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Abstract

Background and purpose

The purpose of this study was to investigate the effect of incorporating chitosan (Ch) and chito-

san oligosaccharides (ChO) into the commercially premixed antibiotic-loaded bone cement

(ALBC). We compare antibiotic release profiles, antibacterial activity, and mechanical proper-

ties among different ALBC formulations. The hypothesis was that increasing the amount of Ch

and ChO in the cement mixture would increase the antibiotics released and bacterial control.

ALBC mixed with Ch or ChO may create a greater effect due to its superior dissolving property.

Materials and methods

The bone cement samples used in this project were made from Copal® G+V composed of

vancomycin and gentamicin. To prepare the Ch and the ChO mixed bone cement samples,

different amounts of Ch and ChO were added to the polymethylmethacrylate matrix with

three concentrations (1%, 5%, and 10%). Drug elution assay, antimicrobial assay, in vitro

cytotoxicity, and mechanical properties were conducted.

Results

Bone cement samples made from Copal® G+V alone or combined with Ch or ChO can

release vancomycin and gentamicin into the phosphate-buffered saline. Mixing ChO into the

bone cements can increase the amount of drug released more than Ch. ChO 10% gave the

highest amount of antibiotics released. All samples showed good antibacterial properties

with good biocompatibility in vitro. The microhardness values of the Ch and ChO groups

increased significantly compared to the control group. In all groups tested, the microhard-

ness of bone cements was reduced after the drug eluted out. However, this reduction of the

Ch and ChO groups was in line with the control.

Interpretation

Various attempts have been made to improve the ALBC efficacy. In our study, the best bone

cement formulation was bone cement mixed with ChO (10%), which had the highest drug
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release profiles, was biocompatible, and contained antibacterial properties with acceptable

mechanical properties. This phenomenon could result from the superior water solubility of

the ChO. When ChO leaves the bone cement specimens, it generates pores that could act

as a path that exposes the bone cement matrix to the surrounding medium, increasing anti-

biotic elution. From all above, ChO is a promising substance that could be added to ALBC in

order to increase the drug elution rate. However, more in vitro and in vivo experiments are

needed before being used in the clinic.

Introduction

Polymethylmethacrylate (PMMA) bone cement played an imminent role in treating orthopae-

dic infection. Antibiotic-loaded bone cement(s) (ALBC) or PMMA bone cement mix with

antibiotic(s) has been used as a reservoir for local antibiotics. In the current practice, the use of

ALBC is an established method in managing orthopaedic infections, such as prosthetic joint

infections (PJIs) and chronic osteomyelitis [1]. ALBC can be used in the form of ALBC beads

or spacer impregnated into the infected area [2].

ALBC types can generally be divided into manual mixing and commercially premixed.

Although the manual mixing method provides high flexibility regarding the antibiotic num-

bers, types, and concentration, the manual mixing ALBC could give an unpredictable drug

release profile, improper mechanical properties, and unsafe for patients [3]. The commercially

premixed ALBC has several advantages, including known drug elution profile, reduced surgi-

cal time, and more homogenously mixed between antibiotics and PMMA [4]. To get superior

control of pathogens, some premixed ALBC(s) are composed of two or more antibiotics. The

dual ALBC has stronger antimicrobial action due to the synergistic drug release effect resulting

from increasing bone cement porosity from dissolved antibiotics. These porosities increase

body fluid-bone cement contact surface area and serve as a path for the body fluid to reach

deeper into the bone cement bulk, increasing the elution of one or both antibiotics. This phe-

nomenon is called “passive opportunism” [5, 6]. Although all these attempts to improve the

antibiotic release from bone cement, there are reports of antibiotic resistance [7].

In recent years, several new materials have been introduced to bone cement to improve

ALBC antimicrobial efficacy. Combining inorganic antimicrobial agents such as silver nano-

particles can enhance antibacterial effectiveness. Adding porogen such as glucose [8], lactose

[9], and xylitol [10] to increase the porosity of the bone cement bulk is also an effective way to

improve the amount of drug release from ALBC. Among these new substances, chitosan (Ch)

and its derivative (chitosan oligosaccharides, ChO) have great potential to be used in bone

cement.

Ch is a biodegradable and biocompatible material that can be easily degraded in the body

fluid, increasing ALBC porosity and antibiotic(s) elution [11]. In addition, there is ChO, an

oligomer of β-(1!4)-linked D-glucosamine, that is water-soluble and can be an even better

and faster dissolver than regular Ch. Interestingly, both Ch and ChO had evidence supporting

their antibacterial and antifungal effect, which would be an excellent addition to ALBC. How-

ever, adding a high concentration of these fillers into the ALBC can considerably affect its

mechanical properties. The current information about the pharmaceutical and mechanical

effects of applying chitosan/oligo-chitosan into the ALBC is still lacking.

This study aimed to study the effect of adding Ch and ChO into the commercially premixed

antibiotic bone cement (Copal1G+V). We compare antibiotic release profiles, bacterial con-

trol activity, and mechanical properties among different ALBC formulations. The hypothesis
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was that increasing the amount of Ch and ChO in the cement mixture would increase the anti-

biotics released and bacterial control. We believe that ALBC mixed with ChO may create a

more significant effect due to its superior dissolving property.

Materials and methods

Materials

The bone cement samples used in this project were made from Copal1G+V (Heraeus Medical

GmbH, Germany). Copal1G+V is a radiopaque revision bone cement made from PMMA.

This bone cement contains 0.5 g gentamicin sulfate and 2.0 g of vancomycin hydrochloride

(vancomycin HCl) in 43.0 g of the bone cement powder component.

Chitosan (Lot no. 190221/1-1) and chitosan oligosaccharide (Lot no. 190221/2-1) were pur-

chased from the Marine Bio-Resources Co., Ltd., Thailand. Ch was obtained from shrimp

(Litopenaeus vannamei) with a percent degree of deacetylation equal to 97.46 and average

molecular weight of approximately 25 kDa. ChO was also obtained from shrimp (Litopenaeus
vannamei) with a percent degree of deacetylation equal to 87.79 and average molecular

weight� 5 kDa. Ch and ChO were tested for pathogens and passed the standard with a total

plate count� 1,000 colony forming units (CFU)/g, and yeasts and molds� 100 CFU/g.

Escherichia coli contamination was less than 3 most probable number (MPN)/g with no detec-

tion of Staphylococcus aureus, Clostridium spp., Salmonella spp., and Coliform.

Preparation of bone cement samples

The bone cement samples were cast in silicone molds made of poly(dimethylsiloxane) or

PDMS. The mold has disc features (19.5 mm in diameter with 3.5 mm in height). The control

group was made purely with Copal1 G+V by hand-mixed the PMMA powder with the liquid

monomer according to the manufacturer’s recommendation and hand-pressed into the sili-

cone mold.

To prepare the Ch and the ChO mixed bone cement samples, different amounts of Ch and

ChO were added to the PMMA powder according to Table 1. Three concentrations (1%, 5%,

and 10%w/w) of Ch and ChO were incorporated into the polymer powder using the geometric

dilution technique to ensure homogeneous mixing with the polymer powder. Then, the liquid

monomer was added to form a ductile dough. The dough was pressed into the prepared mold

before being cured. The bone cements were allowed to cure for 24 h before further testing. Size

(diameter and thickness) was measured using a digital vernier caliper (RS Components Co.,

Ltd., Thailand).

Table 1. Bone cement formulations tested in this project by mixing the poly(methyl methacrylate/methacrylate) powder with different amounts of chitosan or chit-

osan oligosaccharide.

Formulation

number

Formulation

name

Chitosan content

(%w/w)

Chitosan oligosaccharides

content (%w/w)

Chitosan

content (g)

Chitosan oligosaccharide

content (g)

Copal1 G+V

powder

Total

weight (g)

1 Control - - - - 43.00 43.00

2 Ch 1% 1 - 0.43 - 42.57 43.00

3 Ch 5% 5 - 2.15 - 40.85 43.00

4 Ch 10% 10 - 4.30 - 38.70 43.00

5 ChO 1% - 1 - 0.43 42.57 43.00

6 ChO 5% - 5 - 2.15 40.85 43.00

7 ChO 10% - 10 - 4.30 38.70 43.00

Ch: Chitosan; ChO: Chitosan oligosaccharides, %w/w: Percentage weight by weight.

https://doi.org/10.1371/journal.pone.0276604.t001

PLOS ONE Influence of chitosan and chitosan oligosaccharide on dual antibiotic-loaded bone cement

PLOS ONE | https://doi.org/10.1371/journal.pone.0276604 November 30, 2022 3 / 19

https://doi.org/10.1371/journal.pone.0276604.t001
https://doi.org/10.1371/journal.pone.0276604


Drug elution assay

A drug elution assay was conducted in prepared bone cement samples. All seven formulations

(Table 1) of bone cement samples were placed in centrifuge tubes containing 30 mL of phos-

phate-buffered saline (PBS ultra-pure grade, 0.1 μm sterile filtered, Apsalagen, Thailand). Sam-

ples were stored in an incubator shaker at 37˚C, 100 rpm. At designated times (1, 3, 6, 24 h, 2 3

5, and 7 days), 1,000 μL of samples were removed and replaced with pre-warmed PBS. All sam-

ples (PBS-containing antibiotics) were stored at -20˚C for further analysis. The supernatant

obtained at each time point was analyzed for antibiotic concentration and antimicrobial activ-

ity. At the end of the experiment (7-day period), bone cements were removed and gently

rinsed with sterile water for irrigation (SWI, General Hospital Products Public Co., Ltd., Bang-

kok, Thailand) before oven-dry (Hot air oven, Memmert, Germany) at 45˚C overnight for fur-

ther physical and mechanical properties evaluation.

Liquid samples obtained from the supernatant were quantified for vancomycin and genta-

micin using the spectrophotometric and reversed-phase high-performance liquid chro-

matographic (RP-HPLC) methods, respectively. Vancomycin was quantified based on a

coupling reaction between the drug and diazotized procaine. A quantification method by Hadi

with modification was applied [12]. Procaine mixture is composed of 1.0 mM procaine hydro-

chloride (Sigma Life Science, USA), 1.0 mM sodium nitrite (NaNO2, Carlo ERBA Reagents,

USA), and 1.0 M hydrochloric acid (HCl, Chem-Lab, Belgium) was prepared. The reaction

was done on a 96-well plate. Each well was composed of vancomycin HCl at different concen-

trations (100 μL), procaine mixtures (30 μL), and 0.125 M ammonium hydroxide (NH4OH,

Carlo ERBA Reagents, USA) (120 μL). The intense yellow color azo dye was measured at 447

nm using a microplate reader (ClarioStar Multimode Microplate Reader, BMG Labtech, Ger-

many). Vancomycin hydrochloride (Lot. A4230021, kindly gifted from Siam Bheasach Co.,

Ltd., Bangkok, Thailand) was used as a standard. Blank was prepared the exact same way as

samples but used 100 μL of PBS. Vancomycin concentrations in samples were compared

against the vancomycin standard curve. Cumulative release profiles of vancomycin from bone

cement samples (y-axis) were plotted against time (x-axis).

The quantitative determination of gentamicin was performed HPLC on Shimadzu HPLC

system equipped with DGU-20A5R degassing unit, Prominence LC-20AD pumping system,

SIL-10AD VP autoinjector, and SPD-10A VP UV/VIS detector (Shimadzu Scientific Instru-

ments, Kyoto, Japan). The integration and system parameters were controlled by LC solution

software (Shimadzu Scientific Instruments, Kyoto, Japan). The HPLC condition was modified

from Blanchaert et al. [13]. An ACE column (C18; 150 mm × 4.6 mm i.d., particle size 5 μm;

Advanced Chromatography Ltd., UK) was used as a stationary phase. Elution was performed

using isocratic mode with 0.5 mL/min flow rate at 40˚C. The mobile phase consisted of metha-

nol (HPLC grade, Honeywell Burdick & Jackson, Ulson, Korea), disodium tetraborate decahy-

drate buffer (0.1 M; pH 9.0), and water containing 1 g/L sodium octane sulfonate (Sigma-

Aldrich, USA) at the volume ratio of 19:10:61. The disodium tetraborate decahydrate buffer

was prepared using 1-octanesulfonic acid sodium salt (Sigma-Aldrich, Missouri, United

States), sodium tetraborate (Ajax Chemicals, New South Wales, Australia), and phosphoric

acid (J. T. Baker Chemical, Pennsylvania, USA). The total run time was 40 min, and the sample

injection volume was 40 μL. UV detection was performed by monitoring the absorbance signal

at 205 nm. The HPLC method was validated for its linearity, precision, accuracy, the limit of

detection (LOD), and limit of quantitation (LOQ) as per the International Conference on

Harmonization (ICH) Q2 guidelines [14]. Gentamicin injection (80 mg/2 mL) (Grammicin

injection, lot 1072062, Siam Bheasach Co., Ltd., Bangkok, Thailand) was kindly gifted from the

Pharmacy Department, Faculty of Medicine Siriraj Hospital, Mahidol University (Bangkok,
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Thailand). The gentamicin calibration curve was in the concentration ranging from 0.78 to

100 μg/mL. The calibration curve linear equation was y = 13930x-8615, and the linear correla-

tion coefficient was 0.9999. The intra-day and inter-day precision of gentamicin was evaluated

using three concentrations (3.125, 12.5, and 50 μg/mL), and the coefficient of variation was

lower than 2%. The method accuracy was determined using a recovery study conducted at

three concentrations (3.125, 12.5, and 50 μg/mL), and the average recovery was 99.43 ± 0.55%.

The LOQ and LOD were 0.78 and 0.20 μg/mL, respectively.

Bone cement physical characterization

Bone cement weight was quantified using a balance (Analytical Balances CP225D, Sartorius,

Germany). Bone cements were imaged using a stereomicroscope (model sZ61, Olympus,

Japan) using a 6.7x magnification. Surface morphology at the micron level was identified using

scanning electron microscopy (SEM). Briefly, the bone cement samples were mounted on

SEM stubs and then coated with gold by a sputter coater (Blazers SCD 040, Bal-Tec AG, Blaz-

ers, Liechtenstein) for three min. Images were captured using JSM-IT300 InTouchScopeTM

SEM (JEOL, Tokyo, Japan) at 10.0 kV accelerating voltage. All physical characterizations were

conducted with bone cement before and after the drug elution assay.

Determination of antibacterial activity

The antibacterial activity of vancomycin and gentamicin eluted from bone cement specimens

was estimated using an agar disc diffusion method according to M100 Performance standards

for antimicrobial susceptibility test, 30th edition, The Clinical and Laboratory Standards Insti-

tute (CLSI). Liquid samples were supernatant obtained from the drug elution assay at the end

of the experiment (day 7). Twenty microlitres of samples were added to the filtered papers.

The tested papers were placed on Mueller Hinton Agar (DifcoTM, Maryland, USA) inoculated

with S. aureus ATCC1 25923 or methicillin-resistant S. aureus (MRSA DMST 20654) in a den-

sity of 1.5×108 CFU/mL (adjusted with 0.5 McFarland turbidity standard). The samples were

incubated at 35±2˚C for 16–20 h. At the end of the experiment, the zone of inhibition (ZOI)

was measured and reported in mm units. PBS was used as a negative control. Vancomycin

(30 μg per disc) was used as a positive control. Each plate contains three samples, one negative

and one positive control.

In vitro cytotoxicity assay

The human osteosarcoma cell line (Saos-2, HTB-85TM) was kindly gifted by Dr. Pakpoom

Kheolamai, Division of Cell Biology, Faculty of Medicine, Thammasat University, Thailand.

Cells were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco1, Life Tech-

nologies, USA). The media was supplemented with 10% fetal bovine serum (FBS, triple 0.1 μm

sterile filtered, HycloneTM, GE Healthcare Bio-Sciences, Austria) with 1% penicillin/strepto-

mycin (Gibco1). Cells were incubated at 37˚C and 5% CO2. Sub-culturing was performed

between 1:2 to 1:4 ratio before cells reached 80% confluency.

An evaluation for in vitro cytotoxicity was conducted according to ISO 10993–5, Biological

evaluation of medical devices, Part 5 with some modifications. The treatments used in this

experimental set were liquid extracts of bone cement using PBS as an extraction vehicle. The

extraction was conducted by incubating bone cement in PBS for 24 h at 37˚C, one of the con-

ditions used to measure the hazard potential for risk estimation of the medical device/material.

Cell viability is based on the measurement of cells’ metabolic activity that reduced the yel-

low MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) to a violet formazan.

Saos-2 cells were plated 24 h before the treatment in 96-well plates at a concentration of 1x104
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cells per well. Treatments (50 μL) were added into each well along with fresh medium (50 μL)

for 24 h. At the end of the incubation period, the microscopic evaluation of morphological

alterations was conducted, and the treatments were removed. The MTT solution (PanReac

AppliChem ITW Reagents, Spain) in the serum-free medium at the concentration of 0.5 mg/

mL was then added to each well. After 2 h of incubation at 37˚C, 5% CO2, the media were

removed. Dimethyl sulfoxide (DMSO, Sigma-Aldrich, USA) was added to dissolve the forma-

zan crystals. The absorbance was recorded at 570 nm using a microplate reader (ClarioStar

Multimode Microplate Reader, BMG Labtech, Germany). Cell viability was expressed as a per-

centage of the absorbance value of cells that were treated with PBS. All absorbance values were

corrected with a blank solution that contains 100 μL of DMSO.

Sodium lauryl sulfate (SLS, S. Tong Chemicals Co., Ltd., Thailand) was introduced as a pos-

itive control. Cells were treated with SLS at 4 concentrations ranging from 25–100 μg/mL for

24 h.

Mechanical properties testing

Measuring surface roughness. The surface roughness of bone cements in all groups was

assessed using Alicona1 Infinite Focus SL (Alicona, Austria) 3D measurement system. Firstly,

the images were taken at the 10x optic with a contrast of 2.4 and a vertical resolution of 200

nm. The polynomial is then removed from the form before measuring the profile’s form using

all-points mode. Surface roughness was characterized by the average roughness (Ra, μm)

obtained from a 4-mm profile length (n = 5).

Measuring microhardness. All bone cements were polished before microhardness assess-

ment for more accurate results. The polishing was conducted in 4 steps using different sandpa-

per abrasive grits from P400, P800, P1200, and velvet sandpapers for 40 s, 100 s, 100 s, and 150

s, respectively, at 300 rpm. For P400, P800, and P1200 grit, the water was used as a grinding

media. For velvet sandpapers, the water containing 0.05 μm alumina powder was used as a

grinding media.

The microhardness test that was used with bone cement samples was the Vickers hardness

test using a Vickers indenter pressed into a polished bone cement surface to a specified force.

The Vickers hardness test was conducted using a hardness measurement machine (FM-810,

Future-Tech, Japan) with a test load of 100 gf, dwell time of 10 s, and measured the lengths of

the diagonals to determine the impression size under a 20x lens. The Vickers hardness (HV,

kgf/mm2) was calculated according to the following equation:

HV ¼
1:8544 F

d2
;

Where F is the force provided by the machine (kgf), and d is an average length obtained

from an impression on the x-axis and y-axis (mm).

Statistical analysis

Data are expressed as mean ± standard error of the mean (SEM). Statistical significance was

determined using One-way ANOVA with Dunnett’s multiple comparisons test (to compare

the mean of the control). Two-way ANOVA with Dunnett’s multiple comparisons tests was

performed to compare the difference with the control group. Two-way ANOVA with Sidak

multiple comparisons tests was performed to compare the difference within the same group,

before and after the drug elution test. All statistical tests were performed using GraphPad

Prism version 7.00 (GraphPad Software, CA, USA, www.graphpad.com). A p-value less than

0.05 was considered significant.
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Results

Bone cement preparation and characteristic

Bone cement specimens were successfully fabricated using PDMS molds. The diameter (S1A

Fig) and thickness (S1B Fig) of the bone cement samples were approximately 18.3 ± 0.1 mm

and 5.3 ± 0.1 mm, respectively. The bone cement weight is approximate 1.44 ± 0.01 g per

piece. There are no significant differences between diameter, thickness, and weight between

the control, Ch, and ChO groups.

Ch powder has a light-yellow color. ChO has a dark yellow color. Thus, incorporating Ch

and ChO into Copal1G+V (light green color) resulted in color change. According to Fig 1,

bone cement samples turned yellow when the Copal1G+V mixed with Ch (Figs 1B and 1C

and 2D). The color profile was distinct, especially when a high percentage of Ch was used.

Since ChO has a darker yellow color when compared to Ch, Copal1 G+V incorporated ChO

(Fig 1E–1G) had darker yellow than Copal1G+V mixed with Ch. Among all samples, ChO

Fig 1. Freshly prepare (A-G) and drug eluted (H-N) bone cements images obtained from a stereomicroscope with 6.7x magnification. Bone cement made

solely from Copal1G+V (Control, A and H); Copal1G+V mixed with 1% (Ch 1%: B and I), 5% (Ch 5%: C and J), and 10% (Ch 10%: D and K) w/w chitosan;

Copal1G+V mixed with 1% (ChO 1%: E and L), 5% (ChO 5%: F and M), and 10% (ChO 10%: G and N) w/w chitosan oligosaccharides. Scale bar represents 2

mm.

https://doi.org/10.1371/journal.pone.0276604.g001
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10% or Copal1 G+V mixed with 10%w/w chitosan oligosaccharides had the darkest color

(Fig 1G).

Physical characterization was conducted after the drug elution assay. From the stereomicro-

scope images, all bone cement samples showed light green color, which is the original color of

Copal1 G+V. There is no yellow color which can infer that most of the Ch and ChO on the

cement surface were eluted into PBS (Fig 1H–1N). To observe the changes in surface morphol-

ogy, bone cement mixtures with the highest percentage of Ch and ChO were imaged using

SEM. A few pores were detected in Ch 10% (Fig 2E) and ChO 10% (Fig 2F) after submerging

in PBS for 7 days. When Ch and ChO groups were compared, ChO 10% exhibited a higher

porosity than Ch 10%. Although there were changes in bone cement appearance (from stereo-

microscope) and surface morphology (from SEM), there was no significant change in weight

after the submerge (Fig 3).

Drug release profile

The main purpose of mixing Ch and ChO into bone cement is to increase the antibiotic con-

centration released into the surrounding. In this study, both antibiotics in bone cement, which

are vancomycin (in the form of vancomycin hydrochloride) (Fig 4) and gentamicin (in the

form of gentamicin sulfate) (Fig 5), were quantified and expressed as the cumulative drug

release (μg) versus time (h).

Bone cement samples made from Copal1 G+V alone or combined with Ch or ChO can

release vancomycin and gentamicin into the PBS. The release of vancomycin was rapid in the

first 48 h and continued at a much lower rate (reaching the plateau phase) afterward. These

release profile patterns were similar in all groups tested. There is no significant difference

Fig 2. SEM micrographs represent bone cement samples obtained after freshly prepared (A-C) and after submerged in PBS for 7 days (D-F). Bone cement

made solely from Copal1G+V (Control: A, D); Copal1G+V mixed with 10%w/w chitosan (Ch 10%: B, E); Copal1G+V mixed with 10%w/w chitosan

oligosaccharides (ChO 10%: C, F). Scale bar represents 100 μm.

https://doi.org/10.1371/journal.pone.0276604.g002
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between the vancomycin release profiles from the control group and cement mixed with chito-

san (Ch 1%, Ch 5%, and Ch 10%) (Fig 4A) at each timepoint. However, after 48 h, the cumula-

tive vancomycin release profiles from ChO 5% and ChO 10% were higher than the control

group with a significant difference (p< 0.001) (Fig 4B).

The gentamicin release profile was time-dependent and increased almost in a linear man-

ner (Fig 5). These linear patterns were detected in all groups tested. According to Fig 5A, there

is no significant difference between the gentamicin release profiles from the control group and

the Ch group (Ch 1%, Ch 5%, and Ch 10%). The exception was found in the gentamicin

amount released from Ch 5% and Ch 10% at 7 days of the drug elution assay (p< 0.05). For

cement mixed with ChO (Fig 5B), the cumulative gentamicin release profiles of ChO (ChO

1%, ChO 5%, and ChO 10%) were significantly higher than the control group at 72 h until 7

days (p< 0.001) of the drug elution assay.

Considering the amount of drug released at each time point, the bone cement samples in all

formulations tested released gentamicin in a lower amount than vancomycin. At 7 days, Ch

and ChO groups released vancomycin approximately 3,000–3,500 μg and 3,200–7,000 μg per

piece, respectively. At 7 days, the amount of gentamicin released from the Ch and ChO groups

was approximately 1,600–2,000 μg and 2,500–2,800 μg per piece, respectively. The lower drug

release profile from gentamicin is as expected since Copal1 G+V contains vancomycin 4-fold

higher than gentamicin (by weight).

Antibacterial activity

S. aureus [15, 16] and MRSA [17–19] are the most common pathogen in orthopaedic surgical

site infections. The antimicrobial activity of bone cement specimens was tested against S.

aureus and MRSA using supernatant obtained from the drug elution assay at the end of the

experiment (day 7). ZOI of S. aureus (S2 Fig) and MRSA (S3 Fig) were measured. Comparing

two types of bacteria, the supernatant obtained in all samples incubated with S. aureus (25–30

mm, Fig 6A) gave a larger ZOI than that incubated with MRSA (10–15 mm, Fig 6B). S. aureus
was shown to be more susceptible to the drug mixture eluted from Copal1 G+V than MRSA,

which is expected [20, 21].

Fig 3. Weight of bone cements obtained after casting bone cement mixtures before and after drug elusion. Control represents bone cement specimens

made solely from Copal1G+V. Ch 1%, Ch 5%, and Ch 10% are specimens made of Copal1G+V mixed with 1%, 5% and 10% w/w chitosan, respectively. ChO

1%, ChO 5%, and ChO 10% are specimens made of Copal1G+V mixed with 1%, 5% and 10% w/w chitosan oligosaccharides, respectively. Data are expressed

as mean ± SEM (n = 6). Two-way ANOVA with Dunnett’s multiple comparisons test was performed.

https://doi.org/10.1371/journal.pone.0276604.g003
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The results showed that all samples could inhibit these bacteria. Incorporating Ch or ChO

into the bone cement matrix did not affect the antibacterial activity of Copal1G+V. In con-

trast, they can increase the antibacterial activity of the bone cement samples. ZOI in each

group is consistent with the amount of vancomycin (Fig 4) and gentamicin (Fig 5) eluted. The

supernatant obtained from bone cement samples with the highest amount of drug eluted

(ChO 10%) gave the largest ZOI.

Fig 4. Cumulative release of vancomycin from bone cement prepared with chitosan (A) and chitosan oligosaccharides

(B). Control represents bone cement specimens made solely from Copal1G+V. Ch 1%, Ch 5%, and Ch 10% are

specimens made of Copal1G+V mixed with 1%, 5% and 10% w/w chitosan, respectively. ChO 1%, ChO 5%, and ChO

10% are specimens made of Copal1G+V mixed with 1%, 5% and 10% w/w chitosan oligosaccharides, respectively.

Data are expressed as mean ± SEM (n = 6). Two-way ANOVA with Dunnett’s multiple comparisons test was

performed. ���p<0.001.

https://doi.org/10.1371/journal.pone.0276604.g004
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In vitro cell cytotoxicity

An MTT assay was used to assess the cytotoxicity of the bone cement and its degradation prod-

ucts. Saos-2 cells were exposed to media obtained from bone cement extractions for 24 h. For

the qualitative morphological grading of the extracts’ cytotoxicity, all samples received a score

of 0. There is no reactivity. There was no cell lysis or decrease in cell proliferation, and no

intracytoplasmic granules were detected. All samples tested showed a % cell viability higher

Fig 5. Cumulative release of gentamicin from bone cement prepared with chitosan (A) and chitosan oligosaccharides

(B). Control represents bone cement specimens made solely from Copal1G+V. Ch 1%, Ch 5%, and Ch 10% are

specimens made of Copal1G+V mixed with 1%, 5% and 10% w/w chitosan, respectively. ChO 1%, ChO 5%, and ChO

10% are specimens made of Copal1G+V mixed with 1%, 5% and 10% w/w chitosan oligosaccharides, respectively.

Data are expressed as mean ± SEM (n = 3). Two-way ANOVA with Dunnett’s multiple comparisons test was

performed. �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0276604.g005
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than 70, which is considered no cytotoxic effect according to ISO 10993–5 (Fig 7). In this

experiment, SLS was used as a positive control in concentrations ranging from 25 to 100 μg/

mL (S4 Fig). SLS-treated cells exhibited concentration-dependent toxicity.

Mechanical properties

Roughness and microhardness of bone cements were tested (Fig 8). In the freshly prepared

group, the average roughness was between 5 to 6 μm. The surface of bone cements containing

Ch was rough, especially when a large quantity of Ch was incorporated (Fig 8A). Ch 10% had

roughness equal to 9.66 ± 2.23 μm (p< 0.01). However, there is no difference in surface rough-

ness between the control and ChO groups. After a 7-day release study, the surface roughness

was reduced in all groups tested. This reduction is no significant difference when compared

before and after the release study (p> 0.05).

For the microhardness measurement of freshly prepared bone cements, the control group

had a microhardness value of approximately 15.49 ± 0.44 kgf/mm2, while others had higher

microhardness values (Fig 8B). However, after a degradation period of 7 days, there was a sig-

nificant reduction (p< 0.001) in microhardness in all groups tested.

Discussion

ALBC is a common strategy used to treat orthopaedic infections as complementary to the sys-

temic antibiotic(s) administration. Even though ALBC has been in use for a long time, its effi-

cacy is not ideal. The drug release is often uncontrollable and would give rise to drug-resistant

microbial strains. Several efforts were made to enhance the ALBC efficacy. In our study, the

influence of Ch and ChO when incorporated into the bone cement was investigated. Mixing

hydrophilic, biocompatible, and biodegradable polymers into bone cement would increase the

antibiotics released and better bacterial control. This study chose the commercially available,

Copal1G+V containing dual antibiotics (vancomycin and gentamicin) as the bone cement

Fig 6. Zone of inhibition (ZOI) of S. aureus (A) and MRSA (B) of the supernatant obtained from different bone cement specimens that incubated in PBS for 7

days. Control represents bone cement specimens made solely from Copal1 G+V. Ch 1%, Ch 5%, and Ch 10% are specimens made of Copal1G+V mixed with

1%, 5% and 10% w/w chitosan, respectively. ChO 1%, ChO 5%, and ChO 10% are specimens made of Copal1G+V mixed with 1%, 5% and 10% w/w chitosan

oligosaccharides, respectively. Data are expressed as mean ± SEM (n = 6). One-way ANOVA with Dunnett’s multiple comparisons test was performed.

https://doi.org/10.1371/journal.pone.0276604.g006
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matrix. Ch and ChO were mixed into the bone cement powder before forming bone cement

dough with a liquid monomer at the weight ratio of 1%, 5%, and 10%. Since chitosan and chit-

osan oligosaccharides were yellow, the bone cement color changed toward yellow after mixing

(Fig 1). These color changes were directly correlated with the amount of Ch and ChO. The

drug elution was performed to determine the drug release profiles from each specimen. The

yellow color in Ch and ChO groups faded after being submerged in PBS for 7 days. The change

in appearance and the noticeable pores on Ch and ChO surfaces (from SEM images) infer that

Ch and ChO dissolved out of the bone cement samples.

Bone cement samples made from Copal1 G+V alone or combined with Ch or ChO can

release vancomycin and gentamicin into the PBS. Mixing ChO into the bone cements can

increase the amount of drug released more than Ch. ChO 10% gave the highest amount of

antibiotics released. The vancomycin release profile pattern from Copal1 G+V bone cement

specimens was similar to other published works that consisted of a rapid release in the first 48

h followed by a plateau phase [22–24]. For example, Lee et al. [22] studied vancomycin release

from various bone cement specimens available in the market (Surgical Simplex P, Osteobond,

Palacos1 R, and Dupey-CMW). Although different types of bone cement release different

amounts of vancomycin, the vancomycin concentrations in all samples studied reached a pla-

teau phase after 72 h [22].

In contrast, the gentamicin release profile patterns varied among researchers worldwide.

Some researchers found that the gentamicin release profile reached a plateau after 72 h of the

drug elution assays [24, 25]. Some researchers reported that the gentamicin release profile

increased in the buffered solution beyond 72 h [26]. Ensing et al. reported the gentamicin

release profile in PBS, which was increased almost linearly in the medium after a long time

Fig 7. Relative cell viability (%) of Saos-2 cells after treatment with extracts from various bone cement samples for

24 h. Control represents bone cement specimens made solely from Copal1G+V. Ch 1%, Ch 5%, and Ch 10% are

specimens made of Copal1 G+V mixed with 1%, 5% and 10% w/w chitosan, respectively. ChO 1%, ChO 5%, and ChO

10% are specimens made of Copal1G+V mixed with 1%, 5% and 10% w/w chitosan oligosaccharides, respectively.

PBS-treated group was considered 100% cell viability. Data are expressed as mean ± SEM (n = 36–41).

https://doi.org/10.1371/journal.pone.0276604.g007
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[26]. The gentamicin release profiles from Ensing et al. were similar to the release profiles

obtained in the current study. This controversy could come from the fact that each study used

bone cements from different companies. Other variables such as size, shape, the surface of

bone cement, and the possible interaction between the drug molecule and PMMA or other

ingredients in the formulation could affect the drug release profile.

This study aims to investigate the amount of drug released from bone cement specimens

when combined with Ch or ChO. Mixing Ch into bone cement powder before adding liquid

monomer resulted in a slight increase in the vancomycin and gentamicin release (Figs 4A and

5A). However, there was a significant increase in the drug release profiles when bone cement

powder was mixed with ChO (Figs 4B and 5B). Among all groups, ChO 10% showed the high-

est drug release. This difference could result from the superior water solubility of the ChO. Ch

is readily soluble in dilute acid mixtures such as dilute acetic acid but is insoluble in water [27].

On the other hand, the ChO is readily soluble in water at neutral pH because of the shorter

chain length with free amino groups in D-glucosamine units [28]. It is highly likely that when

the ChO leaves the bone cement specimens, it generates pores. This assumption was supported

Fig 8. Roughness (μm) (A) and microhardness (HV) (B) of various bone cement samples before and after the drug

release study. Control represents bone cement specimens made solely from Copal1G+V. Ch 1%, Ch 5%, and Ch 10%

are specimens made of Copal1G+V mixed with 1%, 5% and 10% w/w chitosan, respectively. ChO 1%, ChO 5%, and

ChO 10% are specimens made of Copal1G+V mixed with 1%, 5% and 10% w/w chitosan oligosaccharides,

respectively. Data are expressed as mean ± SEM (n = 5–6). The statistical different between group were analyzed using

Two-way ANOVA with Dunnett’s multiple comparisons test comparing to the control group. ��p<0.05, ��p<0.01,
���p<0.001. The statistical different in the same bone cement samples before and after the release study was analyzed

using Two-way ANOVA with Sidak multiple comparison test. #p<0.001.

https://doi.org/10.1371/journal.pone.0276604.g008
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by SEM images in Fig 2, which indicated that ChO 10% had a porous surface compared to

other groups. These pores could serve as a path that exposes the bone cement matrix to the sur-

rounding medium, increasing antibiotic elution. From the results, the amount of drug released

was directly correlated to the amount of Ch or ChO in the bone cement mixture. Ch 10%

released the antibiotics at a higher rate than Ch 1%. Increasing the Ch or ChO concentration

from 1% to 10% could increase the pores and create more interconnected pores within the

bone cement matrix, thus increasing the drug elution.

Antibacterial property is the most crucial property of ALBC. Moreover, evidence suggests

that Ch and ChO are antibacterial. Although the amounts of vancomycin and gentamicin were

quantified, measuring antibacterial activity is necessary. The supernatant obtained from all

bone cement specimens can inhibit S. aureus and MRSA. ZOI size was directly correlated with

the antibiotics analyzed. Besides the vancomycin and gentamicin, the antimicrobial activity

could come from Ch and ChO that could elute from the bone cements. This theory was sup-

ported by several publications [29–31]. According to Goy et al., Ch has broad-spectrum anti-

bacterial and antifungal activity [29]. Ch can enhance the antibacterial activity of other

materials [32]. ChO can inhibit S. aureus [33], S. agalactiae [34], and Vibrio vulnificus [35].

There were reports that ChO can inhibit biofilm formation [34] and could act as an antipara-

sitic agent [36].

Besides the antibacterial activity and biocompatibility of the Ch and ChO bone cement mix-

ture, the study of the mechanical properties of the bone cement is crucial since adding other

substances into bone cements could reduce mechanical properties [37]. Mixing Ch into bone

cements increased roughness (Fig 8A). It is possible that a high roughness surface would result

from the large particle size of Ch. However, this phenomenon was not detected in the ChO

group since ChO powder was smaller than Ch powder. The microhardness values of the Ch

and ChO groups increased significantly compared to the control group (Fig 8B). This is consis-

tent with the work by Chander et al. that Ch can increase flexural strength, fracture toughness,

and impact strength of the PMMA composite [38]. In all groups tested, the microhardness of

bone cements was reduced after the drug eluted out. However, this reduction of the Ch and

ChO groups was in line with the control. Adding Ch and ChO at the maximum of 10% would

not compromise the microhardness of the material.

This study proved that mixing ChO into bone cement mixtures can increase the amount of

vancomycin and gentamicin released into the medium. Furthermore, the antibacterial prop-

erty of ChO groups was directly correlated with the amount of ChO in the bone cements. Sur-

prisingly, this phenomenon was not observed when the bone cement was combined with Ch.

From above, ChO appears to be a promising substance that could be developed and studied

further as a bone cement mixture in the future.

This study has several limitations. First, ChO was used in this study to increase the drug elu-

tion. There are no reports of its clinical application as a component in an orthopaedic material.

However, there are reports of ChO being used as a hydrogel in drug delivery and bone tissue

engineering [39]. ChO promotes osteoclast formation [40]. As a result, it is expected that using

ChO as a bone cement mixture will be safe and feasible. Second, the amount of Ch and ChO

released in the medium did not quantify. Additionally, the antibacterial properties of pure Ch

and ChO against S. aureus and MRSA have not been tested. More research is needed to dem-

onstrate the antibacterial properties of Ch and ChO in this context. Third, only one brand of

bone cement (Copal1 G+V) was used in this study. Using different bone cement brands may

result in a different drug release profile pattern. Forth, hand mixing was used to blend Ch or

ChO with PMMA powder. Although there are reports suggesting that mechanical mixing

would give a more homogeneous mixture, the geometric dilution technique was introduced to

obtain the best mixture possible. In addition, this hand mixing represents a real-life scenario
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in the operating room. We submit, therefore, that none of these limitations undermines the

validity of our study findings.

Conclusion

Various attempts have been made to improve the efficacy of ALBC. Adding porogen to

increase the bone cement porosity can increase the drug elute from ALBC. In our study, Ch

and ChO were chosen due to their potential antimicrobial activity, abundance in nature, low

cost, and biocompatibility. To the best of our knowledge, this is the first study that observed

the influence of Ch and ChO on ALBC using dual antibiotics. According to the findings, add-

ing Ch and ChO to the bone cement matrix can enhance the drug release. ChO 10% was the

best bone cement formulation with high drug release, effective against the common pathogen

found in orthopaedic, biocompatible, and with acceptable mechanical properties. ChO is a

promising substance that could be added to ALBC to increase the drug elution rate. However,

more in vitro and in vivo experiments are needed before being used in the clinic.

Supporting information

S1 Fig. Diameter (A) and thickness (B) of bone cement samples obtained after casting bone

cement mixtures in the mold. Control represents bone cement specimens made solely from

Copal1 G+V. Ch 1%, Ch 5%, and Ch 10% are specimens made of Copal1 G+V mixed with

1%, 5% and 10% w/w chitosan, respectively. ChO 1%, ChO 5%, and ChO 10% are specimens

made of Copal1 G+V mixed with 1%, 5% and 10% w/w chitosan oligosaccharides, respec-

tively. Data are expressed as mean ± SEM (n = 12). One-way ANOVA with Dunnett’s multiple

comparisons test was performed.

(TIF)

S2 Fig. Representative photos of an agar disk diffusion method. Zone of inhibition (ZOI) of

S. aureus was measured. Control represents supernatant obtained from bone cement speci-

mens made solely from Copal1 G+V (A, D). Ch 10% are supernatant obtained from speci-

mens made of Copal1G+V mixed with 10% w/w chitosan (B, E). ChO 10% are supernatant

obtained from specimens made of Copal1G+V mixed with 10% w/w chitosan oligosaccha-

rides (C, F).

(TIF)

S3 Fig. Representative photos of an agar disk diffusion method. Zone of inhibition (ZOI) of

MRSA was measured. Control represents supernatant obtained from bone cement specimens

made solely from Copal1G+V (A, D). Ch 10% are supernatant obtained from specimens

made of Copal1 G+V mixed with 10% w/w chitosan (B, E). ChO 10% are supernatant

obtained from specimens made of Copal1G+V mixed with 10% w/w chitosan oligosaccha-

rides (C, F).

(TIF)

S4 Fig. Relative cell viability (%) of Saos-2 cells after treatment with various concentration

of SLS (25–100 μg/mL) for 24 h. PBS-treated group was considered 100% cell viability. Data

are expressed as mean ± SEM (n = 21–42).

(TIF)

S1 Table. The minimal data set underlying the results.
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activity of chitosan oligosaccharides with special attention to antiparasitic potential. Mar Drugs. 2021;

19(2):110. https://doi.org/10.3390/md19020110 PMID: 33673266

37. Webb JC, Spencer RF. The role of polymethylmethacrylate bone cement in modern orthopaedic sur-

gery. J Bone Joint Surg Br. 2007; 89(7):851–7. https://doi.org/10.1302/0301-620X.89B7.19148 PMID:

17673574

38. Chander NG, Venkatraman J. Mechanical properties and surface roughness of chitosan reinforced

heat polymerized denture base resin. J Prosthodont Res. 2022; 66(1):101–8. https://doi.org/10.2186/

jpr.JPR_D_20_00257 PMID: 33896890

39. Mallick SP, Panda SP, Gayatri A, Kunaal Y, Naresh C, Suman DK, et al. Chitosan oligosaccharide

based hydrogel: An insight into the mechanical, drug delivery, and antimicrobial studies. Biointerface

Res Appl Chem. 2020; 11(3):10293–300.

40. Bai BL, Xie ZJ, Weng SJ, Wu ZY, Li H, Tao ZS, et al. Chitosan oligosaccharide promotes osteoclast for-

mation by stimulating the activation of mapk and akt signaling pathways. J Biomater Sci Polym Ed.

2018; 29(10):1207–18. https://doi.org/10.1080/09205063.2018.1448336 PMID: 29502489

PLOS ONE Influence of chitosan and chitosan oligosaccharide on dual antibiotic-loaded bone cement

PLOS ONE | https://doi.org/10.1371/journal.pone.0276604 November 30, 2022 19 / 19

https://doi.org/10.1007/s11999-008-0203-x
https://doi.org/10.1007/s11999-008-0203-x
http://www.ncbi.nlm.nih.gov/pubmed/18338216
https://doi.org/10.1021/acs.biomac.7b01058
https://doi.org/10.1021/acs.biomac.7b01058
http://www.ncbi.nlm.nih.gov/pubmed/28933147
https://doi.org/10.3390/md19020110
http://www.ncbi.nlm.nih.gov/pubmed/33673266
https://doi.org/10.1302/0301-620X.89B7.19148
http://www.ncbi.nlm.nih.gov/pubmed/17673574
https://doi.org/10.2186/jpr.JPR%5FD%5F20%5F00257
https://doi.org/10.2186/jpr.JPR%5FD%5F20%5F00257
http://www.ncbi.nlm.nih.gov/pubmed/33896890
https://doi.org/10.1080/09205063.2018.1448336
http://www.ncbi.nlm.nih.gov/pubmed/29502489
https://doi.org/10.1371/journal.pone.0276604

