve. Edge filtering of UniCon shrinks

the size of input data by 80.4% on average each round. The HybridMap data structure of Uni-

Con ensures that the memory consumption of each worker is O((|V| + |E|)/ρ) where ρ is the

number of partitions and improves performance by 22.7% over when using a typical hash

table. As a result, on a commodity cluster, UniCon handles up to 4096 times larger graphs

than graphs competitors can process. With a cluster of only 10 cheap machines, UniCon suc-

ceeds in processing a graph containing 129 billion edges, showing the fastest performance.

Author Contributions

Conceptualization: Chaeeun Kim, Ha-Myung Park.

Data curation: Chaeeun Kim, Changhun Han.

Formal analysis: Chaeeun Kim, Ha-Myung Park.

Funding acquisition: Ha-Myung Park.

Investigation: Chaeeun Kim, Changhun Han, Ha-Myung Park.

Methodology: Chaeeun Kim, Ha-Myung Park.

Software: Chaeeun Kim, Changhun Han, Ha-Myung Park.

Supervision: Ha-Myung Park.

Validation: Chaeeun Kim, Changhun Han.

Visualization: Chaeeun Kim.

Writing – original draft: Chaeeun Kim, Ha-Myung Park.

Writing – review & editing: Chaeeun Kim, Changhun Han, Ha-Myung Park.

References
1. He L, Chao Y, Suzuki K, Wu K. Fast connected-component labeling. Pattern Recognition. 2009; 42

(9):1977–1987. https://doi.org/10.1016/j.patcog.2008.10.013

2. Kang U, McGlohon M, Akoglu L, Faloutsos C. Patterns on the Connected Components of Terabyte-

Scale Graphs. In: Webb GI, Liu B, Zhang C, Gunopulos D, Wu X, editors. ICDM. IEEE Computer Soci-

ety; 2010. p. 875–880.

3. Lyu Q, Li Y, He B, Gong B. DBL: Efficient Reachability Queries on Dynamic Graphs. In: DASFAA. vol.

12682 of Lecture Notes in Computer Science. Springer; 2021. p. 761–777.

4. Medini D, Covacci A, Donati C. Protein Homology Network Families Reveal Step-Wise Diversification

of Type III and Type IV Secretion Systems. PLoS Computational Biology. 2006; 2(12). https://doi.org/

10.1371/journal.pcbi.0020173 PMID: 17140285

5. Albert R. Scale-free networks in cell biology. Journal of cell science. 2005; 118(21):4947–4957. https://

doi.org/10.1242/jcs.02714 PMID: 16254242

6. Aktas ME, Nguyen T, Akbas E. Homology Preserving Graph Compression. In: ICMLA; 2021. p. 930–

935.

7. Kang U, Faloutsos C. Beyond’Caveman Communities’: Hubs and Spokes for Graph Compression and

Mining. In: Cook DJ, Pei J, Wang W, Zaïane OR, Wu X, editors. ICDM. IEEE Computer Society; 2011.

p. 300–309.

8. Lim Y, Kang U, Faloutsos C. SlashBurn: Graph Compression and Mining beyond Caveman Communi-

ties. TKDE. 2014; 26(12):3077–3089.

9. Bruglieri M, Cordone R. Metaheuristics for the Minimum Gap Graph Partitioning Problem. Computers

and Operations Research. 2021; 132:105301. https://doi.org/10.1016/j.cor.2021.105301

10. Lim Y, Lee W, Choi H, Kang U. Discovering large subsets with high quality partitions in real world

graphs. In: BIGCOMP. IEEE Computer Society; 2015. p. 186–193.

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 20 / 22

https://doi.org/10.1016/j.patcog.2008.10.013
https://doi.org/10.1371/journal.pcbi.0020173
https://doi.org/10.1371/journal.pcbi.0020173
http://www.ncbi.nlm.nih.gov/pubmed/17140285
https://doi.org/10.1242/jcs.02714
https://doi.org/10.1242/jcs.02714
http://www.ncbi.nlm.nih.gov/pubmed/16254242
https://doi.org/10.1016/j.cor.2021.105301
https://doi.org/10.1371/journal.pone.0277527

11. Lim Y, Lee W, Choi H, Kang U. MTP: discovering high quality partitions in real world graphs. WWW.

2017; 20(3):491–514.

12. Jung J, Shin K, Sael L, Kang U. Random Walk with Restart on Large Graphs Using Block Elimination.

TODS. 2016; 41(2):12:1–12:43. https://doi.org/10.1145/2901736

13. Shiloach Y, Vishkin U. An O(log n) Parallel Connectivity Algorithm. J Algorithms. 1982; 3(1):57–67.

https://doi.org/10.1016/0196-6774(82)90008-6

14. Bader DA, Cong G. A fast, parallel spanning tree algorithm for symmetric multiprocessors (SMPs). J

Parallel Distributed Comput. 2005; 65(9):994–1006. https://doi.org/10.1016/j.jpdc.2005.03.011

15. Dhulipala L, Hong C, Shun J. ConnectIt: A Framework for Static and Incremental Parallel Graph Con-

nectivity Algorithms. CoRR. 2020;abs/2008.03909.

16. Kim M, Lee S, Han W, Park H, Lee J. DSP-CC-: I/O Efficient Parallel Computation of Connected Com-

ponents in Billion-Scale Networks. TKDE. 2015; 27(10):2658–2671.

17. Kyrola A, Blelloch GE, Guestrin C. GraphChi: Large-Scale Graph Computation on Just a PC. In: Thek-

kath C, Vahdat A, editors. OSDI. USENIX Association; 2012. p. 31–46.

18. Low Y, Gonzalez JE, Kyrola A, Bickson D, Guestrin C, Hellerstein JM. GraphLab: A New Framework

For Parallel Machine Learning. CoRR. 2014;abs/1408.2041.

19. Zheng D, Mhembere D, Burns RC, Vogelstein JT, Priebe CE, Szalay AS. FlashGraph: Processing Bil-

lion-Node Graphs on an Array of Commodity SSDs. In: FAST. USENIX Association; 2015. p. 45–58.

20. Malewicz G, Austern MH, Bik AJC, Dehnert JC, Horn I, Leiser N, et al. Pregel: a system for large-scale

graph processing; 2010. p. 135–146.

21. Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin MJ, Stoica I. GraphX: Graph Processing in a Dis-

tributed Dataflow Framework. In: Flinn J, Levy H, editors. OSDI. USENIX Association; 2014. p. 599–

613.

22. Gonzalez JE, Low Y, Gu H, Bickson D, Guestrin C. PowerGraph: Distributed Graph-Parallel Computa-

tion on Natural Graphs. In: OSDI; 2012. p. 17–30.

23. Chen R, Shi J, Chen Y, Chen H. PowerLyra: differentiated graph computation and partitioning on

skewed graphs. In: EuroSys; 2015. p. 1:1–1:15.

24. Azad A, Buluç A. LACC: A Linear-Algebraic Algorithm for Finding Connected Components in Distributed

Memory. In: IPDPS. IEEE; 2019. p. 2–12.

25. Zhang Y, Azad A, Hu Z. FastSV: A Distributed-Memory Connected Component Algorithm with Fast

Convergence. In: Biros G, Yang UM, editors. PPSC. SIAM; 2020. p. 46–57.

26. Stergiou S, Rughwani D, Tsioutsiouliklis K. Shortcutting Label Propagation for Distributed Connected

Components. In: Chang Y, Zhai C, Liu Y, Maarek Y, editors. WSDM. ACM; 2018. p. 540–546.

27. Turifi M. Optimisation techniques for finding connected components in large graphs using GraphX. The

University of Salford; 2018.

28. Kang U, Tsourakakis CE, Faloutsos C. PEGASUS: A Peta-Scale Graph Mining System. In: ICDM;

2009. p. 229–238.

29. Rastogi V, Machanavajjhala A, Chitnis L, Sarma AD. Finding connected components in map-reduce in

logarithmic rounds. In: ICDE; 2013. p. 50–61.

30. Lulli A, Ricci L, Carlini E, Dazzi P, Lucchese C. Cracker: Crumbling large graphs into connected compo-

nents. In: ISCC. IEEE Computer Society; 2015. p. 574–581.

31. Lulli A, Carlini E, Dazzi P, Lucchese C, Ricci L. Fast Connected Components Computation in Large

Graphs by Vertex Pruning. IEEE Trans Parallel Distributed Syst. 2017; 28(3):760–773. https://doi.org/

10.1109/TPDS.2016.2591038

32. Kiveris R, Lattanzi S, Mirrokni VS, Rastogi V, Vassilvitskii S. Connected Components in MapReduce

and Beyond. In: SOCC; 2014. p. 18:1–18:13.

33. Park H, Park N, Myaeng S, Kang U. Partition Aware Connected Component Computation in Distributed

Systems. In: ICDM; 2016. p. 420–429.

34. Park HM, Park N, Myaeng SH, Kang U. PACC: Large scale connected component computation on

Hadoop and Spark. PLOS ONE. 2020; 15(3):1–25. https://doi.org/10.1371/journal.pone.0229936

PMID: 32187232

35. Patwary MMA, Blair JRS, Manne F. Experiments on Union-Find Algorithms for the Disjoint-Set Data

Structure. In: Festa P, editor. SEA. vol. 6049. Springer; 2010. p. 411–423.

36. Tarjan RE, van Leeuwen J. Worst-case Analysis of Set Union Algorithms. J ACM. 1984; 31(2):245–

281. https://doi.org/10.1145/62.2160

37. Dijkstra EW. A Discipline of Programming. Prentice-Hall; 1976.

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 21 / 22

https://doi.org/10.1145/2901736
https://doi.org/10.1016/0196-6774(82)90008-6
https://doi.org/10.1016/j.jpdc.2005.03.011
https://doi.org/10.1109/TPDS.2016.2591038
https://doi.org/10.1109/TPDS.2016.2591038
https://doi.org/10.1371/journal.pone.0229936
http://www.ncbi.nlm.nih.gov/pubmed/32187232
https://doi.org/10.1145/62.2160
https://doi.org/10.1371/journal.pone.0277527

38. Shun J, Blelloch GE. Ligra: a lightweight graph processing framework for shared memory. In: PPoPP;

2013. p. 135–146.

39. Zhu X, Chen W, Zheng W, Ma X. Gemini: A Computation-Centric Distributed Graph Processing Sys-

tem. In: OSDI; 2016. p. 301–316.

40. Awerbuch B, Shiloach Y. New Connectivity and MSF Algorithms for Shuffle-Exchange Network and

PRAM. IEEE Trans Computers. 1987; 36(10):1258–1263. https://doi.org/10.1109/TC.1987.1676869

41. Buluç A, Gilbert JR. The Combinatorial BLAS: design, implementation, and applications. Int J High Per-

form Comput Appl. 2011; 25(4):496–509. https://doi.org/10.1177/1094342011403516

42. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. vol. 51; 2008. p. 107–

113.

43. Chakrabarti D, Zhan Y, Faloutsos C. R-MAT: A Recursive Model for Graph Mining. In: SIAM. SIAM;

2004. p. 442–446.

44. Jeon B, Jeon I, Kang U. TeGViz: Distributed Tera-Scale Graph Generation and Visualization. In:

ICDMW. IEEE Computer Society; 2015. p. 1620–1623.

45. Kwak H, Lee C, Park H, Moon SB. What is Twitter, a social network or a news media? In: Rappa M,

Jones P, Freire J, Chakrabarti S, editors. WWW. ACM; 2010. p. 591–600.

PLOS ONE UniCon: A unified star-operation to efficiently find connected components on a cluster of commodity hardware

PLOS ONE | https://doi.org/10.1371/journal.pone.0277527 November 30, 2022 22 / 22

https://doi.org/10.1109/TC.1987.1676869
https://doi.org/10.1177/1094342011403516
https://doi.org/10.1371/journal.pone.0277527

