
RESEARCH ARTICLE

Exploration of sensing data to realize

intended odor impression using mass

spectrum of odor mixture

Daisuke Hasebe1☯, Manuel AlexandreID
1,2☯, Takamichi NakamotoID

1,2☯*

1 School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan, 2 Institute of

Innovation Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan

☯ These authors contributed equally to this work.

* nakamoto@mn.ee.titech.ac.jp

Abstract

Recently, olfactory information on odorants has been associated with their corresponding

molecular features. Such information has been obtained by predicting the sensory test eval-

uation scores from the molecular structure parameters or the sensing data. On the other

hand, we develop a method of the prediction of molecular features corresponding to the

odor impression. We utilize a machine-learning-based odor predictive model introduced in

our previous research, and we propose a mathematical model for exploring the sensing

data space. By using mass spectrum as sensing data in the predictive model, we can repre-

sent predicted mass spectrum as those of an odor mixture, and the mixing ratio can be

obtained. We show that the mass spectrum of apple flavor with enhanced ‘fruit’ and ‘sweet’

impressions can be obtained using 59 and 60 molecules respectively by using our analysis

method.

Introduction

The sense of smell is important partly close to the instincts of animal a species, to detect dan-

gers such as natural enemies and poisonous substances. Humans perceive hundreds of thou-

sands of odorants through about 400 types of olfactory receptors expressed in olfactory nerve

cells. Only a single type of sensory receptor is expressed on an olfactory nerve cell, and the

response patterns of the same type of olfactory receptor to an odorant are the same and have

the same odor selectivity [1]. Then, that the brain processes the response patterns of olfactory

nerve cells that are differently excited by odorants having various types of physicochemical

information.

Conventionally, a human sensory evaluation tests has been performed to determine how an

odor impression is perceived. Because sensory tests require much time and labor, attempts

have been made to predict sensory test data from physicochemical parameters or sensing data.

As an early attempt, Khan et al. performed dimensionality reduction with principal compo-

nent analysis for both physicochemical structural information and odor perception data, and

compared their principal components [2]. As a result, it was found that the first principal
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component of physicochemical parameters and the first principal component of perception

correlate the most, and it was concluded that the first principal component for perceptual data

was pleasantness. Guo et al. proposed a convolutional LSTM (Long Short Term Memory) that

predicts sensory test data using sensing data obtained from an electronic nose (E-nose) [3]. E-

nose is composed of multiple sensors. For the prediction, the combination of sensors should

be able to capture odor perception.

Many studies use physicochemical parameters to predict odor perception [4, 5], but they

are not applicable to odor mixtures. We used the mass spectrum to predict odor impression

[6, 7] because the mass spectrum of the mixed odor can be obtained by performing a linear

combination of component mass spectra. We improved its prediction accuracy by increasing

the number of data used for pretraining a part of the model [8]. The prediction accuracy

reached 0.90 in terms of correlation coefficient.

The next problem to be solved is the prediction of sensing data from odor impression. If

the sensing data can be predicted from the basis of a given odor impression, it is possible to

generate the desired scent automatically based on sensing data. We have already proposed a

method to explore the sensing feature space using an odor impression predictive model [9].

The sensing data used here is again the mass spectrum. However, such data is limited to explo-

ration of mass spectrum feature space and the approximation accuracy using odorant mole-

cules has not been investigated. In this paper, we extended our conference paper in Ref. [9] in

terms of mass spectrum approximation using odorant molecules as well as detailed exploration

algorithms.

Data

A mass spectrum is obtained by mass spectrometry, which is used for the structural analysis of

molecules. In mass spectrometry, a sample is ionized, ions are separated according to their

mass-to-charge ratio (m/z), and then a pattern of intensities with respect to m/z that is unique

to a molecule is obtained under the same condition. From the principle of mass spectrometry,

a linear superposition using the mixing ratio holds. We used the mass spectra of 2106 odorant

molecules from the NIST Chemistry WebBook database as physicochemical data to predict

sensory data [10]. The low m/z region with peaks for the solvent molecule and the high-m/z

region with little contribution to odor perception were removed, then 51–262 m/z region of

the mass spectra was used.

The sensory test is a method of evaluating the quality of an object by the five human senses.

In this study, we used odor impression scores for 21 odor descriptors from a sensory test data-

set for olfactory information called the DREAM dataset [11]. The descriptors are ‘pleasant-

ness’, ‘intensity’, ‘bakery’, ‘sweet’, ‘fruit’, ‘fish’, ‘garlic’, ‘spices’, ‘cold’, ‘sour’, ‘burnt’, ‘acid’,

‘warm’, ‘musky’, ‘sweaty’, ‘ammonia/urinous’, ‘decayed’, ‘wood’, ‘grass’, ‘flower’ and ‘chemical’.

Fifty-five subjects evaluated their odor impressions of up to 21 of these descriptors. The score

of the descriptor that a subject did not evaluate was regarded as 0. To associate the mass spec-

trum of a molecule with the sensory test data, the sensory test data was averaged across the

subjects. We used the data of 383 molecules since both their mass spectra and the sensory test

data are available.

Method to predict mass spectrum from odor impression

We have successfully mapped the mass spectrum onto sensory data as mentioned in Introduc-

tion. However, different mass spectra sometimes converge to similar points in the sensory

data space. Thus, it is necessary to solve the inverse problem.
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Overall algorithm is illustrated in Fig 1. The mass spectrum is initially set as its feature vec-

tor (MS feature) at first and then it is repeatedly updated to map the point in sensory data

space onto MS feature space. The sensory data after convergence should match specified ones.

The procedure is as follows.

1. Calculate the MS feature with a trained MS autoencoder.

2. Calculate odor impression using deep neural network (DNN)

3. Determine the target odor impression [input].

4. Calculate the gradient in the MS feature space on the basis of loss function, i.e., the error

between the target and the predicted odor impression.

5. Update the MS feature according to the gradient.

6. Calculate odor impression corresponding to the new MS feature using DNN.

7. After iteration (4–6), choose a MS feature that has minimal error in step 4 [output].

8. The original mass spectrum is recovered from the MS feature.

The cost function and the gradient derivation are explained in the next section.

Odor predictive model

The odor predictive model is a neural network that predicts odor impression scores of a mole-

cule from the mass spectrum. It is composed of three basic networks: two deep autoencoders

and a multi-layer perceptron as shown in Fig 2. We used five-layer autoencoders with a non-

linear sigmoid activation function, to reduce the dimensions of both mass spectrum data and

sensory test data. The dimensionally reduced features were mapped by a five-layer perceptron,

Fig 1. Principle of the prediction from odor impression to mass spectrum.

https://doi.org/10.1371/journal.pone.0273011.g001
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also with a sigmoid activation function. Finally, a nine-layer odor impression predictive model

was generated by combining the encoder part of the autoencoder for mass spectrum data, the

feature-to-feature mapping, and the decoder part of the autoencoder for sensory test data.

Here, we mathematically deal with the odor predictive model. Since the three basic neural

networks are non-linear multi-layer perceptrons with the same activation function, the odor

impression predictive model can also be considered as a multi-layer perceptron. Let the vector

X(k) of the kth layer and the activation A(k) in the layer be expressed as follows:

XðkÞ ¼ ðxk
1
; xk

2
; � � � ; xknðkÞÞ; ð1Þ

AðkÞ ¼ ðak
1
; ak

2
; � � � ; aknðkþ1Þ

Þ ¼Wðk;kþ1ÞXðkÞ þ Bðk;kþ1Þ: ð2Þ

where n(k) is the number of nodes, W(k,k+1) is the weight matrix and B(k,k+1) is the bias vector

in the kth layer. Using an element-wise sigmoid function

Zðk;kþ1ÞðAðkÞÞ ¼ ðzðk;kþ1Þ

1
ðak

1
Þ; z

ðk;kþ1Þ

2
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ðk;kþ1Þ
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We present the (k+1)th layer as

Xðkþ1Þ ¼ Zðk;kþ1ÞðAðkÞÞ ¼ Zðk;kþ1ÞðWðk;kþ1ÞXðkÞ þ Bðk;kþ1ÞÞ � f ðk;kþ1Þ
ðXðkÞÞ; ð4Þ

where f(i,j)(X(i)) is a function that maps the ith layer onto the jth layer. This allows X(9) to be

Xð9Þ ¼ ðf ð8;9Þ � f ð7;8Þ � � � � � f ð1;2ÞÞðXð1ÞÞ ¼ f ð1;9ÞðXð1ÞÞ ð5Þ

as a function for the input X(1).

The model training process consists of pretraining of three basic networks (two autoenco-

ders and a feature converter) and fine-tuning after combining them. The 5-layer autoencoder

Fig 2. Schematic diagram of the odor impression predictive model.

https://doi.org/10.1371/journal.pone.0273011.g002
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for mass spectrum data was trained and evaluated by five-fold cross validation using 500,000

synthetic mass spectra, each of which was linearly combined at random ratios using three ran-

domly chosen mass spectra. Then, the features of the 383 mass spectra that are common in

both datasets were obtained through the trained autoencoder. The 5-layer autoencoder for

sensory test data was trained using the 383 molecules and it was evaluated by 12-fold cross vali-

dation. Similarly, the feature converter was trained and tested by 12-fold cross validation with

383 dimensionally reduced feature pairs. Finally, the model was fine-tuned after pre-training

and combining the three basic networks. The entire training process updated the weights and

biases 2000 times by the backpropagation method to minimize the sum of squares error using

the stochastic gradient descent method. In the update formula, the inertial term to suppress

sudden changes and the regularization term to avoid saturation and overfitting were adopted.

The L2 norm (Ridge regression) was used for the regularization term [12].

The entire data was normalized. Each mass spectrum was normalized by dividing all spectra

by the maximum value because the mass spectrum has a unique pattern for each molecule

under the same condition. The entire sensory data was normalized by dividing all scores by

the total maximum value. These normalizations were carried out because we adopted sigmoid

activation. These normalizations ensure that the maximum value of the data does not exceed

1. Weights and biases were initialized using Xavier’s initialization [13].

The hyper parameters of the odor prediction model are listed in Table 1. The subscripts M,

S, P and F of the hyperparameters indicate that they are those of the autoencoder for mass

spectrum data, the autoencoder for sensory data, the feature converter, and the fine-tuning,

respectively. The numbers of nodes in the first hidden layer of the autoencoders KM and KS;

the numbers of nodes in the second hidden layer of the autoencoders DM and DS; the numbers

of nodes in the first to third hidden layers of the feature converter KP1, KP2 and KP3; the coeffi-

cients of the regularization terms λM, λS, λP and λF; the learning rates in the back propagation

Table 1. Hyperparameters of the odor impression predictive model.

Hyperparameter Range of search Step size The value used

KM 20−150 10 85

DM 5−90 5 70

λM 7.5−7.5×10−10 ×10−1 7.5×10−5

ηM,τ − − 0.5×0.99τ

αM − − 0.3

KS 5−25 5 20

DS 5−25 5 15

λS 0.2−2.0×10−9 ×10−1 2.0×10−9

ηS,τ − − 0.4×0.99τ

αS − − 0.3

KP1 10−100 5 30

KP2 10−100 5 70

KP3 10−100 5 45

λP 1.0−1.0×10−8 ×10−1 1.0×10−5

ηP,τ − − 0.4×0.99τ

αP − − 0.25

λF − − 2.0×10−5

ηF,τ − − 0.35×0.99

αF − − 0.025

https://doi.org/10.1371/journal.pone.0273011.t001
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ηM,τ, ηS,τ, ηP,τ and ηF,τ; the coefficients of the inertia terms αM, αS, αP and αF are included in

the table. τ is the number of iterations in each case.

Mass spectrum that realizes intended odor impression

Owing to the large number of dimensions of the mass spectrum, the complexity of odor per-

ception, and the instability of sensory test evaluation, it is difficult to construct a model that

directly predicts the mass spectrum from the odor impression. We examined an approach to

predicting the input space of the odor impression predictive model by the gradient descent

method. However, since most of the intensities of a mass spectrum are 0 and other peaks have

positive values, it has been found from a preliminary experiment that it is difficult to search

the mass spectrum directly using the gradient descent method. Therefore, we focused on a

reduced MS feature space instead of raw mass spectrum space. The mass spectrum feature

space is the middle layer of the autoencoder for mass spectrum data.

The method of exploring the mass spectrum feature space using the gradient descent

method is described below. The odor impression corresponding to the value in the mass spec-

trum feature space X(3) is expressed as the following equation:

Xð9Þ ¼ ðf ð8;9Þ � f ð7;8Þ � � � � � f ð3;4ÞÞðXð3ÞÞ ¼ f ð3;9ÞðXð3ÞÞ: ð6Þ

The derivative of f(3,9) with respect to X(3) is
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In the gradient descent updates, the search space X(3) is replaced with

Xð3Þ � ZG;t
dLðXð9ÞÞ
dXð3Þ

¼ Xð3Þ � ZG;t
dLðXð9ÞÞ
dXð9Þ

dXð9Þ

dXð3Þ
¼ Xð3Þ � ZG;t

dLðXð9ÞÞ
dXð9Þ

df ð3;9Þ

dXð3Þ
; ð10Þ

where

ZG;t ¼ Z0 � g
t; ð11Þ

and

L Xð9Þ
� �

¼
1

2

Xnð9Þ

i¼1

miðti � x9

i Þ
2
; ð12Þ

where L(X(9)) is the weighted sum of squares error (WSE), ηG,τ is the update rate, η0 is the ini-

tial value, γ is the attenuation rate, and mi is a weight for the ith descriptor’s score. By repeating

the update (10), we obtain the optimal X(3).
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The mass spectrum that realizes the searched mass spectrum feature was determined by a

line search that incorporated randomness. The algorithm is Algorithm 1 found in the supple-

ment section (S1 Fig). It is necessary to maintain good accuracy to restore the mass spectrum

from its feature. Algorithm 1 in S1 Fig has a higher accuracy than the decoder part of autoen-

coder even if it consumes a longer calculation time.

The mass spectrum explored using the Algorithm 1 in S1 Fig can be considered as a syn-

thetic mass spectrum. Therefore, since the synthetic mass spectrum can be represented by a

linear combination of the component mass spectra, we obtained the mixture composition by

the nonnegative constrained least squares regression method.

Results

Training of the odor impression predictive model

We trained the odor impression predictive model by the method described above. To perform

the feature search experiment by the gradient descent method, it is necessary to select one of

the 12 cross-validation divisions. The maximum value of the correlation coefficient is 0.93,

which is higher than those in previous reports (0.76 in [6], 0.86 and 0.90 in [8]). This is due to

both the increase in the amount of training data of the autoencoder for mass spectrum and the

increase in the number of molecules included in the sensory test data compared with previous

reports [6, 8].

We applied the gradient descent algorithm to the 10 molecules contained in the DREAM

dataset to predict the mass spectrum from the target odor impression. The parameters of the

search were ηG,τ = 0.1×0.99τ and mi = 1 for all i. The gradient descent was repeated 2000 times.

The result is shown in Fig 3. The prediction accuracy of the model is not perfect, so it contains

some prediction errors in the odor descriptor space. The mass spectrum feature search algo-

rithm by the gradient descent method can work to search for a feature that minimize this pre-

diction error. However, Fig 3 shows that the gradient descent method has little effect on

changing the location of the corresponding mass spectrum feature, which means that the

trained odor impression predictive model has sufficiently high accuracy.

Fig 3. PCA diagram of MS features before and after applying the gradient descent algorithm to the 10 molecules

in the DREAM dataset. The circle are mass spectral features obtained by reducing the dimension of the original mass

spectra. The triangles are mass spectral features searched by applying the gradient descent method, predicted from

odor impression. All plots are obtained using the first and second principal components with proportion of variance.

https://doi.org/10.1371/journal.pone.0273011.g003
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Model performance for odor mixture

The model above was trained basically using single molecules, so it is necessary to verify

whether the odor impression is predicted correctly with respect to the mass spectrum. There-

fore, we evaluated the performance of the model by synthesizing two single molecules at con-

tinuously varying ratios. We adopted citral and vanillin as the two molecules included in the

current dataset. The former is the scent of lemon and the latter is the scent of vanilla.

Fig 4 shows the result of the change in odor impression across the range of odor mixing

ratios. The odor impression change was calculated using Eq (6), where the mass spectrum fea-

ture of citral-vanillin mixture was put into X(3). The mass spectra used here were normalized

ones since they come from the NIST database. The odor impression was predicted for every

1% change in the mixing ratio. The output of the model showed smooth changes in odor

impression. The most rapid changes were observed when the mixing ratio was approximately

50%, whereas a gradual change was confirmed near the end points. Regarding the descriptors

‘intensity’ and ‘pleasantness’, the impression scores tended to decrease at the concentration

points of 0 to 30%, and tended to increase monotonically in the other parts. From this, it is

considered that a molecule is much more dominant in the odor impression when its concen-

tration is close to 100%. It is expected that the trained model can express the impression score

using the pattern of mass spectrum of the mixture, but this finding should be verified by a sen-

sory test.

Application to a complex odor mixture

In this study, we applied the input space search methods using the odor impression predictive

model described above to an apple flavor, an odor mixture with its recipe, given in Ref. [14].

The mass spectrum of the apple flavor is shown in Fig 5. The apple flavor consists of nine odor

component molecules, and its mass spectrum was calculated by considering the ratios (v/v) of

ingredients as the coefficients of linear combination. The apple flavor is ‘virtual’ since normal-

ized mass spectra of nine ingredients in the database were used to calculate its mass spectrum.

The sensory data was obtained using the odor impression predictive model. Before applying

the input space search methods, we changed the target odor impression of the apple flavor for

the two odor descriptors (‘fruit’ and ‘sweet’).

First, we conducted an experiment on the odor descriptor ‘fruit’. Fig 6(A) shows the paired

plots for the predicted sensory data scores and the virtual true values in which the odor

descriptor ‘fruit’ has a tripled predicted value as the true value and the others have the same

values as the predicted ones. The gradient descent method was applied to obtain the true

value. The parameters used here were ηG,τ = 0.1×0.99τ and mi = 1 for ‘fruit’ and mi = 0.05 for

the other descriptors. Fig 6(B) shows the result in the sensory data space after optimization by

the gradient descent method. The specified odor impression for ‘fruit’ was obtained since the

red plot in the figure is on the diagonal line. On the other hand, the other descriptors have dif-

ferent odor impressions and deviated from the diagonal line. It seems that the other impres-

sions changed according to the correlation between the descriptors to obtain the true value of

‘fruit’ with a heavier penalty. The error transition in the sensory data space during the process

is shown in Fig 7. It can be seen that the error converged in about 10 iterations.

We searched for a mass spectrum that provides the explored features by applying the Algo-

rithm 1 (S1 Fig). The parameters of the search were Δ = 0.5×0.9999τ and the number of itera-

tions was 100,000, where Δ is the update rate described in Algorithm 1 (S1 Fig). The data

obtained through Algorithm 1 in S1 Fig was close to the exact one since Algorithm 1 in S1

Fig is based on the method requiring numerous searched points. The resulting mass spectrum

is shown in Fig 8. For the mass spectrum, the sum of squares of error on the mass spectrum
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feature space obtained through the autoencoder was 0.0325, which corresponds to an average

error of about 2% in the dimension of each m/z feature because the feature dimension is 70.

Such mass spectrum might express mostly correct and less noisy peaks with low intensities. In

Fig 4. Changes in the scores of the odor descriptors for each mixing ratio of vanillin and citral. The horizontal axis

shows the mixing ratio of vanillin.

https://doi.org/10.1371/journal.pone.0273011.g004
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addition, since the obtained mass spectrum contained peaks of the high-m/z region, it is con-

sidered that the apple flavor with an increased ‘fruit’ score should have additional fruity

molecules.

Fig 5. Mass spectrum of the virtual apple flavor.

https://doi.org/10.1371/journal.pone.0273011.g005

Fig 6. Predicted sensory test score (A): The score for the original apple flavor (vertical axis) and the true value with the score of ‘fruit’ was

multiplied by 3.0 (horizontal axis). (B): The score for the explored mass spectral feature (vertical axis) and the true value with the score of ‘fruit’

was multiplied by 3.0 (horizontal axis). The blue, red and green plots are those of ‘intensity’, ‘fruit’ and others, respectively.

https://doi.org/10.1371/journal.pone.0273011.g006
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Furthermore, we approximated the mass spectrum shown in Fig 8 using the component

mass spectra of the 2106 flavor molecules by the nonnegative least squares regression method.

The MATLAB command (‘lsqnonneg’ with no option setting) was used to perform the non-

negative least squares regression method. The error between the approximated mass spectrum

and the obtained mass spectrum in Fig 8 is shown in Fig 9 and the mixing ratio is shown in

Fig 10. The approximation error of the mass spectrum was less than 0.00005 (sum of squares

error) in the mass spectrum feature space obtained through the trained autoencoder. The

number of molecules that contributed to the approximation was 59 out of 2106, which indi-

cates that a highly accurate approximation was obtained with a relatively small number of

types of molecule. Fifty-nine molecules are shown in supplemental S1 Table. The number of

molecule types contained in the original apple flavor was three out of nine, and the mixing

ratios were not low. Therefore, we can expect that the approximated mass spectrum might be

slightly different from the original apple flavor, and its scent is similar to a fruit punch mixed

with a non-apple fruit flavor. These findings should be verified by a sensory test.

Then, we conducted another experiment on the mixed apple flavor. Here, we focused on

the descriptor ‘sweet’ and conducted a series of similar experiments. The true value of ‘sweet’

was set to three times higher than the original one (Fig 11(A)), and the mass spectral feature

was searched by the gradient descent method. The parameters of the search were ηG,τ =

0.1×0.999τ and mi = 1 for ‘sweet’ and mi = 0 for other descriptors. The gradient descent was

iterated 20,000 times. In reality, the error converged after about 200 iterations. Fig 11(B)

shows the result in the sensory data space. As in the case of the descriptor ‘fruit’, the specified

odor impression for ‘sweet’ was obtained since the red plot in the figure is on the diagonal line,

and the other descriptors have different odor impressions from the original ones.

Fig 7. Transition of errors in sensory space in the gradient descent method for ‘fruit’.

https://doi.org/10.1371/journal.pone.0273011.g007
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Furthermore, using the same parameters, we conducted the mass spectrum search using

Algorithm 1 in S1 Fig was conducted. The explored mass spectrum is shown in Fig 12. For

the mass spectrum, the sum of squares of error on the mass spectrum feature space obtained

through the autoencoder was 0.0165, which is comparable to that obtained for ‘fruit’. As in the

Fig 8. Mass spectrum obtained by applying Algorithm 1 in S1 Fig to the explored mass spectrum feature in the

experiment for ‘fruit’.

https://doi.org/10.1371/journal.pone.0273011.g008

Fig 9. Error between obtained mass spectrum and approximated one using 2106 flavor molecules by nonnegative

least square regression (‘fruit’).

https://doi.org/10.1371/journal.pone.0273011.g009
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case of the descriptor ‘fruit’, several peaks appeared in the high m/z region. However, com-

pared with the original mass spectrum of the apple flavor, there was no significant change in

the outline.

The mass spectrum shown in Fig 12 was approximated using the 2106 molecules by solving

the nonnegative least squares problem. The parameters of the calculation were the same as

those for ‘fruit’. The error between the approximated mass spectrum and the obtained mass

spectrum in Fig 12 is shown in Fig 13 and the mixing ratio is shown in Fig 14. The

Fig 10. Mixing ratio of the molecules that contributed to the approximation in Fig 9. The molecules included in the

original apple flavor are indicated by brown bars. Molecule names are shown in supplemental S1 Table.

https://doi.org/10.1371/journal.pone.0273011.g010

Fig 11. Predicted sensory test score (A): The score for the original apple flavor (vertical axis) and the true value with the score of ‘sweet’ was

multiplied by 3.0 (horizontal axis). (B): The score for the explored mass spectral feature (vertical axis) and the true value with the score of ‘sweet’

was multiplied by 3.0 (horizontal axis). The blue, red and green plots are those of ‘intensity’, ‘sweet’ and others, respectively.

https://doi.org/10.1371/journal.pone.0273011.g011
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Fig 12. Mass spectrum obtained by applying Algorithm 1 in S1 Fig to the explored mass spectrum feature in the

experiment for ‘sweet’.

https://doi.org/10.1371/journal.pone.0273011.g012

Fig 13. Error between obtained mass spectrum and approximated one using 2106 flavor molecules by nonnegative

least square regression (‘sweet’).

https://doi.org/10.1371/journal.pone.0273011.g013
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approximation error was less than 0.00005 (sum of squares error) in the mass spectrum feature

space obtained through the trained autoencoder. The number of molecules that contributed to

the approximation was 60 (supplemental S2 Table) out of 2106. The number of molecules con-

tained in the original apple flavor was three out of nine, and the mixing ratios were not low. In

this case, the odor mixture prepared by mixing 60 odorants is expected to smell more like the

original apple flavor than in the case of the ‘fruit’ descriptor because the explored mass spec-

trum shown in Fig 10 is similar to the original one, even though six of the nine molecules in

the original flavor were absent. Note that the explored mass spectrum can contain noisy peaks.

By limiting the types of molecule used to approximate the explored mass spectrum, it is possi-

ble to reduce such noises and to apply the desired bias. In other words, noises can be reduced

by removing less-contributory molecules in a mixture ratio analysis, and the original outline of

a flavor, e.g., apple flavor, can be maintained by approximating an explored mass spectrum

without using other fruit-specific mass spectra.

Conclusion

In this study, we proposed mathematical models and algorithms for calculating physicochemi-

cal features, i.e., the mass spectrum that realizes an intended odor impression. This is an

attempt completely different from previous reports on predicting odor impression from the

physicochemical structure parameters, which has not been so far reported except by us. From

our previous report [9], this paper is extended in terms of odor mixtures and detailed algo-

rithm descriptions.

The deep prediction model that made use of dimension reduction methods contributed to

further improvement of the prediction accuracy. The experiment on a binary mixture (citral

and vanillin) confirmed that this trained model can be used for odor mixtures as well as single

molecules. Finally, it was found that the proposed method can express a mass spectrum

Fig 14. Mixing ratio of molecules that contributed to the approximation in Fig 13. The molecules included in the

original apple flavor are indicated by brown bars. The list of the molecules is shown in S2 Table.

https://doi.org/10.1371/journal.pone.0273011.g014
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corresponding to the change in odor impression for a complex odor mixture, and it was also

possible to obtain the mixing ratio.

In this paper, we presented not only a new method for predicting the sensing data from the

odor impression, but also a method for quantifying the mixing ratio of odorants to obtain the

sensing data. For further improvement, the results presented in this paper need to be verified

through sensory tests.

Since we can obtain the sensing data, i.e., mass spectrum, from odor impression, it is possi-

ble to make corresponding scent to have the identical sensing data. The odor approximation

technique can extend generality of the proposed method [15]. The limitation of the model is

that it is not always possible to realize an arbitrary odor impression, e.g., simultaneously warm

and cold. It is necessary to understand the range of scents to be realized. Moreover, the uncer-

tainty of the predicted sensing data and the corresponding mixing ratio will be investigated.
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