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Abstract

Patients often provide untruthful information about their health to avoid embarrassment,

evade treatment, or prevent financial loss. Privacy disclosures (e.g. HIPAA) intended to dis-

suade privacy concerns may actually increase patient lying. We used new mouse tracking-

based technology to detect lies through mouse movement (distance and time to response)

and patient answer adjustment in an online controlled study of 611 potential patients, ran-

domly assigned to one of six treatments. Treatments differed in the notices patients received

before health information was requested, including notices about privacy, benefits of truthful

disclosure, and risks of inaccurate disclosure. Increased time or distance of device mouse

movement and greater adjustment of answers indicate less truthfulness. Mouse tracking

revealed a significant overall effect (p<0.001) by treatment on the time to reach their final

choice. The control took the least time indicating greater truthfulness and the privacy + risk

group took the longest indicating least truthfulness. Privacy, risk, and benefit disclosure

statements led to greater lying. These differences were moderated by gender. Mouse track-

ing results largely confirmed the answer adjustment lie detection method with an overall

treatment effect (p < .0001) and gender differences (p < .0001) on truthfulness. Privacy

notices led to decreased patient honesty. Privacy notices should perhaps be administered

well before personal health disclosure is requested to minimize patient untruthfulness.

Mouse tracking and answer adjustment appear to be health care lie-detection methods to

enhance optimal diagnosis and treatment.

Introduction

Consider these hypothetical scenarios: A patient indicates they are in pain from an old injury

that requires narcotics; however, a controlled substance database search reveals he was given

prescriptions for hydrocodone and fentanyl four days ago in another clinic. Another patient

does not reveal using herbal remedies and is ordered an anticoagulant for a deep vein
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thrombosis. In both cases, the course of patient treatment might differ if the patients had been

more truthful when answering the personal health questions or the clinicians used a method

that alerted them to possible untruthful responses.

Accurate information is an important contributor to accurate diagnosis and treatment. Yet

more than three quarters of patients withhold or lie about symptoms, intake, activities, and

medication, which can have significant implications for their health care [1–4]. Research esti-

mates that incorrect medications, possibly given as a result of false information provided, affect

1.5 million people, adding $3.5 billion in additional annual health care costs [2]. A wealth of

studies have described the dilemma of patient lying but not provided a method to detect these

lies [5].

Known causes of patient lying include a desire to avoid embarrassment, obtain or avoid

treatment, or avoid financial costs [6]. To combat these lies, researchers have recommended

that patient privacy be clearly signaled and assured [3, 6]. However, elaboration likelihood

(ELM) theory [7] and related privacy information research [8–10] suggest that privacy assur-

ances can have the exact opposite effect. Individuals typically analyze information through a

peripheral route using mental shortcuts rather than logical reasoning. Objective information

can cause people to shift their information processing to a central route with greater cognitive

focus on the merits of the stimuli. Privacy notices can act as such a stimuli and cause consum-

ers to withhold personal information and lie [11, 12]. In healthcare, privacy such as Health

Insurance Portability and Accountability Act (HIPAA) notifications, may lead to greater mis-

diagnoses and treatment.

We conducted a randomized trial testing the provision of privacy notification on lying in

healthcare communication. We hypothesized that health care notifications compared to no

notifications would lead to more lying.

Materials and methods

Study design methodology, context, and measures

We recruited participants from the Amazon Mechanical Turk (MTurk) platform, as these are

shown to be reliable online panels [13–15]. Participants were randomly assigned to receive one

of six stimuli: control (no privacy, risk or benefit statement), benefit (statement about the ben-

efits of accurate information disclosure), risk (statement about the health risks of inaccurate

information disclosure), privacy (a traditional privacy notification with seal image), privacy

+ benefit, and privacy + risk. For example, a question about weight with a benefit statement

read: “What is your weight? Accurately answering this will increase the likelihood of a correct
diagnosis.” A risk statement read: “What is your weight? Inaccurately answering this will
increase the likelihood of an incorrect diagnosis.” A privacy statement read: “What is your

weight? We will not share or sell this personal health information with anyone. We will comply
with all HIPAA regulations regarding the protection of your data.” (see S2 Appendix).

These additional stimuli concerning the risks and benefits of (in)accurate disclosure are

practically motivated by privacy research showing that telling consumers why information is

needed will have a significant effect on disclosure accuracy [8, 10]. The distinction between

benefit and risk framing, coming from behavioral economics (i.e., prospect theory [16]),

explains that people overestimate benefits and underestimate risks, thus providing a relevant

subhypothesis to our study.

After agreeing to an IRB–approved modified consent form (designed to hide the true pur-

pose of the study to detect lying), participants were asked to complete a depression survey, the

CESD-10 depression scale [17]. This depression scale was used in order to simulate the pre-

tense of the experiment. This context was chosen because depression is relevant to a large
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percentage of the world’s population [18]. Similarly, online patient portals and electronic

health information requests are becoming the norm [19]. The participants were asked to dis-

close eight items of personal health information of varying levels of sensitivity, including their

weight, height, alcohol intake, illegal drug use, prescription drug abuse, smoking, exercise, and

sexual activity in the context of the stimulus statement (see S1 Appendix).

Measures

To determine participant honesty, we tracked distance and speed of mouse movements while

answering each question. Mouse tracking is an accurate indicator of cognitive and emotional

stress [20] and deceit [21] while disclosing personal information. The brain shares its ongoing

work with the motor cortex, and hand movement is a predictor of cognitive processing, deci-

sion conflict, and deception [21, 22]. Lying requires greater cognitive processing than provid-

ing truthful responses, as individuals evaluate the truth and select a lie. This leads to cognitive

decision conflict that can be detected on a laptop or tablet device that has a mouse or touchpad.

Biomechanical mouse movement has comparable efficacy to measuring electrodermal activity

(e.g. polygraphs) for identifying deception [20].

Mouse tracking hand movements include both trajectory (distance) and time for a response.

Participants’ procedural memory leads them to begin with an accurate response, but then alters

the trajectory to an inaccurate response. Thus, lying is indicated by greater time and less direct

movement (greater distance). These metrics are collected using JavaScript code, which detects

all mouse movements at a millisecond precision rate [20, 21]. This software is hidden to partici-

pants as they answered the personal health history indicators (height, weight, alcohol, illegal

drug use, prescription abuse, smoking, exercise, and sex). Mouse movement distance and total

time to response were normalized to z-scores separately for each participant across all survey

questions. Thus, a positive score indicates the participant took longer answering that question

than their average of all other survey questions. This participant-level normalization is impor-

tant because people differ considerably in how they interact with computers, and hand move-

ment precision. Importantly, this tracking is completely undetectable by the participant with no

delay or lag. Although mouse tracking is a proven technique for collecting objective measures of

truthfulness [21], we complemented the mouse tracking measures with an answer adjustment

method—similar to those used in consumer information privacy experiments [23]—that

involves directly asking participants whether they were truthful. After participants made their

initial disclosure decisions, they were given a summary of their answers in a read-only format

and asked to indicate how over- or understated each initial response was (e.g., “You indicated

that your current weight is 185 lbs. How overstated or understated is that value?”) on a scale

from -5 (understated) to 5 (overstated). The absolute value of their response represents the

extent to which participants’ initial response deviated from the truth. These responses help to

validate the mouse tracking results and provide a more holistic measure of truthfulness.

Analysis

The trial was designed to provide at least 80% power in analysis of the effect of treatments.

Based on a 3x2 factorial design, 42 individuals are needed per group (252 total) to provide

(80%) power to detect a 25% effect size or difference in our experimental variables at a signifi-

cance of (.05). Additional samples were collected because of the potential risk of technical

issues collecting mouse tracking data.

The dependent variable—patient truthfulness was measured using two methods: biometric

mouse movement [20–22, 24] and a stated answer adjustment method [23]. Biometric mouse

movement was measured using two factors: distance the mouse moved and the time it took to
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arrive at the final response. A person not reporting the truth will take more time and greater

distance as they move the mouse on an initial trajectory to the truth and correct themselves to

go to the non-truthful answer they decide to share. Z scores, calculated for each response on

the survey, were analyzed using ANOVA and Tukey’s post hoc test which compares each

mean to every other mean [20]. The stated answer adjustment metric of how much the indi-

vidual self corrects an initial false response was analyzed with ANOVA across means and

MANOVA for gender differences across each condition.

Results

Lie detection through mouse movement

Six hundred eleven participants completed the survey (Mage = 36 years, range: 18–78 years;

64% female). Mouse tracking data were fully captured on 504 participants (see Table 1). The

other 107 participants had minor technical issues from either their device or poor network

connectivity. This is not unexpected as devices and networks vary greatly in terms of the

browser settings, firewall and malware which can conflict with the JavaScript mouse tracking

software. Answer adjustment was successfully measured in 587 participants as 24 did not fully

complete the survey. Fig 1 illustrates the significant difference (p = .001) in average time z

score to response for the eight personal health history questions grouped by stimuli treatment.

Comparing treatments, the control treatment (no stimuli) had the lowest mouse time to

response (�x = 0.01), followed by the benefit stimulus (�x = 0.05), privacy (similar to a short

HIPAA reminder, �x = 0.06), and negative effect (i.e., risk) of inaccurate disclosure (�x = 0.09).

Privacy, risk, and the combination of privacy and benefit (�x = 0.11) and privacy and risk (�x =

0.16) led to greater time spent answering the questions than the control. These increases were

significant (F = 4.64, p< .001) and indicate lack of truthfulness after statements of privacy,

risk and benefit plus risk. Fig 1 shows the results by treatment and gender.

Mouse movement distance revealed similar results. Although there was no significant dif-

ference in z scores across all treatments (p = .19), compared to the control treatment, benefit

+ privacy (p = .08) and the risk + privacy (p = .06) led to significantly greater mouse move-

ment, indicating lack of truthfulness. Results are seen in Table 2 and Fig 1.

Gender had a significant effect on both time to response (F = 3.86, p = .048) and mouse dis-

tance traveled (F = 9.35, p = .002). In particular, men exhibited greatest mouse distance (�xmen =

.21> �xwomen = .07) and time (�xmen = .20> �xwomen = .13) to response across treatments than

women. Fig 2 illustrates differences by each treatment. In particular, men had greater mouse

movements in the benefit, privacy, and risk + privacy treatments, while women had greater

mouse movements in the risk treatment.

As Fig 2 shows, the total time spent answering the questions almost mirrors the mouse

movement distance results, except that men moved their mouse less during the risk and bene-

fit + privacy treatment.

Lie detection through answer adjustment

Generally, the stated answer adjustment results are consistent with the mouse tracking find-

ings with the exception of the gender effects. There was a significant overall main effect of

Table 1. Count of individuals randomly assigned to each condition.

No statements Benefit statement Cost statement Privacy statement Benefit + Privacy Cost + Privacy Total

105 97 104 105 101 99 611

17.2% 15.9% 17% 17.1% 16.5% 16.2%

https://doi.org/10.1371/journal.pone.0276442.t001
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treatment (F = 5.67, p< .0001). The control treatment set a base level of lying at �x = 0.47. Simi-

lar to the mouse tracking data, the greatest adjustment occurred between the control versus

risk + privacy treatment (�xriskþprivacy = .84> �x control = .47; F = 27.64, p< .0001). All other com-

parisons to the control were statistically significant and followed similar patterns as the mouse

tracking data. Results are seen in Table 3 and Fig 3.

Gender had a significant main effect (F = 75.66, p< .0001) on answer adjustment. However,

in contrast with the mouse data, men adjusted less than women (�xmen = .42< �xwomen = .79;

F = 75.66, p< .0001). Fig 3 depicts the gender differences by treatment. Men claimed to lie less

than women in their initial responses in every treatment with the greatest difference in the risk

+ privacy stimuli.

Discussion

Overall, mouse movement results indicate that each stimuli—privacy notifications and bene-

fit/risk statements—led to less honesty in personal health information disclosure. Both mouse

speed and distance results indicate that stimuli such as privacy notices, and statements regard-

ing the risks/benefits of (un)truthful personal health information disclosure lead to greater

decision conflict and deception in response to personal health questions. Stated answer adjust-

ment confirms that this decision conflict represented by the mouse tracking data is, indeed,

actual lying about personal health activity. This lying can lead to a greater number of misdiag-

noses and poor outcomes [1, 25]. Furthermore, we find that messages that are intended to

Fig 1. Forest plot of mouse movement time z scores by treatment and gender.

https://doi.org/10.1371/journal.pone.0276442.g001

Table 2. Mouse tracking time and distance to final response (z score).

Treatment Total Time z score difference from control Total Distance z difference from control

Control 0.01 (SD .51) 0.07 (SD .56)

Benefit 0.05 (SD .58) p = .26 0.11 (SD .55) p = .28

Benefit + Privacy 0.11 (SD .77) p = .001 0.14 (SD .66) p = .08

Risk 0.09 (SD .57) p < .0001 0.12 (SD .52) p = .13

Risk + Privacy 0.15 (SD .79) p < .0001 0.14 (SD .63) p = .06

Privacy 0.06 (SD .64) p = .04 0.10 (SD .57) p = .23

https://doi.org/10.1371/journal.pone.0276442.t002
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calm and assure patients of their privacy rights may arguably be the strongest stimuli leading

to patient lying.

In support of prior research which shows that men and women both lie, but in different

ways [26, 27], the results of these two measures of truthfulness tell opposing stories: (1) men lie

more than women when measured by mouse movement, and (2) women lie more than men

when measured by answer adjustment—which requires some degree of subjective honesty

compared to the more objective measures. We offer multiple explanations about why the

mouse tracking and answer adjustment gender differences may be skewed. One reason may be

that core gender differences exist in how the human-computer interface of a mouse affects

information [28]. In other words, perhaps women simply take less time using a mouse than

men in general. Thus, they might still be exhibiting high decision conflict but are simply more

adept at using a mouse or spend less time making decisions in general. If so, this would suggest

that women face greater decision conflict and lie more than men, when juxtaposed to the

answer adjustment data [29]. This is a potential topic for future research.

Women are known to have greater desire to be viewed favorably compared to men [30].

This social desirability bias is demonstrated when participants respond in ways they think are

favorable to the administrator [30]. Therefore, women would be more likely to answer the

answer adjustment questions accurately. If true, then the mouse tracking results are correct

and men simply do not want to admit they’re lying when faced with the opportunity to correct

their initial answers. This interpretation is supported by research of online profiles where men

are known to be less truthful than women [31].

Fig 2. Forest plot of mouse movement distance z score by treatment and gender.

https://doi.org/10.1371/journal.pone.0276442.g002

Table 3. Answer adjustment measures (abs) by treatment for combined questions: Weight, EtOH, drugs, OD,

smoke, exercise, sex.

Treatment AA (Abs) difference from control

Control 0.47 (SD 1.17)

Benefit 0.62 (SD 1.32) p = .01

Benefit + Privacy 0.69 (SD .95) p = .006

Risk 0.67 (SD 1.3) p = .009

Risk + Privacy 0.84 (SD 1.40) p = .000

Privacy 0.62 (SD 1.27) p = .008

https://doi.org/10.1371/journal.pone.0276442.t003
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Regardless, under the assumption that men and women lie equally, risk + privacy informa-

tion leads to the most adjustment from their initial response to one they determine is more

truthful by women and benefit + privacy information to the most adjustment by men. Under

the assumption that men’s and women’s propensity to lie differs, risk + privacy information

leads to the least adjustment by men, and the control condition (no mention of benefit, risk, or

privacy) yields the least adjustment by women. Furthermore, the results reveal that asking for

accuracy adjustment may trigger more truthfulness from women than men.

Both regulators and clinicians might want to take these findings into consideration. In the

long run, regulators should reconsider the requirements about disclosing HIPAA information.

In the short run, this research suggests that perhaps clinicians should not have patients read

and sign privacy policies (HIPAA) at the time of data collection. Having patients sign HIPAA

notices immediately before talking with the clinician or discussing privacy during the visit

may lead to increased lying, which in turn may result in misdiagnoses or complications from

inappropriate treatment.

Finally, this study also illustrates how lie detection methods such as mouse tracking are use-

ful when considering patient health disclosures. When clinicians review patient information,

systems developed to detect lying could flag data points that may have been disclosed when

over thinking due to decision conflict and indicate that lying may have occurred.

This study has a number of limitations. First, this is an experimental setting and solely

online, but this method has proven valid with electrodermal activity used for polygraph exami-

nations [20]. Second, this was only run in a single medical context of health history use for

mental health. Future studies could use this method in varied clinical settings to validate our

findings and investigate if there are differences with clinician fact-to-face lie detection. In addi-

tion, while there were significant differences in time to response and answer adjustment,

results were mixed with non-significant distance to results measured. Further use of these

tools may help health care workers understand when patients are less than truthful.

Conclusions

This research reveals the negative impact of benefit, risk, and privacy statements on truthful-

ness and show gender differences on truthfully answering health history questions. It also

Fig 3. Forest plot of answer adjustment by treatment and gender.

https://doi.org/10.1371/journal.pone.0276442.g003
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illustrates ways to detect deception and increase patient truthfulness to ensure optimal diagno-

sis and treatment. These results and tools could be considered when collecting data from

patients.

Supporting information
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(TIF)

S2 Appendix. Statements for treatments.

(TIF)
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