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Abstract

Item co-occurrence is an important pattern in recommendation. Due to the difference in cor-

relation, the matching degrees between the target and historical items vary. The higher the

matching degree, the greater probability they co-occur. Recently, the recommendation per-

formance has been greatly improved by leveraging item relations. As an important bond

imposed by relations, these connected items should have a strong correlation in the calcula-

tion of certain measures. This kind of correlation can be the biased knowledge that benefits

parameter training. Specifically, we focus on tuples containing the target item and latest

relational items that have relations such as complement or substitute with the target item in

user’s behavior sequence. Such close relations mean the matching degrees between rela-

tional items and historical items should be highly affected by that of the target item and his-

torical items. For example, given a relational item having relation complement with the

target item, if the target item has high matching degrees with some items in user’s behavior

sequence, this complementary item should behave similarly for the co-occurrence of com-

plementary items. Under guidance of the above thought, in this work, we propose a target-

relation regulated mechanism which converts the biased knowledge of high correlation of

matching degrees into a regulation. It integrates the target item and relational items in his-

tory as a whole to characterize the matching score between the target item and historical

items. Experiments conducted on three real-world datasets demonstrate that our model can

significantly outperform a set of state-of-the-art models.

Introduction

Due to the overwhelming data that people are facing on the Internet, recommendation is

becoming increasingly important. It can help to alleviate the problem of information overload

in fields like e-commerce for retrieving information and discovering contents. Most existing

recommendation models work on implicit feedback like purchasing records to learn personal-

ized preference. Although effective, it is very challenging to further improve the performance

due to the problem of data sparsity. Recently, some works have taken item relations into

account and an example illustrating such relations is shown in Fig 1. Item relations like com-
plement and substitute can help narrow the scope of recommendation, which greatly alleviate
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the data sparsity since you most likely will not buy an item if you have bought something simi-

lar in function recently. Based on such fine-grained information, models using such informa-

tion have been studied to improve recommendation accuracy. The two prominent ones in

them are CFKG [1] and Chorus [2]. CFKG is a pioneer work in mining item relations with

knowledge graph. Chorus focuses on item relations and their temporal effects. Although the

influence of item relations is considered, they use only the relation type information. It is

somewhat indistinguishable for that the same relation can contain a large number of different

items. Therefore, we now turn our attention to relational items of the target, which are histori-

cal items that have a relation with the target item. Compared to relation type, greater discrimi-

nation can be got with relational items since items can have different influences, strong or

weak, even they may belong to the same relation. Besides, relational items are homogenous

with target item since they all represent items, and this consistency helps in the measure of

matching degree. However, this is not the case with relation types.

Relational items, which have a relation with the target item in user’s behavior sequence, can

play a significant role in this scenario for their intimacy with the target and their potential

remains to be further explored. Some characteristics between items that have relations are cor-

related. This feature can be viewed as a strong biased knowledge and converted to a regulator

in terms of matching degree in the parameter learning. We are concerned about matching

degrees between items to make decisions when doing recommendation, which is usually calcu-

lated by the dot product of their embeddings. For example, if the target item co-occurs often

with some historical items, their matching degrees should be high. And the matching degrees

between the target and irrelevant historical items should be low. As an item that has an impor-

tant relation with the target, the matching degrees between this relational item and historical

items should be strongly influenced by matching degrees between the target item and histori-

cal items. Depending on specific relation, their matching degrees may follow the same or

opposite trends. For instance, given a relational item having complement relation with the tar-

get, the probability it co-occurs with the target item in user’s behavior sequence is much larger

in average than other items that have no relation. If the target item has a high matching degree

with a historical item A, where high matching degree also means large probability to co-occur,

the relational item’s matching degree with item A should also be high because of the transitiv-

ity of co-occurrence.

Inspired by the above idea, in this paper, when evaluating the matching scores between the

target and historical items, we replace the original target by integrating the target and

Fig 1. An example of user’s purchasing sequence with item relations.

https://doi.org/10.1371/journal.pone.0269651.g001
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relational item as a whole to characterize the matching score. This regulated matching score is

then used to determine whether the target item is the one we are interested in the next step.

These steps convert the aforementioned bias knowledge to the constraint in matching score to

better employ such correlation.

In summary, the contributions of this work are as follows:

• We highlight the strong correlation between the target item and relational items can be

viewed as a biased knowledge and converted to a regulator embedded in the parameter

learning.

• We propose a target-relation regulated network which introduces a constraint by integrating

the target and relational item as a whole to characterize the matching scores between the tar-

get and historical items.

• We evaluate our model on three real-world datasets and achieve significant improvements

over the state-of-the-art baselines for recommendation.

Related work

In this section, we briefly review the related works in two aspects, namely sequential recom-

mendation and item relation modeling.

Sequential recommendation

Recommendation systems have made considerable progress in recent years. The trajectory can

be traced from the past Collaborative Filtering (CF) to the current Sequential Recommenda-

tion (SR) [3], which relies on the user’s behavior sequence to predict the next item that the

user might be interested in. Explicit feedback such as ratings was modeled most in the early

days. Models like MF [4] and SVD++ [5] has shown a very powerful representation ability.

The research focus has transited from explicit feedback to implicit feedback later for their com-

monness and universality. The training content has also shifted from rating task to ranking

task and finally evolved into the current top-k recommendation. Models like MF linearly

aggregates the multiplications of latent embeddings, which is insufficient to capture complex

user-item interactions. NCF [6] is thus proposed to learn non-linear function via a multi-layer

neural network. Sequential patterns is the focus sequential recommendation wants to capture.

Recurrent Neural Network (RNN) and its variants like Gated Recurrent Units (GRU) are

incorporated into sequential modeling [7]. However, RNN has some shortcomings, such as

difficulty in capturing long-term dependency, poor parallelism, and too strict order assump-

tions for interaction sequence. Subsequently, some Convolutional Neural Networks (CNN)

have also been explored and obtained good results [8]. One of the problems of CNN-based

models is that they have difficulties in capturing relations between items that are not nearby.

Recently, there are works that employ advanced techniques, e.g., attention mechanism [9–12]

and gating mechanism [13] for sequential recommendation to distinguish the importance of

different items in sequence. SASRec [14], based on self-attention mechanism, demonstrated

promising results in modeling mutual influence between historical interactions. HGN [13]

exploits item co-occurrence as one of the model’s building block.

Item relation modeling

Traditional recommendation techniques can perform well when sufficient interaction infor-

mation is provided. However, we often encounter the problem of data sparsity in practice. In

real-world, some relations with concrete semantics exist among items. To introduce more
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effective information and address the data sparsity, models incorporating item relations have

recently got research attention [2, 15–17]. They mainly use Knowledge Graph (KG) to learn

relation semantics between items and embed them to item embeddings. CFKG [1], which

defines a variety of entities and relations, learns the representation over a structured heteroge-

neous knowledge graph for recommendation. Chorus [2] considers relation types between

items and their corresponding temporal dynamics to better capture the evolutional effects of

relations. There is a drawback here, which is that it needs handcrafted forms of temporal decay

functions. KDA [18] makes better by introducing Fourier transform to model the varying tem-

poral effects of different relational interactions.

Methodology

Problem formulation

We first formulate the task of sequential recommendation with item relations here. Let U
and I denote the set of users and items respectively. All users’ interaction history A ¼
fS1

;S2
; . . . ;SjUjg are given. Each user has an interaction sequence of items happened in the

chronological order Su
¼ fsu

1
; su

2
; . . . ; sut g, where sui 2 I ; 0 � i � t. The task is to choose k

items from I that most likely to be of interest to the user based on the historical interactions at

time step t + 1. Besides, in the task of knowledge graph embedding happened in the first part

of our model, we denote R to be the set of item relations with size h, where relation r 2 R
could be complement or substitute, etc.

Model overview

Fig 2 illustrates the overall architecture of TRR which consists of two parts. The first part is for

item relation modeling, where we learn item representations from the knowledge graph of

item relations and make a good initialization for the subsequent recommendation part. The

second part is for recommendation task where the relational items are exploited to measure

matching scores between the target and historical items.

Relational knowledge graph embedding

Let’s first look at the task of item relation modeling from knowledge graph of item relations.

There are often relations between items that we can employ. Take two commonly seen behav-

iors “also_view”, “also_buy” in shopping sites as an example. We denote “also_view” as relation

substitute and “also_buy” as relation complement, which are useful for accurate recommenda-

tion. For instance, if you have purchased an iPhone, it is very likely that you will show interest

to AirPods for that a strong complementary relation exists between them. However, if you

have purchased Powerbeats, you most likely don’t want to buy AirPods within a short period

because they are functionally overlapping and substitutable. Items and relations between them

can form a knowledge graph consisting lots of triples {s, r, o}, where s and o are items and r 2
R is a relation. After getting the knowledge graph, the next step is how to train model parame-

ters employing it. Considering the number of relations is small in this knowledge graph, we

select TransE [19] from traditional knowledge graph embedding models as the training

method. The score function for each triple used in TransE is:

f ðs; r; oÞ ¼ ksþ r � ok2

2
ð1Þ
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where s, r and o are embeddings of s, r and o respectively. The loss function for this task is:

loss ¼ � log sðg � dðs; oÞÞ �
Xn

i¼1

1

k
log sðdrðs

0

i; o
0

iÞ � gÞ ð2Þ

Fig 2. Illustration of the proposed model TRR. The first part pays attention to encoding the structural information constructed by the knowledge graph of item

relations into their embeddings. The second part focuses on learning the target-relation regulated representation for the recommendation task based on the

embeddings learned from the first part.

https://doi.org/10.1371/journal.pone.0269651.g002
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where γ is a fixed margin, σ is the sigmoid function, and ðs0i; r; o
0
iÞ is the i-th sampled negative

triplet.

Training of knowledge graph

We have constructed a knowledge graph and corresponding loss function focusing on item

relations in the previous step. Then we train the knowledge graph to learn item representations

affected by item relations. After enough epochs of training, we turn to the second part of our

model: the recommendation task. At that time, item embeddings have integrated the structural

information from knowledge graph which cannot be learned in the subsequent recommenda-

tion task.

Embedding layer

As shown in Fig 2, the input of TRR is a user’s behavior sequence, which contains a series

of items in time order. We first convert the input ðsu
1
; su

2
; . . . ; sut Þ into a fixed-length sequence

su = ðsu
1
; su

2
; . . . ; suLÞ to facilitate subsequent operation, where L denotes the maximum sequence

length TRR will process. If the sequence length is greater than L, we truncate it and take the

most recent L items, otherwise, we pad the sequence to the fixed length L.

We maintain an item embedding matrixMI 2 RjIj�d, where d is the embedding dimension.

The item embedding matrix projects the high-dimensional one-hot representation of an item

to a low-dimensional dense representation. Given an interaction sequence su = ðsu
1
; su

2
; . . . ; suLÞ,

we can form the input embedding matrix:

E ¼ ðk1; . . . ; kLÞ 2 R
L�d ð3Þ

where kr 2 R
d is the embedding of the r-th item.

Target-relation regulated representation learning

Sequential dependency is ubiquitous in user-item interactions. To better determine users’ cur-

rent interests, we should look into their historical interactions. However, we must be aware

that in many cases, only a few items in the past will play an important role. How do we distin-

guish which items are important? Given a piece of interaction history for a user, some histori-

cal items have no relation with the target item and others have. Historical items that have

important relations with the target item should undoubtedly deserve our attention. Because of

the close relationship within the target and relational items, the matching degrees between the

target item and historical items have a deep correlation with the matching degrees between the

relational items and historical items. This can be viewed as biased knowledge and converted to

a regulator in the calculation of matching scores.

For example, given two users’ purchasing history U1 = {Shoes, MacBook, Milk} and U2 =

{Bose Headphone, Samsung Phone, HuaWei Watch}. Suppose we now predict whether they

will be interested in buying an iPhone. By browsing their purchasing history, we can find the

target iPhone is complementary with MacBook in U1, and a substitutable relationship with

Samsung Phone in U2. Obviously, U1 is likely to be interested in iPhone while U2 most likely

won’t because it already has a functionally similar one. The above scenario explains the impor-

tance of introducing relational items. Now we further elaborate on capturing the item co-

occurrence by exploiting relational items. Given another user’s interaction history U3 = {Mac-

Book, AirPods, Milk}. Compared with U1, U3’s willingness to buy an iPhone will be greater for

that the union of two complementary items MacBook and AirPods leads to greater possibility

on buying the target iPhone than just one complementary MacBook in U1.
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Given the representation of the target item denoted as i. In our mechanism, a strong corre-

lation exists in the measure of matching degrees among the target item and items having rela-

tions with the target. To integrate such constraint, we first add the target item with the latest

maximum n relational item in each type of relation from history as the query vector:

qri ¼ iþ
Xn

i¼1

l
r
i � j

r
i ð4Þ

where r 2 R is one of the item relations, jri denotes the embedding of historical item having

relation r with the target item, l
r
i control the strength of each relational item and qri represents

the query vector with respect to relation r. We list three ways here to aggregate the influence of

multiple relational items. The first is to calculate the average, which sets coefficient l
r
i to be

1/n. In the remaining two, l
r
i is learned through a multilayer perceptron. Given the relational

items J ¼ ðjr
1
; . . . ; jrnÞ 2 R

n�d. We can obtain the aggregated representation by the following

three formula:

Xn

i¼1

li � j
r
i ¼

Xn

i¼1

1

n
� jri ð5Þ

Xn

i¼1

li � j
r
i ¼ SUMðsoftmaxðJ

>WÞ � J>; 2Þ ð6Þ

Xn

i¼1

li � j
r
i ¼ SUMðsðJ

>WÞ � J>; 2Þ ð7Þ

where W 2 Rn�n
is the trainable parameters. The superscript> denotes the matrix transpose.

SUM(A, i) means we sum up the embeddings along the i-th dimension of A and σ is the sig-

moid function. TRR adopts one special case, where n = 1 and λ1 = 1. This means only the latest

relational item is used for each type of relation. The impact of different aggregation methods

with λi will be explored in the ablation experiment. Then we use query vector qri to calculate

the matching degrees with items in user’s behavior sequence. We use dot product to compute

the matching degree:

vrm ¼ qri � km ð8Þ

wherem 2 [1, L] represents the item position in user’s history sequence, vector km is the item

embedding in that position and vrm is the matching degree between qri and historical item km.

The larger vrm is, the higher probability of this item co-occurring with the target and latest rela-

tional item. To reduce noise introduced by irrelevant historical items, we further use a gating

layer to adjust their relative matching degrees and then aggregate them with addition:

gr ¼ sðW1vrÞ

zr ¼ gr � vr
ð9Þ

where W1 2 R
L�L

, vr 2 RL
with vrm as one element in this vector, σ is the sigmoid function and

zr is the final adjusted matching degree between the target and historical items under a certain

relation. Note that sigmoid is used here instead of softmax because there may be multiple

items that are important. Using softmax will reduce the distinction between important items

and non-important items. At last, we add up the influence from different relations to
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synthesize them:

s ¼
X

r2R

zr ð10Þ

Prediction layer

We have introduced the core mechanism of TRR. Next we describe the prediction layer which

combines matrix factorization and the above schema to produce the prediction score.

Since each user or item has a latent representation, the score function for ranking is as the

following:

ŷui ¼ uTiþ s ð11Þ

where uTi gets the matching degree from the user-item perspective and the second s pays

attention to the influence from the item-item perspective.

To train parameters in the recommendation part of TRR, we need to select an appropriate

loss function to optimize. Since the user interactions are sequence of implicit feedback, pair-

wise ranking loss is used to optimize the proposed model in training. It aims to rank the

observed next item (positive) ahead of the accompanying negative sample and is formulated as:

Lrec ¼ �
X

u2U

XNu

i¼1

ðlogsðŷui � ŷujÞ ð12Þ

where j=2Su
is a negative item sampled from the training set.

On comparison with Chorus

Note that our proposed TRR is different from Chorus [2]. Chorus focuses on the temporal

dynamics of item relations, where the representation of each item includes the basic item

embedding and temporal evolution from different relations. However, our TRR doesn’t con-

tain the time factor for that it has limited stacking effect on our mechanism. Another main dif-

ference is that, although Chorus considers the temporal influence of relations between items, it

only uses the relation type information. However, it is somewhat vague since the same relation

can contain a large number of different items, which leads to low discrimination. In contrast,

TRR takes care of relational items of the target item. Greater discrimination can be got since

different items have their own representations and contribute different influences, strong or

weak, even they all belong to the same relation. Besides, compared to relation type, relational

items are homogenous with the target item. This consistency helps in the measure of matching

degrees. The third main difference is that Chorus mainly relies on taking both relation types

and corresponding temporal dynamics into consideration to obtain performance improve-

ment. Our TRR takes advantage of the strong correlation between the target and relational

items as the biased knowledge and converted to a constraint in the calculation of matching

scores to help learning parameters.

Evaluation

In this section, we conduct experiments to verify the effectiveness of the proposed TRR. We

first describe the datasets, evaluation metrics, baseline methods and experimental settings in

detail. Then we report the experimental results and conduct a in-depth analysis.
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Datasets

To evaluate performance of the proposed TRR, we do experiments on three public amazon

datasets. These datasets not only have the interaction records of users with timestamps, but

also the metadata of items. Typical information in metadata contains relations between items

like “also_view”, “also_buy” and the category information. We have selected 3 representative

datasets from the amazon dataset library: Grocery and Gourmet Food (Grocery), Cellphones
and Accessories (Cellphones), and Home and Kitchen (Home). The raw data and preprocessing

code can be found in github (https://github.com/THUwangcy/ReChorus/tree/SIGIR20/data).

Statistics information about the three datasets are summarized in Table 1.

Evaluation protocols

To evaluate the top-N recommendation performance, we employ Hit Ratio (HR) and Normal-

ized Discounted Cumulative Gain (NDCG) to measure the recommendation quality as done

in many methods. HR@K indicates whether the test item successfully appear in the top-k rec-

ommended list and NDCG@K takes the ranking position of correctly recommended items

into account.

Comparison methods

To show the effectiveness of the proposed TRR, two groups of baselines are considered. The

first group is the general sequential recommendation methods like SASRec [14] and HGN

[13]. The other one is models employing item relations like Chorus [2] and KDA [18]. The

compared state-of-the-art models are listed as the following:

• BPR. A classic CF method applying Bayesian Personalized Ranking to Matrix Factorization

[4] for recommendation.

• GMF. A classic CF model using multiple non-linear layers of neural network [6].

• Tensor. A model splitting time into bins and factorizes a three-dimensional tensor for rec-

ommendation [20].

• GRU4Rec. A RNN-based model using gated recurrent unit for sequential recommendation [7].

• NARM. A RNN-based model combing GRU and attention for session-based recommenda-

tion [3].

• Caser. A CNN-based model which learns high-order dependency via vertical and horizontal

convolutions for sequential recommendation [8].

• SASRec. A self-attention based model which can learn long-term dependency and identify

relevant items for prediction [14].

• HGN. A attentive model which proposes a hierarchical gating architecture and the Item-

item Product mechanism [13].

• CFKG. A collaborative filtering model learning over a structured knowledge graph [1].

Table 1. Statistics of the datasets.

Dataset #Users #Items #entry #triplet relational ratio in test set

Grocery 14.7k 8.5k 145.8k 372.1k 27.8%

Cellphones 27.9k 10.3k 193.2k 247.5k 30.0%

Home 66.5k 27.2k 541.6k 924.6k 16.6%

https://doi.org/10.1371/journal.pone.0269651.t001
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• SLRC. A sequential model considering both item relations and their temporal dynamics [21].

• Chorus. A sequential model considering not only item relations but also their evolutional

effects along time [2].

• Locker. A sequential model which improves self-attentive mechanism by enhancing short-

term user dynamics modeling. [12].

• KDA. A sequential model considering relational effects and their temporal evolutions using

Fourier transform [18].

Implementation details

For comparison purpose, we follow some configurations used in Chorus [2]. The embedding

size is set to 64. We use Xavier initializer with a mean of 0 and standard deviation of 0.01 to ini-

tialize learning parameters. Adam [22] optimizer is used as the optimization algorithm. We

adopt early stopping with the patience of 5 epoch to prevent overfitting, and NDCG@5 is set as

the indicator. In particular, we directly use the results of BPR, GMF, GRU4Rec, NARM,

CFKG and SLRC reported in Chorus [2]. As for Caser, HGN, SASRec, Locker and KDA,

model-specific hyper-parameters for them are set based on the original paper or empirical

hyper-parameter search. Specifically, we tune the learning rate in {10−3, 10−4, 10−5}, the L2

coefficient in {10−7, 10−6, 10−5, 10−4}, the dropout in {0.0, 0.1, � � �, 0.9}. For TRR, the number of

historical items L used in target-relation regulated representation learning is from {1, 3, 5, 7, 9,

11, 13, 15} and the number of relational items n used in constructing query vector is from {1,

2, 3, 4, 5}. We implement our model in PyTorch.

Experimental results

Table 2 shows the performance comparison of the proposed TRR and other baseline methods

on three datasets. We find several observations from this table:

• Sequential models like GRU4Rec and NARM behave better than the traditional collaborative

filtering methods (BPR and GMF). This is due to the consideration of sequential depen-

dency. Models like Caser, HGN, SASRec and Locker have achieved extraordinary results due

to the high-quality context-aware representations. But they contain more parameters, which

requires a lot of data feeding to get a well-trained model. This can be a problem for the sparse

user behavior in many datasets.

• The performance of relation-based models like SLRC, Chorus and KDA are among the best

baselines. This shows the benefits of exploiting item relations. With regard to KDA, the

impressive performance shows the effectiveness of considering item relations and their tem-

poral dynamics by using fourier transform with learnable frequency domain embeddings.

• Finally, we can see that the proposed TRR consistently outperforms the baselines, which

confirms the significance of characterizing patterns of item co-occurrence guided by rela-

tional items, which transforms the strong correlation imposed by item relations to regulated

matching scores between the target and historical items. We conduct t-tests and p-value

<0.05 proves that the performance improvements of TRR are statistically significant.

Ablation analysis

In this section, we perform a series of ablation experiments on the proposed TRR to confirm

its effectiveness and better understand the impact of each key module.
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Impact of the target-relation regulated representation mechanism. In order to prove

effectiveness of integrating the target and relational items as a whole to characterize the match-

ing scores between the target and historical items, we remove the part of relational items in Eq

4, i.e. only the term i will be reserved and denote this variant as TRR_nr. The results are

reported in Fig 3. The performance drop of TRR_nr demonstrates the advantage of mining the

strong correlation between the target and relational items. It exploits the co-occurrence of

three items, thus leading to more accurate scoring.

Impact of gating layer. Our proposed approach TRR leverages a gating layer in the tar-

get-relation regulated mechanism to adjust the weight of matching degrees between the target

and historical items, which is done in Eq 9. We study the impact of this gating layer by com-

paring two variants. The first variant is by removing the gating layer from TRR and denoted as

TRR-ng. The second variant is by replacing the sigmoid function in Eq 9 with softmax and

denoted as TRR-att. The results are reported in Fig 4. The performance degradation in TRR-

ng indicates that it is helpful to further adjust the relative scales within the group of historical

items through the gating mechanism. This can improve the distinguishability of important

items. Besides, we can see that the overall performance of TRR-att is slightly inferior compared

to TRR. The gap is more obvious on the Cellphones dataset. This is because in this dataset,

there are more items with important relations in user’s behavior sequence, which can be seen

from the column “relational ratio in test set” in Table 1. Sigmoid is better compatible with this

scenario.

Impact of training method for knowledge graph. We now evaluate the influence of

training methods on knowledge graph. Three additional knowledge graph embedding models

are compared here with the adopted TransE [19] in TRR, which are TranH [23], ConvR [24],

and RotateE [25]. TransH is a translational model where entities have different representations

under different relations. ConvR utilizes a convolutional network designed to maximize

entity-relation interactions. RotatE defines each relation as a rotation from the source entity to

the target entity in the complex vector space. We denote the three models using them as “TRR

Table 2. The performance comparison of all methods in three datasets. The best performing method of each column is boldfaced. The second best performing method

is underlined.

Methods Grocery and Gourmet Food Cellphones and Accessories Home and Kitchen

HR@5 N@5 HR@10 N@10 HR@5 N@5 HR@10 N@10 HR@5 N@5 HR@10 N@10

BPR 0.3242 0.2223 0.4315 0.2571 0.3260 0.2349 0.4364 0.2705 0.2542 0.1718 0.3701 0.2091

GMF 0.3051 0.2089 0.4100 0.2429 0.2866 0.2030 0.3910 0.2367 0.2500 0.1671 0.3693 0.2055

Tensor 0.3478 0.2623 0.4471 0.2943 0.3560 0.2489 0.4888 0.2917 0.2897 0.1941 0.4216 0.2366

GRU4Rec 0.3704 0.2643 0.4721 0.2972 0.4112 0.2956 0.5453 0.3389 0.2953 0.2025 0.4187 0.2423

NARM 0.3590 0.2573 0.4634 0.2910 0.4092 0.2938 0.5440 0.3373 0.2901 0.1976 0.4137 0.2375

Caser 0.3780 0.2690 0.4772 0.3011 0.4194 0.3080 0.5415 0.3474 0.2976 0.2052 0.4129 0.2424

HGN 0.3988 0.2741 0.5233 0.3146 0.4127 0.2993 0.5426 0.3413 0.2952 0.2015 0.4193 0.2416

SASRec 0.4248 0.3043 0.5298 0.3384 0.4622 0.3443 0.5871 0.3848 0.3106 0.2152 0.4329 0.2546

Locker 0.4321 0.3127 0.5357 0.3463 0.4738 0.3539 0.5968 0.3937 0.3160 0.2197 0.4373 0.2588

CFKG 0.4337 0.3081 0.5628 0.3499 0.4465 0.3264 0.5677 0.3656 0.2609 0.1760 0.3801 0.2144

SLRC 0.4513 0.3329 0.5649 0.3698 0.4440 0.3433 0.5414 0.3747 0.3275 0.2452 0.4346 0.2797

ChorusBPR 0.4754 0.3448 0.5998 0.3852 0.4593 0.3439 0.5784 0.3824 0.3405 0.2473 0.4572 0.2849

ChorusGMF 0.4748 0.3467 0.5960 0.3861 0.4623 0.3481 0.5809 0.3863 0.3350 0.2461 0.4433 0.2811

KDA 0.5023 0.3727 0.6125 0.4124 0.5288 0.3968 0.6482 0.4403 0.3568 0.2569 0.4759 0.2952

TRR 0.5257 0.3937 0.6430 0.4317 0.5607 0.4265 0.6788 0.4648 0.3877 0.2868 0.5005 0.3233

p-value 8.07e-4 6.22e-3 1.31e-4 3.62e-3 1.07e-4 2.22e-3 9.71e-5 1.15e-3 7.39e-3 4.24e-2 2.62e-4 2.39e-2

https://doi.org/10.1371/journal.pone.0269651.t002
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w TransH”, “TRR w ConvR” and “TRR w RotatE” respectively in Table 3. From the results, we

can note that newer models like RotatE and ConvR are inferior to the old ones like TransH

and TransE (adopted in our model TRR). This can be attributed to the simple relationships in

the constructed knowledge graph, where the number of edge types is small. In such case, com-

plex models are prone to overfitting and thus we prefer simple models with fewer parameters.

Fig 3. The impact of the target-relation regulated representation learning (NDCG@5).

https://doi.org/10.1371/journal.pone.0269651.g003

Fig 4. The impact of the gating layer on three datasets (NDCG@5).

https://doi.org/10.1371/journal.pone.0269651.g004
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Impact of relational item number n. To study the effect of different number of relational

items incorporated in Eq 4, we vary n in the range of 1 to 5 and use the three aggregation meth-

ods described there. The results using Eq 5 are denoted as Mean, the results using Eq 6 as Soft-

max and the results using Eq 7 as Sigmoid. The performance is reported in Fig 5, where TRR-2

sets n to 2, TRR-3 sets n to 3 and so on. The proposed TRR adopts n = 1 and λ1 = 1 and the

results are marked with red dotted line. We can observe that different datasets have their own

suitable aggregation methods, which are determined by the distribution characteristics of data-

sets. In general, more relational items will cause performance degradation in many cases. This

is reasonable since the correlation between relational items often weakens over time. The older

the relational item is, the less meaningful it is for the target item, and the possibility of intro-

ducing noise is increased instead.

Influence of hyper-parameter

Proper setting of hyper-parameter is important for model performance. In this section, we

evaluate the proposed TRR to investigate the impact of history length L in our model, which is

used to calculate the matching scores between the target and historical items in the target-rela-

tion regulated representation learning mechanism. The results are shown in Fig 6 measured

with NDCG@5. According to the results, we can observe that it’s not good if L is too large or

too small. Small L leads to insufficient context information while large value will cause interfer-

ence from many irrelevant items. The best setting varies for different datasets, which depends

on the data size and sparsity. In addition, the results do not fluctuate much near the appropri-

ate length, which shows the stability and robustness of our model in delivering superior pre-

diction accuracy.

Table 3. The impact of four different training methods for knowledge graph embedding (NDCG@5).

Architecture Grocery and Gourmet Food Cellphones and Accessories Home and Kitchen
TRR w TransH 0.3902 0.4248 0.2869

TRR w ConvR 0.3634 0.3764 0.2616

TRR w RotatE 0.3925 0.4150 0.2489

TRR 0.3937 0.4265 0.2868

https://doi.org/10.1371/journal.pone.0269651.t003

Fig 5. The impact of different relational item number n within three aggregating methods (NDCG@5).

https://doi.org/10.1371/journal.pone.0269651.g005
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Conclusion

In this work, we focus on employing the correlation between the target and relational items

and propose a target-relation regulated mechanism TRR for sequential recommendation with

item relations. The strong relationships between them extend to the calculation of matching

degrees and are informative to the pattern of item co-occurrence. TRR utilizes such knowledge

and integrates relational items to the calculation of matching scores between the target and his-

torical items. Extensive experimental results and analysis on three real-world datasets demon-

strate that our proposed model TRR consistently outperforms the state-of-the-art methods.

Due to the data sparsity, Relations may actually exist between some items but not observed.

The performance improvement of our TRR is dependent on these relational items however. In

the future, we plan to extend TRR to incorporate other auxiliary information to enrich rela-

tional items of the target item. Auxiliary information such as category, user review and knowl-

edge base can be employed to get more appropriate relational items from different

perspectives.
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