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Abstract

The resistance variant faults (RVFs) observed in the mine ventilation system can utterly

restrict mine safety production. Herein, a machine learning model, which is based on multi-

label k-nearest neighbor (ML-KNN), is proposed to solve the problem of the rapid and accu-

rate diagnosis of the RVFs that occur at multiple locations within the mine ventilation sys-

tem. The air volume that passes through all the branches of the ventilation network,

including the residual branches, was used as the diagnostic model input after the occur-

rence of multiple faults, whereas the label vector of the fault locations was used as the mod-

el’s output. In total, seven evaluation indicators and 1800 groups of randomly simulated

faults at the typical locations in a production mine with 153 nodes and 223 branches were

considered to evaluate the feasibility of the proposed model to solve for multiple fault loca-

tions diagnostic and verify the model’s generalization ability. After ten-fold cross-validation

of the training sets containing 1600 groups of fault instances, the diagnostic accuracy of the

model tested with the air volume of all 223 branches and the 71 residual branches’ air vol-

ume as input was 73.6% and 72.3%, respectively. On the other hand, To further evaluate

the diagnostic performance of the model, 200 groups of the multiple fault instances that

were not included in the training were tested. The accuracy of the fault location diagnosis

was 76.5% and 73.5%, and the diagnostic time was 9.9s and 12.16s for the multiple faults

instances with all 223 branches’ air volume and the 71 residual branches’ air volume as

observation characteristics, respectively. The data show that the machine learning model

based on ML-KNN shows good performance in the problem of resistance variant multiple

fault locations diagnoses of the mine ventilation system, the multiple fault locations diagno-

ses can be carried out with all the branches’ air volume or the residual branches’ air volume

as the input of the model, the diagnostic average accuracy is higher than 70%, and the aver-

age diagnosis time is less than one minute. Hence, the proposed model’s diagnostic accu-

racy and speed can meet the engineering requirements for the diagnosis of multiple fault

locations for a real ventilation system in the field, and this model can effectively replace per-

sonnel to discover ventilation system failures, and also lays a good foundation for the con-

struction of intelligent ventilation systems.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0275437 September 30, 2022 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Wang D, Liu J, Deng L, Wang H (2022)

Intelligent diagnosis of resistance variant multiple

fault locations of mine ventilation system based on

ML-KNN. PLoS ONE 17(9): e0275437. https://doi.

org/10.1371/journal.pone.0275437

Editor: Tao Song, Polytechnical Universidad de

Madrid, SPAIN

Received: May 24, 2022

Accepted: September 15, 2022

Published: September 30, 2022

Copyright: © 2022 Wang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This paper is financially supported by the

Natural Science Foundation of China (No.

51904143 and No. 51574142). The funder Jian Liu

had a role in conceptualization and writing- review

& editing, while the funder Lijun Deng had a role in

software.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-5076-6421
https://doi.org/10.1371/journal.pone.0275437
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275437&domain=pdf&date_stamp=2022-09-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275437&domain=pdf&date_stamp=2022-09-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275437&domain=pdf&date_stamp=2022-09-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275437&domain=pdf&date_stamp=2022-09-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275437&domain=pdf&date_stamp=2022-09-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275437&domain=pdf&date_stamp=2022-09-30
https://doi.org/10.1371/journal.pone.0275437
https://doi.org/10.1371/journal.pone.0275437
http://creativecommons.org/licenses/by/4.0/


Introduction

All abnormal deviations in the air volume of the mine ventilation system could be caused by

the roadway falling deformation, dampers opening not closed or broken, fan failure, roadway

extension, and scrapping, coal bunker emptying, and other factors (as shown in Fig 1) belong

to the RVFs [1]. When the RVFs occur in the mine ventilation system, it extremely threatens

the regular production of the mine and causes safety production issues. Currently, the majority

of the mines can only rely on manual inspection to find the RVFs [2]. Furthermore, a compre-

hensive inspection of the mine requires at least a few days to complete, which is considered

time-consuming and labor-intensive. During this time, the ventilation system remains highly

risky until all the faults are investigated and dealt with [3,4]. For these reasons, an intelligent

mine is needed where an intelligent ventilation system can effectively replace the human

resources needed to conduct this task [5]. Intelligent diagnosis of the RVFs is one of the essen-

tial requirements for building the brain of the mine intelligent ventilation system. Its core goal

is to identify the locations where the fault occurs in real-time and then deal with it according

to the degree of the fault occurrence [6]. It is of great practical significance to realize the intelli-

gent diagnosis of the RVFs to ensure the mine is safe during production and improve the ven-

tilation system’s scientific management level.

Utilizing the theoretical concepts and best practices, the probability of failure occurring at

multiple locations during the same time in a coal mine ventilation system becomes relatively

small. However, the ventilation system can be overly complicated and dynamic in some mines

in terms of metal mines. Moreover, the management level of the ventilation system is generally

weaker than in the coal mines [7]. Therefore, it is common to notice that the RVFs of the venti-

lation system occur concurrently at multiple locations in metal mines [8]. Consequently, inves-

tigating the problems and identifying new rapid and accurate diagnoses of resistance variant

multiple fault locations in the mine ventilation system is very essential.

Fig 1. Resistance variant faults in a real mine. (Created by the author).

https://doi.org/10.1371/journal.pone.0275437.g001
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The rapid development of artificial intelligence and machine learning has promoted the

transformation of the mining industry from mechanization and automation to intelligence

[9]. Artificial intelligence and machine learning play an important role in the construction of

smart mines [10]. Much artificial intelligence and machine learning algorithms, such as deep

neural networks, recurrent neural networks, and other deep learning algorithms [11,12], and

heuristic algorithms such as genetic algorithms and self-encoding networks [13,14] have been

applied to mine to solve practical engineering problems [15], and also played an important

role in the intelligent construction of mine ventilation system. At present, these intelligent

algorithms have been used to solve the key problems of mine ventilation resistance coefficient

prediction and inversion [16,17], optimal adjustment of ventilation network [18,19], intelli-

gent control of ventilation system [20], and rapid prediction of mine gas explosion and mine

fire disaster parameters [21,22]. In terms of fault diagnosis, fault diagnosis technology based

on artificial intelligence and machine learning has been promoted and applied in many indus-

trial fields [23,24]. With the continuous progress and improvement of artificial intelligence

technology and machine learning algorithms, it has become possible for the mine ventilation

system to have the ability to intelligently diagnose faults.

Prevailing studies have shown that machine learning-related algorithms, such as supervised

learning, unsupervised learning, reinforcement learning, and ensemble learning can accurately

diagnose the RVFs in a mine ventilation system. Liu et al. [25–28] used the Support Vector

Machine (SVM) to study the resistance variant single fault (RVSF) diagnosis of a mine ventila-

tion system, where the air volume was the single feature and showed that the diagnostic accu-

racy is associated with the number of installed sensors and the degree of dispersion. The study

also showed that the network topology sensitivity of the roadway, where the sensors are

located, and the magnitude of the air volume in the roadway had no impact on the accurate-

ness of the model. Meanwhile, the study showed that the diagnostic accuracy is based on the

compound features of the air volume and wind pressure was higher than that which is based

on the single feature of either air volume or wind pressure. Additionally, the compound fea-

tures can eliminate the ill-posedness problem of the single feature. About the inability of the

fault locations and fault quantities to be diagnosed synchronously, an unsupervised learning

diagnosis model that does not require samples to participate in training was constructed and

the Covariance Matrix Adaptation Evolution Strategy method was used to solve it. Addition-

ally, a broom model was established to optimize the placement of the wind speed sensors for

the faults diagnosis in the mine ventilation system. Moreover, the intelligent identification of

the RVSF was realized using the monitoring information of the sparse wind speed sensors.

Zhou et al. [29] proposed a model for the abnormal diagnosis of the ventilation system that is

based on the Neural Network, which can rapidly diagnose and locate the roots and types of the

abnormalities in the ventilation parameters. Zhang et al. [30] compared the accuracy of the

SVM, Random Forest, and Neural Network in the diagnosis of the RVSF in the mine ventila-

tion systems and realized that the diagnostic accuracy of the Neural Network is better than the

SVM and Random Forest. Ni et al. [31] proposed an integrated model of the RVSF diagnosis

of the mine ventilation system and the wind speed sensor’s optimal layout based on a Decision

Tree, which solved the matching problem of the wind speed sensor’s optimal layout and diag-

nosis model. Huang et al. [32,33] used a Hybrid-Encoding Adaptive Evolution Strategy-based

method to diagnose the RVSF of the mine ventilation system and were able to verify the advan-

tage of this method in the calculation efficiency through comparative experiments. Addition-

ally, a multi-objective optimal selection model of observation features was developed for the

RVSF diagnosis, which has the advantage of eliminating redundant or irrelevant features.

Zhou et al. [34] proposed an improved Genetic Algorithm for enhancing the penalty coeffi-

cient and kernel function parameters of the SVM, which solves the main problem of overfitting
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in the fault diagnosis. Gong et al. [35] established a faults diagnosis model for the mine’s local

ventilation system using the Genetic Algorithm and Neural Network, which can better identify

the type and location of the local ventilation system faults. Wu et al. [36] proposed a method

for fault diagnosis of a local ventilation system in the coal mines that are based on the Genetic

Algorithm and Rough Set Theory. Zhao et al. [37–39] established the faults roadways scope

library of a ventilation system based on the Radial Basis Function Neural Network and deter-

mined the source of the locations of the faults according to the abnormal wind speed data

obtained from the underground wind speed sensor. Additionally, they developed an expert

system for the early warning diagnosis of the mine monitoring and control using a knowledge

base and inference engine. They also established the influence matrix of the wind resistance-

air flow change and obtained the branches set that affect the change in the air volume of each

roadway, then judged the ventilation system faults based on the faults’ probability function of

the mine roadway. Consequently, although the previous studies were able to solve the problem

of the RVSF diagnosis in the mine ventilation system, the critical problem of the RVFs diagno-

sis that occurs in multiple locations at the same time in a mine ventilation system has not been

solved yet.

The problem of the RVSF diagnosis in the mine ventilation system belongs to the single-

label classification problem. In theory, the resistance variant multiple fault location diagnosis

problems of the mine ventilation system can be transformed into a single fault diagnosis prob-

lem through transformation strategies. Typically, the transformation strategies comprise

Binary Relevance [40], Classifier Chains [41], and Calibrated Label Ranking [42]. However,

these transformation algorithms have their limitations in terms of adaptability, generalization,

and computational complexity to meet the demand for rapid and accurate diagnosis of the

resistance variant multiple fault locations. K-nearest neighbors (KNN) is a simple method and

algorithm of machine learning [43]. The ML-KNN is a supervised machine learning multi-

label classification and adaptation algorithm, which is derived from the k-nearest neighbor

algorithm. This algorithm has a significant advantage that it is robust and can easily filter noisy

data through the selection of the nearest neighbors K. As compared with the multi-label classi-

fication algorithms, such as Boostexter [44], Adtboost. MH [45], and Rank-SVM [46], this

algorithm has significant improvements in terms of accuracy, performance, and efficiency

[47], and has been successfully applied in the field of mechanical compound faults diagnosis

[48], medicine [49], text categorization [50], which is suitable for the case of the multiple fault

locations diagnosis of a mine ventilation system. In this study, a supervised learning sample of

the mine ventilation system resistance variant for multiple faults was obtained by simulation,

and a location diagnosis machine learning model of the resistance variant multiple faults of the

mine ventilation system was constructed. The ML-KNN algorithm was chosen to solve

the model, and its feasibility and reliability were confirmed by a production mine simulation

test.

Multiple fault locations diagnosis model and solution

Problem formulation

The essence of the RVFs in the mine ventilation system is a sudden change of the wind resis-

tance in the faulty branches, which is intuitively manifested as the abnormal change in the

air volume of the ventilation system. The fault location diagnosis of the mine ventilation

system determines the locations of the faults according to the performance information of

the ventilation system, such as air volume that can be monitored. This study only considers

the situation where the RVFs occur in two or more locations in the ventilation system at the

same time.
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In the mine ventilation network, which can be described as [51]

G ¼ ðV;EÞ

V ¼ fv1; v2; � � � ; vmg

E ¼ fe1; e2; � � � ; eng

8
>><

>>:

ð1Þ

where v is the set of m nodes and E is the set of n branches.

When multiple faults occur in the ventilation system, the topological relationship of the

ventilation network G does not change, unlike the wind resistance of the faulty branches

which changes significantly. Therefore, the ventilation system follows the common basic laws

whether there are multiple faults or only a single or no faults. Hence, it satisfies the flux equi-

librium equation of the node, resistance equilibrium of the circuit, and the law of resistance

[52]. Let Q0 ¼ fq0
1
; q0

2
; � � � ; q0ng be the vector that corresponds to the air volume set of the

branches after the occurrence of multiple faults. Let H0 ¼ fh0
1
; h0

2
; � � � ; h0ng be the vector that

corresponds to the wind pressure set of the branches after the occurrence of multiple faults.

Hence, the ventilation system satisfies the following constraints:

BQ0T ¼
Xn

j¼1

bijq
0

j

 !

m�1

¼ 0

CH0T � H@T ¼
Xn

j¼1

Cijhj � h@i

 !

s�1

¼ 0

ð2Þ

8
>>>>><

>>>>>:

where B ¼ ðbijÞm�n is the ventilation network complete incidence matrix, C ¼ ðcijÞs�1
is the

ventilation network circuit matrix, s is the number of circuits, and H@ is the additional resis-

tance of the circuits.

The mine ventilation system resistance variant for multiple fault location diagnoses can be

regarded as a multi-label classification problem. Assuming that the ventilation system occurs p
times the resistance variant for multiple faults, and considering that after the occurrence of

each fault, the set of branches for air volume or pressure constitutes a fault sample instance x,

so the fault instance domain X = {x1,x2,� � �,xp} will be formed. Let L = {L1,L2,� � �,Lr} be the label

space that is composed of all the multiple fault categories and r is the total number of the labels

used. The resistance variant for multiple fault locations diagnosis training set T ¼
fðxi; LiÞj1 � i � p; xi 2 X; Li � Lg consists of the fault sample instances and their correspond-

ing category labels.

The main aim of the multiple fault location diagnosis problems is to acquire a real-valued

classification function f:X×L!R through machine learning of the training set T. To determine

the category label Lx that is contained in the multiple faults attribute sample x according to this

classification, the locations of the multiple faults should be determined to construct a multiple

fault locations diagnostic classifier. The machine learning model for the resistance variant for

multiple fault locations diagnostic is shown in Fig 2. Fig 2 describes the process of fault sample

generation, model training, and fault diagnosis. The generation of the fault sample set is

acquired by actual testing or simulation, and the process of model training and fault diagnosis

is completed by the ML-KNN machine learning algorithm.

Let L!x be the category vector of x, where its element L!xðlÞðl 2 LÞ is equivalent to the value

of 1 (if l2Lx) or 0. N(x) denotes the K nearest neighbors of x that is obtained in the training set.

Based on the nearest neighbor label sets, a membership counting vector, that calculates the

number of nearest neighbors of the instance x belonging to the lth class, is introduced and can
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be defined as

C
!

xðlÞ ¼
X

a2NðxÞ

L!aðlÞ; l 2 L ð3Þ

For any new fault instance t, let Hl
1

be the case where t has a label l and Hl
0

be the case where

t does not have a label l. El
jðj 2 0; 1; � � � ;KÞ denotes the case where there are j events that con-

tain l label, among the K nearest neighbors of t. Therefore, and according to the maximum a

posteriori probability and the Bayesian rule [53], the objective function of the resistance vari-

ant for multiple fault locations diagnoses can be obtained and is defined as follows:

L!tðlÞ ¼ arg max
b2f0;1g

PðHl
bÞPðE

l
jjH

l
bÞ ð4Þ

where PðHl
bÞ is the prior probability of t containing the l label and PðEl

jjH
l
bÞ is the posterior

probabilities that are calculated as follows:

PðHl
0
Þ ¼ 1 � PðHl

1
Þ

P Hl
1

� �
¼

sþ
Xp

i¼1

L!xi
ðlÞ

s� 2þ p

ð5Þ

8
>>>><

>>>>:

Fig 2. The machine learning model of the resistance variant for multiple fault location diagnoses.

https://doi.org/10.1371/journal.pone.0275437.g002
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where s is a smoothing coefficient that is equivalent to 1,

P El
jjH

l
0

� �
¼

sþ c0½j�

s� ðK þ 1Þ þ
XK

g¼0

c½g�

P El
jjH

l
1

� �
¼

sþ c½j�

s� ðK þ 1Þ þ
XK

g¼0

c½g�

ð6Þ

8
>>>>>>>>><

>>>>>>>>>:

where c[j] and c0[j] calculates the number of training instances with and without l label, respec-

tively, whose K-nearest neighbors contain j instances with label l exactly.

Multiple fault location diagnosis solution algorithm

The ML-KNN algorithm was used to solve the objective function of the mine ventilation resis-

tance variant for multiple fault location diagnoses. For the unknown fault tag instances, the

ML-KNN algorithm first identifies the K nearest neighbors in the training set. The label set of

these adjacent instances is determined according to the maximum posterior principle that is

based on the number of adjacent instances in each possible class, which are obtained from the

label set of these adjacent instances [47]. In this paper, the distance between the instances is

measured by the Euclidean metric. The ML-KNN algorithm is described in Fig 3.

Experiments

Production mine ventilation system

A metal production mine was used as an example for multiple faults diagnosis experiments to

verify the effectiveness and reliability of the ML-KNN algorithm in the resistance variant for

multiple fault locations diagnoses of the mine ventilation system. The ventilation network of the

production mine is shown in Fig 4, with 153 nodes and 223 branches. The 1# fan is the main

ventilation fan of the mine and is installed in branch e211, whereas the 2# fan is the under-

ground ventilation fan station and is installed in branch e44. The characteristic curve equations

of the two fans are h1(q) = 2787.7+17.522q-0.0887q2 and h2(q) = 444.73+26.2919q-2.1719q2.

Overall, there are 18 dampers in the mine. The residual branches are marked with a red symbol,

the dampers are marked with a green symbol, and the nodes are marked with a blue symbol.

The situation where the dampers are opened and not closed or broken leads to a decrease

in the equivalent wind resistance of the roadway due to the reduced resistance type fault. On

the other hand, the situation where the roadway is deformed or blocked by some trackless

equipment leads to an increase in the roadway wind resistance due to the escalated resistance

type fault. These two fault types are frequently observed in this metal mine. Therefore, some

roadways with dampers and main roadways were selected for the experiments. The branches

e9, e55, e60, e64, e87, e88, e212, e213, and e221 were selected to create multiple faults of descending

resistance by opening the two dampers at different degrees. The other branches e6, e21, e53, e65,

e102, e128, and e203 were selected to create multiple faults of increasing resistance by adding the

wind resistance at different degrees. In the two roadways, multiple faults are constructed of

increasing and decreasing resistance simultaneously. The details of these fault test branches

are shown in Table 1.

The change of the ventilation system air volume after the occurrence of the multiple faults

was simulated by the Mine Ventilation Simulation System (MVSS) [54] using the method of

randomly created resistance variables. A total of 1800 groups of multiple fault instances were
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generated, of which 1600 groups were randomly selected as the multiple faults sample training

sets and the remaining 200 sets of untrained fault instances were used as the multiple faults

diagnosis test sets. Experimentally, the air volume of all the branches in the ventilation network

and the air volume of the 71 remaining branches were used as the available data, and the label

vector, that is composed of the faulty branches was used as the output to generate a ventilation

system resistive-variable for multiple fault locations diagnostic classifier. The inputs to the clas-

sifier are normalized using the Min-Max normalization method, as shown in Eq (7).

x� ¼
x � min

max � min
ð7Þ

The fault sample set for the resistance variant multiple fault locations diagnoses of the mine

ventilation system is shown in Table 2.

Algorithm and performance evaluation indicator

In terms of the selection of evaluation indicators for multi-label classification models, previous

researchers Wu et al. [55], Zhu et al. [56], and Wang et al. [57] used hamming loss, ranking

loss, coverage, average precision, and one-error to evaluate the model. On this basis, we

increase the accuracy and F1 score [58] to help us evaluate the predictive performance of the

model. Multiple fault locations diagnosis algorithm and performance are judged by the seven

evaluation indicators, which are defined as follows [59]:

Fig 3. Pseudo-code of the ML-KNN model.

https://doi.org/10.1371/journal.pone.0275437.g003
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(1) Accuracy: calculates the proportion of the correctly classified samples to the total number

of samples. The higher the accuracy, the better the prediction performance. Let ŷi be the

predicted label of the ith sample, yi be the true label of the sample, and N be the number of

the predicted samples. The accuracy can be calculated as follows:

Accðy; ŷÞ ¼
1

N

XN� 1

i¼0

1ðŷi ¼ yiÞ ð8Þ

where 1(xi) is the indicator function.

(2) Hamming loss: calculates the proportion of the incorrectly predicted labels. The smaller

the hamming loss, the better the prediction performance. This can be calculated as follows:

Fig 4. Metal production mine ventilation network. (Created by the author).

https://doi.org/10.1371/journal.pone.0275437.g004
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HLðy; ŷÞ ¼
1

M

XM� 1

i¼0

1ðŷi 6¼ yiÞ ð9Þ

where M is the number of labels.

(3) Ranking loss: examines the cases of misordering in the sorted sequence of category labels

in the sample, and this loss averages the number of the misordered label pairs in the sample.

The smaller the ranking loss, the better the prediction performance. y2{0,1}N×M denotes

the binary label matrix of the real labels and f̂ 2 RN�M denotes the score associated with

each of its labels. It can be calculated as follows:

RLðy; f̂ Þ ¼
1

N

XN� 1

i¼0

1

kyik0ðM � kyik0Þ
jfðk; lÞ : f̂ ik � f̂ il; yik ¼ 1; yil ¼ 0gj ð10Þ

where |�| calculates the number of elements in the set and k�k0 calculates the number of non-

zero elements in the vector.

Table 1. Parameters of the fault test branches.

Serial numbers of branches Start-end nodes R/(N�s2�m-8) Q/m3�s-1 With dampers Fault type

e9 (v6,v19) 3014.887 0.10 Yes Reducing resistance

e55 (v54,v55) 14.736 5.39 Yes Reducing resistance

e60 (v58,v59) 10.067 6.18 Yes Reducing resistance

e64 (v62,v63) 4.514 5.16 Yes Reducing resistance

e87 (v79,v78) 0.290 28.64 Yes Reducing resistance

e88 (v90,v80) 1.283 -6.37 Yes Reducing resistance

e212 (v18,v75) 1.186 23.93 Yes Reducing resistance

e213 (v41,v56) 5.259 11.73 Yes Reducing resistance

e221 (v151,v94) 1.081 7.49 Yes Reducing resistance

e6 (v6,v7) 0.006 46.52 No Increasing resistance

e21 (v40,v42) 0.824 19.67 No Increasing resistance

e53 (v46,v80) 0.032 83.13 No Increasing resistance

e65 (v62,v64) 1.020 18.38 No Increasing resistance

e102 (v91,v92) 0.009 31.79 No Increasing resistance

e128 (v109,v29) 0.496 7.51 No Increasing resistance

e203 (v14,v701) 0.076 34.30 No Increasing resistance

https://doi.org/10.1371/journal.pone.0275437.t001

Table 2. Fault sample set.

Sample number q0
1

q0
2

q0
3

q0
4 q0

5
. . . q0

700
q0

701
q0

702 ei, ej
1 99.17 16.85 66.48 14.26 14.05 . . . 61.75 -0.87 33.14 e6, e21

2 97.23 16.75 61.97 5.46 5.22 . . . 61.37 -1.16 32.94 e6, e21

3 96.29 16.79 60.73 2.81 2.56 . . . 61.20 -1.30 32.86 e6, e21

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1798 103.61 15.83 80.76 42.14 42.03 . . . 55.05 15.63 21.56 e221, e203

1799 102.92 16.40 81.32 43.05 42.95 . . . 56.35 12.46 24.84 e221, e203

1800 101.39 17.63 82.86 45.26 45.17 . . . 59.81 4.43 30.75 e221, e203

https://doi.org/10.1371/journal.pone.0275437.t002
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(4) Coverage: examines the search depth required to cover all the relevant tokens in the sorted

sequence of the category tokens of a sample. The lower the coverage, the better the predic-

tion. It can be calculated as follows:

Cov y; f̂
� �

¼
1

N

XN� 1

i¼0

max
j:yij¼1

rankij � 1 ð11Þ

where rankij ¼ jfk : f̂ ik � f̂ ijgj.

(5) Average precision: examines the case where the tag that comes before the relevant tag in

the sorted sequence of the category tags of the sample remains the relevant tag. The higher

the average precision, the better the prediction performance. It can be calculated as follows:

AP y; f̂
� �

¼
1

N

XN� 1

i¼0

1

kyik0

X

j:yij¼1

jLijj

rankij
ð12Þ

where Lij ¼ jfk : yik ¼ 1; f̂ ik � f̂ ijgj.

(6) One-error: examines the case where the labels at the front end of the sequence are not part

of the set of the related labels in the sorted sequence of the category labels of the sample.

The smaller the One-error, the better the prediction performance. It can be calculated as

follows:

OE y; f̂
� �

¼
1

N

XN� 1

i¼0

1f½arg maxf̂ �=2yig ð13Þ

(7) F1 score: a harmonic mean of the precision and recall, where an F1 score reaches its best

value at 1 and worst score at 0. It can be calculated as follows:

F1 y; ŷð Þ ¼
1

N

XN� 1

i¼0

jŷi \ yij
jŷij þ jyij

ð14Þ

Results and discussion

To evaluate the performance of the ML-KNN algorithm and model in multiple fault locations

diagnosis of the mine ventilation system, ten-fold cross-validation was performed on the diag-

nostic training set, and the mean ± the standard deviation for each result was selected as the

result of the evaluation indicator, as shown in Tables 3 and 4.

Table 3 shows the cross-validation results of multiple fault locations diagnosis when all the

branches’ air volumes of the ventilation network were used as the model inputs. The value of

the number of the nearest neighbor K of the sample will have a greater impact on the results of

the algorithm [43]. A small value of K means that only the training instances that are close to

the input instance will affect the prediction result, but it is prone to overfitting. If the value of

K is too large, the advantage is that the estimation error of learning can be reduced, but the dis-

advantage is that the approximate error of learning increases. At this time, the training

instance far from the input instance will also affect the prediction, making the prediction

wrong [60,61]. Therefore, we choose the value range of K to be 1–5 for research. The effects of
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different K values on the cross-validation results were also compared. When K = 1, the model

predicted the highest accuracy. When K = 2, the model predicted the lowest ranking loss, cov-

erage, and one-error, while recording the highest average precision. When K = 4, the predicted

F1 score was the highest. When K = 5, the predicted hamming loss was the lowest. The average

prediction accuracy of the model is 73.6%, the average hamming loss is 2.56%, the average

ranking loss is 5.78%, the average coverage is 249.24%, the average precision is 88.88%, the

average one-error is 3.80%, and the average F1 score is 0.891.

The accuracy of the diagnostic results is given more consideration when diagnosing multi-

ple fault points in the mine ventilation system. When K = 1, the diagnostic accuracy was the

best. However, the model was also the most complicated, prone to overfitting, and easy to

learn the noise to ignore the real distribution of the data. In a comprehensive comparison,

K = 2 showed a better prediction performance. The diagnosis model of K = 2 was used to diag-

nose 200 sets of fault instances that were not involved in the training. The diagnosis found that

among the 200 sets of the fault instances, 153 groups of the fault locations were correctly diag-

nosed, with a diagnostic accuracy rate of 76.5% and a diagnosis time of 9.90s.

Table 4 shows the cross-validation results of the multiple fault locations diagnosis when the

air volume of 71 remaining branches is used as the model inputs. When K = 1, the model pre-

dicted the highest accuracy. When K = 2, the model prediction had the highest average preci-

sion and the lowest one-error. When K = 4, the model predicted the lowest hamming loss,

ranking loss, and coverage, while recording the highest F1 score. The average prediction accu-

racy of the model is 72.3%, the average hamming loss is 2.68%, the average ranking loss is

6.30%, the average coverage is 263.42%, the average precision is 88.18%, the average one-error

is 3.80%, and the average F1 score is 0.886.

For comparison purposes, the same diagnosis model of K = 2 was chosen to diagnose 200

sets of the fault instances that were not involved in the training. The diagnosis found that

among 200 sets of the fault instances, 147 groups of the fault locations were correctly diag-

nosed, with a diagnostic accuracy rate of 73.5% and a diagnosis time of 12.16s.

Table 3. Cross-validation results of the resistance variant for multiple fault location diagnoses.

K = 1 K = 2 K = 3 K = 4 K = 5

Accuracy 0.763±0.032 0.734±0.030 0.751±0.029 0.728±0.029 0.704±0.026

Hamming loss 0.030±0.004 0.025±0.004 0.025±0.003 0.024±0.003 0.024±0.002

Ranking loss 0.061±0.013 0.056±0.012 0.057±0.010 0.057±0.008 0.058±0.009

Coverage 2.502±0.331 2.466±0.311 2.484±0.289 2.483±0.236 2.527±0.241

Average precision 0.815±0.049 0.917±0.017 0.911±0.014 0.905±0.012 0.896±0.014

One-error 0.111±0.041 0.012±0.007 0.017±0.007 0.021±0.009 0.029±0.016

F1 score 0.883±0.021 0.889±0.018 0.894±0.018 0.895±0.015 0.894±0.011

https://doi.org/10.1371/journal.pone.0275437.t003

Table 4. Cross-validation results of the resistance variant for multiple fault location diagnoses.

K = 1 K = 2 K = 3 K = 4 K = 5

Accuracy 0.747 ± 0.027 0.726 ± 0.029 0.731 ± 0.029 0.710 ± 0.040 0.701 ± 0.036

Hamming loss 0.032 ± 0.004 0.028 ± 0.004 0.026 ± 0.004 0.023 ± 0.004 0.025 ± 0.003

Ranking loss 0.072 ± 0.011 0.062 ± 0.009 0.060 ± 0.009 0.059 ± 0.009 0.062 ± 0.010

Coverage 2.818 ± 0.278 2.615 ± 0.225 2.569 ± 0.250 2.543 ± 0.234 2.626 ± 0.238

Average precision 0.810 ± 0.050 0.909 ± 0.013 0.903 ± 0.014 0.900 ± 0.012 0.887 ± 0.014

One-error 0.115 ± 0.050 0.013 ± 0.006 0.017 ± 0.005 0.019 ± 0.007 0.026 ± 0.011

F1 score 0.879±0.021 0.879±0.017 0.889±0.018 0.893±0.019 0.890±0.017

https://doi.org/10.1371/journal.pone.0275437.t004
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Comparing Tables 3 and 4, it can be observed that Table 3 exhibits a better predictive per-

formance of the model than Table 4. After the cross-validation, the average prediction accu-

racy, average hamming loss, average ranking loss, average coverage, average precision, average

one-error, and average F1 score of this ventilation system resistance variant for the multiple

fault locations diagnosis model were 72.95%, 2.62%, 6.04%, 256.33%, 88.53%, 3.80%, and

0.889, respectively. For the 200 groups of untrained fault diagnosis instances, the average diag-

nostic accuracy of the model was 75% and the average diagnostic time was 11.03s.

The total length of the roadways of the experimental metal production mine is about 30

kilometers. According to the average speed of one person walking 3 kilometers per hour with-

out stopping, it will take at least 10 hours to check all the roadways of the mine. However, the

fault diagnosis time of the resistance variant for the multiple fault locations diagnosis model

for the ventilation system is less than one minute, and this shows that the model can quickly

diagnose the locations of the faults when the ventilation system encounters the resistance vari-

ant multiple faults. Additionally, the model saves a lot of manpower and material resources.

Most importantly, by quickly detecting the faults in the ventilation system, safety hazards can

be eliminated promptly and the ventilation system can be restored to its normal production

status, ensuring safe mine production.

Conclusions

The ML-KNN-based diagnosis model of the mine ventilation system with the resistance vari-

ant for multiple fault locations has a remarkable prediction accuracy and precision. When the

RVFs occur at multiple locations in the ventilation system, the locations of the roadways

where the faults occur can be quickly and accurately determined. This allows dealing with the

faults in time to restore the ventilation system to its normal state and prevent possible acci-

dents to ensure a safe production in the mine.

The average prediction accuracy, average hamming loss, average ranking loss, average cov-

erage, average precision, average one-error, and average F1 score of the ventilation system

resistance variant for the multiple fault location diagnosis models after the cross-validation

were 72.95%, 2.62%, 6.04%, 256.33%, 88.53%, 3.80%, and 0.889, respectively. This indicates

that the model has a good prediction performance and can meet the field engineering

requirements.

The current model diagnosed 200 groups of samples that did not take part in the training,

where the average diagnosis accuracy was 75%, reflecting a good generalization ability. The

average diagnosis time of the model is 11.03s, which is adapted to the emergency demand for

mine ventilation system fault disposal.

Although utilizing the air volume as the observation information of the model can well

diagnose the locations of the occurrence of the resistance variant multiple faults in the mine

ventilation system, higher diagnostic accuracy can be achieved if the composite features are

considered as the observation information. The air volume relies on the wind speed sensors,

while the prediction performance of the diagnostic model using the air volume of all the

branches of the ventilation network as input is slightly better than that using the air volume of

residual branches as an input. It is unrealistic and uneconomical to deploy wind speed sensors

in all the roadways of the ventilation system. Thus it is feasible to use the residual branches’ air

volume of the ventilation network as the observation information for the fault locations diag-

nosis. However, not all the residual branches have suitable conditions to install the sensors.

Therefore, the locations of the sensors must be optimized so that the sparse sensor readings of

the ventilation system can be used to accurately diagnose the resistance variant for multiple

faults in the ventilation system.
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