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Abstract

A semi-active suspension system can effectively improve vehicle ride comfort and handling

stability, and the active detection of road information is key to achieving semi-active suspen-

sion. To improve the road elevation perception ability of vehicles, this study proposes a con-

tinuous multiple scanning recursive matching algorithm based on a single-line LIDAR

sensor. Radar recursive scanning is used to obtain the multiple superposition data of echo

signals, and coordinate matching is realized between historical scanning data and current

scanning data. Simultaneously, the sensor height deviation and pitch angle deviation of the

sensors are regressed to obtain an accurate pavement elevation. Considering the control

effect of the active vehicle suspension, a vehicle suspension model with seven degrees of

freedom is established. The semi-active suspension controller is constructed using a diago-

nal recursive neural network algorithm, and the neural network weight is trained using a

genetic algorithm. In addition, a preview diagonal recursive neural network control strategy

for semi-active suspension, based on the combination of road elevation information, is pro-

posed. The results of a hardware-in-the-loop co-simulation, which was conducted based on

the Simulink control model and dSPACE real-time simulation, revealed that the ride comfort

and stability of the vehicle were improved owing to a preview of the elevation information of

the road ahead and the active adjustment of the shock absorber of the suspension system.

1. Introduction

Suspension systems transfer the force and torque between a vehicle body and the wheels and

are used to reduce the impact load from the road surface to the frame. The impact load has an

important impact on the vehicle’s ride comfort, handling stability, and safety, as well as the ser-

vice life of tires. Active suspension is an inevitable direction of suspension development [1].

Road roughness is the primary reason for changes in the vehicle body attitude. Therefore, opti-

mization of the suspension strategy of a car can improve the vehicle driving performance to a

certain degree; however, the improvement effect is limited because of the hysteresis of the
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input. Vehicle preview control technology can be used to obtain the road contour and adjust

the shock absorber in advance. The ability of a vehicle to obtain the road roughness informa-

tion of the road ahead in advance and input it to the suspension controller enables the suspen-

sion controller to appropriately adjust the damping of the shock absorber according to the

road roughness information. When the elevation of the road changes significantly, the vehicle

can move along the road with minimum body fluctuation, thus improving vehicle ride

comfort.

Current suspension control methods rarely actively detect or perceive road information,

and inadequate road information prevents the suspension system from further improving

vehicle performance. To address these issues, practical road preview technology has become

the research focus of active suspension systems, and accurately obtaining road roughness

information is key to achieving the preview effect.

Currently, road height estimation methods are divided into three main categories. The first

category includes direct measurement methods, which are simple and effective but have a

large workload.

The direct measurement method uses road roughness instruments installed on or con-

nected to the vehicle to measure the road elevation by keeping contact with the ground contin-

ually. Xuexun et al. [2] compared and analyzed various pavement roughness measurement

methods and concluded that the accuracy of pavement roughness information measured by

the direct measurement method is ideal and can reproduce pavement elevation information

accurately. However, as a second-order system with a spring and shock absorber, the selection

of the spring stiffness and shock absorber damping coefficient will significantly impact the

amplitude frequency characteristics of the system, thus affecting the measurement accuracy of

the pavement roughness instrument within its resonance frequency range [3]. At present, the

road profile [4] and vibration accumulation measuring instrument [5] widely used on vehicles

can accurately measure the road elevation information with an amplitude of ±100 mm and a

wavelength ranging from 0.5–20 m to 1–50 m; however, the measurement accuracy depends

on the vehicle driving speed [6]. In addition, owing to limitations with respect to the structure

and installation of these measuring instruments, the vehicle can only be driven at a low speed

during the measurement process. Therefore, the direct measurement method is mainly used

for the maintenance of the road surface and cannot be used for the on-board real-time mea-

surement of conventional vehicles.

The second category involves the indirect measurement method, which is based on sensor

information and requires mature algorithms to process the road signal data. In 2002, Labayr-

ade et al. proposed a real-time nonflat pavement contour detection algorithm [7] that uses the

"v-parallax" method to vertically model pavement contours. This method is robust to the con-

tour acquisition of pavements and obstacles. In 2007, Oniga et al. converted three-dimensional

(3D) data obtained from a dense stereo parallax map into a rectangular elevation map [8]. The

random sample consensus (RANSAC) method was used to fit the quadratic road surface

model, and the vertical contour of the road surface and obstacles was then obtained after a

transformation, which requires a complex calculation. Researchers at Chang’an University

obtained the relevant contours of road objects in advance using image processing techniques,

and they performed feature extraction and recognition [9]. The identification data were com-

bined with the acceleration and other sensor data, and transmitted to the control system. In

2014, Shen et al. performed stereo matching on the road ahead in real time to obtain depth

information, generate a 3D grid map, and estimate and correct the dynamic pitch angle of the

sensor in real time [10]. In 2018, Audi released the 5th generation Audi A8 model that realizes

AI active suspension technology through a front R242 camera. These methods, which are

based on image processing, require high computational power and a costly controller. The
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vision-based detection scheme is sensitive to environmental changes, and its measurement

accuracy cannot be ensured in rainy and snowy weather. In addition, the measurement system

based on this measurement method cannot provide accurate identification under conditions

with potholes, such as gravel roads; hence, this method cannot be used for the continuous

measurement of bad roads.

The third category includes an estimation method that is based on the dynamic response of

suspension systems. The traditional method [11–15] estimates road conditions using the Kal-

man filter estimation algorithm or synovial observer [16, 17]. In Reference [18], a method for

estimating the road height using the inverse model of the suspension system and the dynamic

response of the suspension system was proposed. In Reference [19], a Kalman filter and neural

network were jointly used to estimate road height, and its effectiveness depended largely on

the quality of data training. The road height estimation method based on dynamic responses is

limited by the vehicle state acquisition error, and is only suitable for outputting road grades;

this method cannot achieve real-time output. Additionally, some studies adopted the vehicle

model and designed the sliding-mode observer to estimate unknown road heights [16, 17].

The road height changes gradually with the system input. This method is only suitable for slow

changing pavements, and not for discrete impact pavements such as deceleration belt and pit

bag, or long-wave pavements with rapid changes.

Active suspension control algorithms include the proportional integral derivative (PID)

control algorithm, optimal control algorithm, robust control algorithm, and neural network

control algorithm. In recent years, intelligent control algorithms have combined pavement

information with control strategies. For example, the front-road condition and vehicle speed

are considered in the suspension control quantity of the preview control algorithm [20]. B

Németh et al. combined road information with the robust control algorithm and proposed a

fusion strategy of road roughness and driving speed to form the final suspension robust con-

troller [21]. Wang et al. proposed a road surface condition identification approach based on

road characteristic value, which can be used in preview control [22].

If the road height information can be obtained in real time, the interference of the road surface

on the state estimation of the suspension system can be eliminated [23–25], and the system perfor-

mance and response speed can be improved through feed-forward compensation of the control sys-

tem according to the road height information [26]. Therefore, the use of road information in

suspension control systems is an area of research interest [27–29] in the field of suspension control.

To obtain the road elevation information in real time, this paper proposes a road elevation

recognition method based on a single-line LIDAR. Owing to its structure, LIDAR can be

directly installed on existing vehicles. The working principle of transmitting a laser pulse

makes the measurement results less affected by speed, the road environment, and light, thereby

increasing the measurement accuracy relative to visual schemes. The proposed recursive scan-

ning matching algorithm combines the historical scanning data with the current scanning data

to calculate the pavement elevation. Consequently, the elevation information can be identified

with a rapid change of pavement impact, such as deceleration belt and discrete impact pave-

ment. In addition, it does not depend on the training accuracy of the deep learning data set,

thus yielding a better recognition generalization ability of pavement contour. This paper pres-

ents a preview diagonal recursive neural network (Pre-DRNN) control strategy for semi-active

suspension based on the real-time acquisition of pavement elevation information. The paper is

organized as follows: a recognition method for pavement elevation information is introduced

in Section 2, and Section 3 describes the design of the semi-active suspension controller. Then,

based on the information presented in Sections 2 and 3, the overall system scheme design is

analyzed and discussed in Section 4. The experimental verification is described in Section 5,

and conclusions are presented in Section 6.
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2. Pavement elevation recognition method

LIDAR is a type of radar that functions in the optical band. By sending measurement laser

pulses to the target and then receiving the laser signal reflected from the target, the distance

information of the target is obtained according to the speed of light and the propagation time

between the LIDAR and the target. This study proposes a LIDAR continuous scanning recur-

sive matching algorithm to compute accurate road roughness information based on low-cost

single-line LIDAR, and the roughness grade of the pavement is obtained.

When a vehicle is being driven, the vehicle-mounted LIDAR emits laser beams to detect

and scan the pavement elevation. The detection area of each beam is fixed based on the instal-

lation angle and position of the LIDAR. The detection range of the two moments before and

after produces the intersection interval, wherein a data overlap area is created, and the data

density in this area is enhanced. When a vehicle travels multiple distances, the data will overlap

many times, and the data density will be greatly enhanced. Having a sufficiently large amount

of data can significantly compensate for the shortage of single-line LIDAR data. Accordingly,

accurate contour information of the front obstacle can be obtained, and measurement errors

caused by the road environment and self-motion state can be reduced.

The proposed continuous scanning recursive matching algorithm aims to improve the

accuracy of the contour elevation of the obstacle in front of the vehicle by performing multiple

continuous scanning recursive matching on the laser pulse echo signal. The specific imple-

mentation steps are illustrated in Fig 1.

2.1 Calculation of the ground contour elevation

According to the detection range of the vehicle LIDAR, to detect obstacles, the LIDAR is

installed in the middle of the front of the vehicle or on both sides of the headlights. The current

obstacle elevation is calculated based on the geometric relationship between the laser beam

and ground, as shown in Fig 2.

n0 ¼ nc þ nL þ �0; ð1Þ

where

nc: Pitch angle offset of LIDAR at installation position;

nL: Relative pitch angle between the vehicle body and wheel;

ϕ0: Current LIDAR measures the angle of the beam relative to the sensor housing.

As shown in Fig 2, the scanning angle of the vehicle-mounter LIDAR may vary from approxi-

mately 0˚ to 45˚ from the horizontal position to the road, and at the two extreme angles, the measur-

ing point on the ground surface is located at an infinite long distance and at the nearest detectable

point on the surface. The absolute vertical height from the LIDAR to the ground can be calculated

using the installation height of the LIDAR, inclination parameters of the laser beam z0, and horizontal

distance from the point to the sensor in the x-axis direction (x0). The calculation formula is as follows:

x0 ¼ d0 � cosðn0Þ; ð2Þ

z0 ¼ z � d0 � sinðn0Þ; ð3Þ

The vertical distance z from the sensor to the ground is as follows:

z ¼ zcz þ zzd � xs � sinðnLÞ þ ys � sinðwLÞ; ð4Þ
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Fig 1. Flow chart of algorithm implementation.

https://doi.org/10.1371/journal.pone.0269406.g001

Fig 2. Geometric relationship between radar and ground.

https://doi.org/10.1371/journal.pone.0269406.g002
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Obstacle elevation information can be obtained as:

z ¼ zcz þ zzd � xs � sinðpLÞ þ ys � sinðwLÞ � d0 � sinðnc þ nL þ �0Þ; ð5Þ

where

zcz: Installation position offset of vehicle-mounted LIDAR in the vertical direction;

zzd: Measurement error caused by the installation of vehicle-mounted LIDAR;

pL: Disturbances caused by vertical bumps and other movements of the vehicle;

wL: Disturbance caused by the left and right movements of the vehicle;

xs: Longitudinal distance between the center of gravity of the vehicle and the LIDAR;

ys: Lateral distance between the center of gravity of the vehicle and the LIDAR;

d0: Distance between LIDAR and measuring point.

2.2 Coordinate matching between historical scanning data and current

scanning data

According to the above recursive matching algorithm, coordinate matching is performed on

the LIDAR scanning data twice through the coordinate transformation relationship, i.e., the

polar coordinates are converted into Cartesian coordinates, which can be realized using Eqs

(6) and (7):

X0;p ¼ d0;p � cosðn0;pÞ

Z0;p ¼ zp � d0;p � sinðn0;pÞ

( )

; ð6Þ

x0;n ¼ d0;n � cosðn0;nÞ

z0;n ¼ zn � d0;n � sinðn0;nÞ

( )

; ð7Þ

where

X0,p: Distance from a measurement point to the sensor in the x-axis direction obtained from

the historical scan;

zp: Vertical distance from the sensor to the ground obtained from the historical scan;

Z0,p: Obstacle profile elevation values obtained from the historical scan;

x0,n: Distance from a measuring point to the sensor in the X-axis direction obtained from the

current scan;

z0,n: Obstacle contour height values obtained from the current scan;

zn: Vertical distance from the sensor to the ground obtained by the current scan.

2.3 Probability density function

In Section 2.2, the measurement point was considered to be a point, and each distance value

measured by LIDAR corresponded to the height value of the obstacle contour. However, in

reality, each measurement point is distributed in the form of a spot and not a point. Within a

spot, the height value is distributed with a certain probability; this area is called a laser spot.

The pulse signal emitted by LIDAR is not evenly distributed in this area, but presents a
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Gaussian distribution decreasing from the center to the edge. Therefore, the height value in

the measurement point also obeys the Gaussian distribution. Accordingly, a Gaussian distribu-

tion probability density function is introduced to represent the probability density of the mea-

surement points:

xðxÞ ¼
1

s
ffiffiffiffiffiffi
2p
p expð� 1

2
ð
x� xref
s Þ2Þ; ð8Þ

where

x is a continuous random variable (in the model, x is the horizontal distance between the

LIDAR and measurement point).

σ is the standard deviation (or variance)

The algorithm implemented in the above steps is based on the infinitesimal propagation of

the measurement points, which is too ideal to truly describe the height profile of the obstacle.

If the two scans have the same distance basis, the regression analysis will achieve a superposi-

tion of the two scans. For this reason, a coordinate system is established, as shown in Fig 3.

The abscissa represents the distance from the measurement point scanned by the LIDAR

beam to the LIDAR, and the ordinate represents the height of the obstacle profile. A shift regis-

ter (which can be understood as an array in the algorithm program) with equidistant sampling

points was introduced on the abscissa, and the height value of each scan was inputted using a

quantized abscissa value. Thus, the problem of diffusion of the measuring point was solved.

Fig 3. Application example of shift register with equidistant sampling points.

https://doi.org/10.1371/journal.pone.0269406.g003
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Fig 3 shows an example of a shift register application for measurement point p in a scan. A

specific abscissa value in the shift register corresponds to a discrete height value, and because

the measurement point is shown in the form of a light spot in a real scenario, the discrete mea-

surement value may appear with a certain statistical probability within the light spot range.

The elevation value z at point p should consider all possible spots measured at point xi, i.e., the

sum of the probability density values of all measurement points at point p should be consid-

ered as the comprehensive probability density of point p.

In the shift register, the abscissa is divided at every equidistant sampling point with a dis-

tance of Δx, which is equivalent to rasterizing the distance between the LIDAR scanning point

and LIDAR installation position. Fig 3 shows that

x0:cy ¼ ðx0; x0 þ 1 � Dx1; . . . ; x0 þm � Dx1Þ

¼ ðx0;cy;j; . . . ; x0;cy;mÞ

j ¼ 0 . . . ::m; x0;cy 2 Rmþ1

ð9Þ

The abscissa of the shift register covers the entire measurement range of the LIDAR signal,

and a shift register with m + 1 discrete equidistant sampling points can be obtained according

to the grid width and maximum scanning distance range. For example, if the measurement

range is 0–20 m and the grid width is 10 cm, the shift register has m + 1 = 201 sampling points.

In this register, the height value of each measurement point and the probability density distri-

bution are entered via the abscissa value X; Table 1 shows the results.

Assuming that a set of scans has K measurement points and that the different measurement

spots were at each sampling point of 0, the probability density of m is

xi xið Þ ¼
1

scld;jðx0;jÞ
ffiffiffiffiffiffi
2p
p exp

ð�

1

2
ð

xi � xj

scld;jðx0;jÞ
Þ

2
Þ

i ¼ 1; 2 . . . k; j ¼ 0; 1 . . .m

ð10Þ

The probability density function represents the accuracy of the obstacle height measured in

the light spot. The larger the peak value of the probability density, the more concentrated the

probability distribution and the higher the accuracy of the measurement. Using the probability

density function, the measured data can be processed continuously to obtain a dense obstacle

profile height curve.

2.4 Quasi-continuous estimation of the obstacle profile

Each time a new scan is generated, K height values that are represented in discrete form in

terms of distance are obtained. However, in practice, there is a corresponding height value at

each position of the shift register where the probability is nonzero. Assuming that the current

scan is made up of K measurement points, the current estimated value of the height value can

be calculated using m + 1 discrete grid points in the shift register. Then, according to the prod-

uct of the probability density matrix and the vector of K height values (taking the sum of n

probability density functions of one scan as a unified standard).

Table 1. Registers with equidistant sampling points for saving scanned data.

x0,cy,1 x0,cy,2 . x0,cy,m
z0,cy,1 z0,cy,2 . z0,cy,m
ξ0,1 ξ0,2 . ξ0,m

https://doi.org/10.1371/journal.pone.0269406.t001
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The probability density value at the first sampling point is ξ0,1, ξ0,2. . .ξ0,k. The estimated

value of the corresponding height value can be calculated using normalization:

z0;cy ¼
X

z0;cy ¼

X
ðx0 � z0;iÞ
X

x0

 !

i ¼ 1; 2 . . . k; ð11Þ

where the weighted sum of the scanning data is:
X

x0 ¼ x0;1 þ . . .þ x0;k; ð12Þ

The quasi-continuous estimation of the probability density values and the corresponding

height values of the sampling points can also be obtained by standardization.

The value of the probability density at the mth sampling point is ξm,1, ξm,2. . .ξm,k. The esti-

mated value of the corresponding height value can be calculated by normalization:

zm;cy ¼

X
ðxm � zm;iÞ
X

xm

; ð13Þ

where the weighted sum of the scanning data is
X

xm ¼ xm;1 þ . . .þ xm;k; ð14Þ

According to the above algorithm, a quasi-continuous estimation of the obstacle contour of

each equidistant point in each scan can be obtained.

2.5 Obtaining an accurate obstacle profile height

An algorithm that uses the data of all the current and historical scans can greatly improve the

signal quality of the obstacle. This goal can be achieved by recursively calling the scan-match-

ing algorithm between the historical and current scans at each scan. The recursive superposi-

tion algorithm is briefly described by the following formula.

Recursive call for current scan:

ðz0;cy;n;
X

x0;nÞ ¼ f ðx0;cy;n; tÞ; ð15Þ

ðz0;cy;p;
X

x0;pÞ ¼ f ðx0;cy;p; tÞ; ð16Þ

where

z0,cy,n: Calculated height in the current scan;

∑ξ0,n: Sum of the probability density functions of the first sample point in the current scan;

z0,cy,p: Calculated value of height in the historical scan;

∑ξ0,p: Sum of the probability density functions of the first sampling point in the historical scan;

x0,cy,n: Distance from the point to the sensor in the x-axis direction in the current scan;

x0,cy,p: Distance from the point to the sensor in the x-axis direction in the history scan.

2.6 Calculation of the altitude value deviation and pitch angle deviation

In the recursive superposition algorithm, we should also consider the calculations of related

variables. The error of the road contour height value should be considered when the current
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(new) scan and historical (old) scan are overlapped by the regression method. The height shift

or height error in the shift register can be expressed as follows:

εz0;cyðx0;cyÞ ¼ z0;cy;p � z0;cy;n; ð17Þ

where

z0,cy,p: Obstacle profile height value of the history scan;

z0,cy,n: Obstacle profile height value of the current scan;

εz0,cy: Height shift or height error in the shift register.

To overlap the new scan and old scan by linear regression, it is necessary to determine the

weight with which to consider the height error of the obstacle contour corresponding to each

abscissa value in the shift register. In simple terms, the error of the height value needs to be

considered only at locations with a high normalized probability density of the current and his-

torical scans. Therefore, regression analysis is considered only within the minimum intersec-

tion of the probability density distributions of the two scans because only the overlap of the

two scans is relevant. Considering this, a correlation coefficient R is introduced, which can be

calculated from the minimization criterion of the generalized probability density function as

follows:

R ¼ k
X

x0;n;
X

x0;pkmin; ð18Þ

where

∑ξ0,n: Probability density function in the current scan;

∑ξ0,p: Sum of the probability density functions in the historical scan.

A parameter, i.e., the correlation coefficient R, is added to the recursive superposition algo-

rithm, which indicates that factors such as the light spot plane distribution of the laser measur-

ing points and the subsequent probability density distribution of the height values

corresponding to the measuring points are considered when determining the height value

deviation and pitch angle deviation of the obstacle contour of the current and historical scans.

The following new relationship can be derived between the current and historical scan data:

R;R � x0;cy

� �
�

Dz

Dn

 !

¼ R � εz0;cy; ð19Þ

where

x0,cy: Distance of the points from the LIDAR in the x-axis direction in a shift register with equi-

distant sampling points;

Δn: Pitch angle deviation between the old and new scans;

Δz: Height value deviation between the old and new scans.

This equation is an overdetermined system of equations similar to Ax = B. The above equa-

tion can be solved using linear regression. The generalized inverse matrix A + of matrix A is
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constructed as follows:

x̂ ¼ Aþ � b ¼ ðAT � AÞ� 1
� AT � b

Dz

Dn

0

@

1

A ¼
�
R;Rx0;cy

�T
�
�
R;Rx0;cy

�� �� 1

�
�
R;Rx0;cy

�T
�
�
R; εz0;cy

� ; ð20Þ

According to the above formula, the height deviation and pitch angle deviation Δn for mul-

tiple groups of obstacle contours can be obtained. The least square method can be used to

determine the optimal value of the height deviation Δz and the optimum value of the pitch

angle deviation Δn. The height correction value of the new scan data, z0,cy,xz, is calculated as

follows:

z0;cy;xz ¼ z0;cy;n þ Dn � x0;cy þ Dz; ð21Þ

where the old and new scans are superimposed.

2.7 Fusion of the old and new scan data

Through an implementation of the above steps, the current and historical scan data can be

combined using the correction obtained by the previous recursive superposition coincidence.

When the data of a new scan are added to the saved data of a historical scan, the summary

probability density of all previous scans increases the probability density of the new scan as fol-

lows:
X

x0;sum ¼
X

x0;n þ
X

x0;p; ð22Þ

where

∑ξ0,sum: Summary probability density of all scans included at the first sample point;

∑ξ0,p: Sum of probability densities of historical sweeps;

∑ξ0,n: Sum of probability densities for the current scan.

Under the premise of considering the new probability density, the updated average height

of the road contour can be calculated as follows:

z0;cy;sum ¼
z0;cy;p �

X
x0;p þ z0;cy;xz �

X
x0;n

X
x0;sum

; ð23Þ

This average height value z0,cy,sum is the final accurate obstacle contour height value. An

accurate obstacle contour in front of the vehicle can be obtained by first replacing the height

value of the obstacle contour of the current scan with z0,cy,sum, followed by performing recur-

sive superposition of the current scan and the new scan, calculating the height value of the

next scan, and then repeatedly performing recursive superposition.

3. Design of semi-active suspension controller

3.1 Dynamic model of semi-active suspension system

An automobile suspension system is a multi-degree-of-freedoms (DOFs) multi-body system,

and the kinematic and mechanical relations between the components are very complex. There-

fore, it is difficult to use traditional calculation methods to analyze its kinematics and dynamic
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characteristics. Modeling and simulation analysis are economical and efficient methods for

studying the control effect of suspension systems.

Assuming that the vehicle body is rigid and the suspension motion has three DOFs, namely

vertical vibration, pitch, and roll, and four DOFs of vertical motion of four wheels, a seven

DOFs vehicle model of the entire vehicle is established to fully reflect the problems of vertical

jump, pitch change, and roll. Among them, the model mechanical (stiffness, damping) and

mass (mass, moment of inertia) parameters are derived from real vehicle data, as shown in Fig

4, and the semi-active suspension model parameters are listed in Table 2.

Fig 4. Dynamic model of active suspension.

https://doi.org/10.1371/journal.pone.0269406.g004

Table 2. Significance of the semi-active suspension model parameters.

Parameter Definition

zb Vertical displacement of body center of mass

ϕ Pitch angle displacement

θ Roll angle displacement

a, b Distance between the center of mass and the front and rear axis

ll, lr Distance of the center of mass from the left and right wheel

u1, u2, u3, u4 Adjust the input of control quantity

z1, z2, z3, z4 Vertical vibration displacement of unsprung mass

z5, z6, z7, z8 Auxiliary displacement

z01, z02, z03, z04 Pavement excitation input

k1, k2, k3, k4 Equivalent stiffness of suspension spring

k5, k6, k7, k8 Tire dynamic stiffness

c1, c2, c3, c4 Equivalent damping of shock absorber

https://doi.org/10.1371/journal.pone.0269406.t002
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For the dynamic analysis of the suspension, the acceleration of the suspension center of

mass can be expressed as follows:

mc€zb ¼ k2ðz2 � z6Þ þ k3ðz3 � z7Þ þ k4ðz4 � z8Þþ

k1ðz1 � z5Þ þ c2ð _z2 � _z6Þ þ c3ð _z3 � _z7Þ þ c4ð _z4 � _z8Þ þ ð24Þ

c1ð _z1 � _z5Þ � u2 � u3 � u4 � u1 þmcg;

The suspension pitch angular velocity can be expressed as follows:

Jp€� ¼ � ½k2ðz2 � z6Þ þ c2ð _z2 � _z6Þ þ k1ðz1 � z5Þ þ c1ð _z1 � _z5Þ�aþ

½k4ðz4 � z8Þ þ c4ð _z4 � _z8Þ þ k3ðz3 � z7Þ þ ð25Þ

c3ð _z3 � _z7Þ�b � ðu1 þ u2Þaþ ðu3 þ u4Þb;

The suspension roll angle acceleration can be expressed as follows:

Jp€� ¼ � ½k4ðz4 � z8Þ þ c4ð _z4 � _z8Þ þ k1ðz1 � z5Þ þ c1ð _z1 � _z5Þlrþ

k2ðz2 � z6Þ þ c2ð _z2 � _z6Þ þ k3ðz3 � z7Þ þ ð26Þ

c3ð _z3 � _z7Þ�ll � ðu1 þ u4Þlr þ ðu2 þ u3Þll;

The established seven DOF parameters are zb, φ, θ, z1, z2, z3 and z4. The 4-wheel accelera-

tion can be expressed as follows:

m1
€z1 ¼ k5ðz01 � z1Þ þ k1ðz5 � z1Þ þ c1ð _z5 � _z1Þ þ u1 þm1g; ð27Þ

m2
€z2 ¼ k6ðz02 � z2Þ þ k2ðz6 � z2Þ þ c2ð _z6 � _z2Þ þ u2 þm2g; ð28Þ

m3
€z3 ¼ k7ðz03 � z3Þ þ k3ðz7 � z3Þ þ c3ð _z7 � _z3Þ þ u3 þm3g; ð29Þ

m4
€z4 ¼ k8ðz04 � z4Þ þ k4ðz8 � z4Þ þ c4ð _z8 � _z4Þ þ u4 þm4g; ð30Þ

The establishment of a road excitation input model is the basis for studying the dynamic

response and control of a semi-active suspension. In this study, the intermittent bumpy road

excitation was used as the road disturbance input. The road surface input is described by a

time-domain expression of the filtered white noise:

_z01 ¼ � 2pn0z01 þ 2p
ffiffiffiffiffiffiffiffiffiffiffiffi
G0vw1

p
; ð31Þ

_z02 ¼ � 2pn0z02 þ 2p
ffiffiffiffiffiffiffiffiffiffiffiffi
G0vw2

p
; ð32Þ

_z03 ¼ � 2pn0z03 þ 2p
ffiffiffiffiffiffiffiffiffiffiffiffi
G0vw3

p
; ð33Þ

_z04 ¼ � 2pn0z04 þ 2p
ffiffiffiffiffiffiffiffiffiffiffiffi
G0vw4

p
; ð34Þ

where n0 is the lower cut-off frequency, n0 = 0.01Hz; G0 is the pavement roughness coefficient,
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wi is Gaussian white noise with mean = 0 and intensity = 1, and v is the forward speed of the

vehicle.

3.2 Design of diagonal recurrent neural network controller

A diagonal recurrent neural network (DRNN) is a simplified and fully connected neural net-

work, wherein no information is exchanged among the units in the hidden layer, which signifi-

cantly simplifies the model and ensures learning speed and the model suitability for the

control requirements of semi-active suspension. In this paper, a DRNN intelligent control

algorithm is proposed for semi-active suspension control.

The diagonal RNN includes an input layer, a hidden layer, and an output layer. The number

of input and output layers can be adjusted according to the number of inputs and outputs. The

hidden layer is the intermediate layer, and its control number is determined by the number of

input and output layers. The structure of the DRNN model is shown in Fig 5.

In this study, the vehicle vertical acceleration, suspension dynamic stroke, and tire dynamic

stroke related to vehicle ride comfort and response-handling stability were selected as the

inputs of the neural network algorithm. The layers of the neural network used in this study

were as follows:

(1) The first layer was the input layer, which had n input nodes. Its input quantity xi(k)

included the following:

Suspension vertical acceleration:

I1ðkÞ ¼ ½€zb�; ð35Þ

Suspension dynamic stroke:

I2ðkÞ ¼ ½z2 � z6; z3 � z7; z4 � z8; z1 � z5�; ð36Þ

Fig 5. Schematic diagram of diagonal recurrent neural network model.

https://doi.org/10.1371/journal.pone.0269406.g005
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Tire dynamic stroke:

I3ðkÞ ¼ ½z01 � z1; z02 � z2; z03 � z3; z04 � z4�; ð37Þ

(2) The second layer was the hidden layer, and the input was

netj1ðkÞ ¼ o
D
j zjðk � 1Þ þ

X3

i¼1
oij

IIiðkÞ; ð38Þ

where oD
j ,oO

ij are the weights of the input and hidden layers, respectively.

zjðkÞ ¼ f ðnetjðkÞÞ ¼
1 � expð� netjðkÞÞ
1þ expð� netjðkÞÞ

; ð39Þ

Here, zj(k) takes the Sigmoid function as the activation function of the hidden layer.

(3) The third layer was the output layer, and the output quantity was

yðkÞ ¼
Xm

j¼1
oO

j zjðkÞ; ð40Þ

where oO
j is the weight of the output layer.

(4) Assuming that the target value of the vehicle suspension control system was yd(k), the

energy error function was obtained as

EðkÞ ¼
1

2
ðydðkÞ � yðkÞÞ2; ð41Þ

(5) For the recursive layer:

DoD
j ¼ � Z

D
i
@EðkÞ
@oD

j

¼ � Zij
@EðkÞ
@netjðkÞ

@netjðkÞ
@oD

j

; ð42Þ

where � ZD
i is the learning rate of the recursive layer; thus, the new weight of the recursive layer

can be obtained byoD
j ðkþ 1Þ ¼ oD

j ðkÞ þ Do
D
j ðkÞ.

(6) Input and hidden layers.

DoI
ijðkÞ ¼ � Zij

@EðkÞ
@oI

ij

¼ � Zij
@EðkÞ
@oO

j

@oO
j

@oI
ij

; ð43Þ

where ηij is the learning rate between the input and the hidden layers. The input layer to the

hidden layer can be adjusted according to oI
ijðkþ 1Þ ¼ oI

ijðkÞ þ Do
I
ijðkÞ

It is important to train the connection weight value between each layer of the neural net-

work system. In this study, genetic algorithms were used for neural network weight training,

which proceeded as follows:
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1. First, the weights were coded accordingly, and several weights of the entire network were

coded using binary coding. The neural network in this study comprised three input nodes,

namely I1(k), I2(k), and I3(k); the number of intermediate nodes was netj(k); and the num-

ber of output nodes was 1, which was the vertical acceleration.

2. The individual network weights obtained by the previous encoding step were trained, and

the optimal solution of the network weights was obtained through the decoding function of

the individual weights. When calculating the fitness of the weights between the layers, the

weights were evaluated through the performance index of the semi-active suspension con-

trol system, such as the K & C characteristics of the suspension system. Then, the corre-

sponding adaptation value was obtained, and the output of the network was calculated.

When an individual search is performed using a genetic algorithm, the optimal algorithm

can be adopted to obtain the optimal value of the network weight.

4. Overall system scheme design

The DRNN controller designed in Section 3 has self-organization and self-learning functions.

It can satisfactorily perform fault tolerance, nonlinear approximation, and adaptive control;

however, the feedback control of the hydraulic actuator is effective only after the suspension is

excited and the state changes. Therefore, to achieve a more effective control effect, a Pre-

DRNN fusion algorithm was developed, and the road information obtained in advance was

taken as the feedforward term and combined with the semi-active suspension feedback

control.

As shown in Fig 2, the set distance of the road preview is d0
�cosn0, where V is the speed of

the vehicle. The time between the preview point and front wheel was defined as tpre =

(d0
�cosn0)/V. When feedforward control was added, it was necessary to judge the elevation

change of the road ahead and to make further adjustments after the change in the road rough-

ness reached the threshold. According to the difference in pavement elevation change and

change rate, the control strategy can output different control forces according to specific road

conditions.

The known quantities in preview control include the following items: preview time tpre,

road input z(t) at the current time, the road input of the preview point z(t + tpre), and the rate

of change of the road roughness _zðtÞ. Combined with the road roughness information

obtained by the continuous scanning recursive matching algorithm of a single-line LIDAR

sensor, the rate of change of the road roughness can be taken as an additional criterion, and

the DRNN damping control response can be advanced to the time before the arrival of road

impact. At this time, if the damping change is appropriate, the displacement and acceleration

of the vehicle body can be absorbed by the action of the shock absorber to a great extent.

Therefore, a pre-aiming point can be set at tpre−Δt from the current wheel position to assess

the rate of change of road roughness. First, let Δh = z(t)–z(t–Δt), where Δh represents the dif-

ference between the road roughness at the preview point and the road roughness at the sub-

preview point. The international standard ISO/ TC108/SC2N-67 reflects the road roughness

using the road power spectral density. To describe the change in road elevation with time, this

study converted the road spatial power spectral density into time power spectral density to

meet the analysis requirements of the time-domain response of the suspension system. The

elevation change threshold and damping adjustment value are controlled by the subsections,

and the relationship between the road elevation change and surface roughness is established,

as shown in Fig 6. The road roughness is divided into six levels: A, B, C, D, E, and F.
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According to the relationship with the vehicle structure, the vertical displacement of the

vehicle body caused by the road input is affected by the shrinkage of the shock absorber to a

certain extent; however, it is not always the case that the contraction of the shock absorber

weakens the vertical displacement of the body. When the vehicle body is simulated by a convex

road surface, the reduction in the damping of the shock absorber will increase the contraction

degree of the shock absorber, i.e., the dynamic stroke of the suspension will increase. At this

time, the large upward displacement of the original vehicle body is transformed into a dynamic

stroke of the suspension. However, when the vehicle body is simulated by the input of the con-

cave road surface, because of the installation position of the shock absorber, the downward dis-

placement of the vehicle body is the contraction displacement of the shock absorber, which

can also be roughly equal to the dynamic stroke of the suspension. Therefore, to slow down

Fig 6. Corresponding relationship between road elevation and surface roughness levels.

https://doi.org/10.1371/journal.pone.0269406.g006
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the vertical displacement of the vehicle body, it is necessary to increase the damping of the

shock absorber.

As shown in Fig 7, the semi-active suspension control strategy with the preview function is

as follows:

1. The current road roughness is used as an input to stimulate the suspension system S(z) to

produce a change in the vertical speed. The vertical displacement output of the wheel is I.

2. The damping damper changes the vertical acceleration a of the body system B(z). The out-

put of the body’s vertical speed is vB.

3. The automobile body vertical acceleration a and suspension travel I are input into the sus-

pension controller DRNN, and the system determines whether there are changes in the

Fig 7. Block diagram of semi-active suspension control strategy with preview function.

https://doi.org/10.1371/journal.pone.0269406.g007

Fig 8. LIDAR detection of obstacle settings.

https://doi.org/10.1371/journal.pone.0269406.g008
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current output hydraulic cylinder damping value C2, which affects the force F and is trans-

mitted to the vehicle body. Simultaneously, the DRNN controller optimizes the output of

the next step based on the current feedback information.

4. After adding preview control Pre-control, the system can obtain information about the

road ahead at an interval tpre in advance and assess whether the rate of change of the road

roughness reaches the threshold. If it reaches a certain threshold, the preview system delays

the tpre time to output a damping value C1 and jointly controls the shock absorber with the

damping value C2 output by the DRNN controller to optimize the output target of the con-

trol quantity.

5. Experimental demonstration

5.1 Experimental demonstration of the recursive matching algorithm

In this study, the above algorithms were tested by comparing the accuracy of the front obstacle

contour at different distances to verify whether the obtained obstacle contour gradually con-

verges to the real contour with an increase in the number of iterations of the algorithm. The

LIDAR laser was built on the chassis of a small unmanned vehicle, and the installation position

was determined. An arched object with a length of 60 cm, width of 38 cm, and maximum

Fig 9. Road surface information obtained by scanning iterations at the starting point.

https://doi.org/10.1371/journal.pone.0269406.g009
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Fig 10. Obstacle information at the starting point.

https://doi.org/10.1371/journal.pone.0269406.g010

Fig 11. Scanning iterative road surface information after vehicle travel for 5 m.

https://doi.org/10.1371/journal.pone.0269406.g011
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Fig 12. Road surface probability density for a vehicle driving 5 m.

https://doi.org/10.1371/journal.pone.0269406.g012

Fig 13. Scanning iterative pavement information for a vehicle traveling 9 m.

https://doi.org/10.1371/journal.pone.0269406.g013
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distance of 8 cm from the ground was placed in front of the LIDAR laser to perform tests for

algorithm verification. The test site is shown in Fig 8.

The horizontal distance from the sensor to the center of the arch obstacle was set to 10 m as

the starting point. The obstacle information measured at this time is shown in Fig 9.

Figs 9 and 10 show that the probability density value of pavement elevation data can be

obtained by conducting the tests within the LIDAR detection range of 0–10 m. Beyond 10 m,

Fig 14. Road surface probability density after vehicle travel for 9 m.

https://doi.org/10.1371/journal.pone.0269406.g014

Fig 15. Test vehicle and hydraulic shock absorber.

https://doi.org/10.1371/journal.pone.0269406.g015

PLOS ONE A study on a vehicle semi-active suspension control system

PLOS ONE | https://doi.org/10.1371/journal.pone.0269406 June 24, 2022 22 / 27

https://doi.org/10.1371/journal.pone.0269406.g014
https://doi.org/10.1371/journal.pone.0269406.g015
https://doi.org/10.1371/journal.pone.0269406


the peak value of the measured probability density tends to be close to 0, and the probability

distribution is not concentrated; therefore, measurement accuracy cannot be achieved. Within

the detection range of 10 m, the obtained pavement elevation fluctuates by approximately –

0.05 m. The measured road information contains noise that is caused by the more common

fluctuations and jumps in the sensor data.

Figs 11 and 12 depict that once the vehicle has covered a distance of 5 m, after many itera-

tions of the recursive algorithm, the pavement elevation contour can be partially displayed.

Furthermore, a peak value appears at 5 m, which indicates that the accuracy of the measured

data has been improved at this time. Because the adjoint recursive algorithm superimposes the

LIDAR data, the data information density is improved.

Figs 13 and 14 show that, after the car has traveled 9 m, LIDAR is able to obtain an obstacle

contour that is closer to the real contour by increasing the number of iterations of the algo-

rithm. Each position of the arch used to simulate pavement elevation obtains a large probabil-

ity density, and the noise is reduced.

In summary, the low density of the LIDAR point cloud data affects the accuracy of the pave-

ment elevation detection, and the detection accuracy cannot be guaranteed owing to factors

such as the LIDAR data jump. Through the LIDAR continuous scanning recursive matching

algorithm, the obtained ground elevation gradually approaches the actual contour with an

increase in scanning times and algorithm iteration times.

Fig 16. Suspension vertical celebration.

https://doi.org/10.1371/journal.pone.0269406.g016
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5.2 Vehicle test and verification

In this study, a special vehicle with a semi-active suspension actuator was considered as the

research object, and a hardware-in-the-loop co-simulation was conducted based on the Simu-

link control model and dSPACE real-time simulation system. Furthermore, the automatically

generated source code was written into the controller for the suspension test. The test vehicle

and hydraulic shock absorber are shown in Fig 15. The active vehicle suspension system was

analyzed according to the diagonal recursive neural network controller designed in the previ-

ous section, and the vehicle speed was set to 20 m/s.

Generally, the root mean square of acceleration over a period of time can be used to evalu-

ate the suspension vibration. The test vehicle was tested to ascertain the vibration reduction on

bumpy roads, and it can be seen from Fig 16 that the root mean square value of the vertical

acceleration of the suspension system reached 3.2416 m/s2 in 0–4 s when the DRNN control

algorithm was adopted for semi-active suspension control. However, once the road elevation

preview algorithm was integrated into the system, the root mean square value of the vertical

acceleration was 2.7312 m/s2 with the pre-DRNN strategy control. The damping performance

of the semi-active suspension improved by 15.75%. Moreover, the driving comfort was

improved.

Fig 17. Left front seat acceleration.

https://doi.org/10.1371/journal.pone.0269406.g017
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In terms of tire dynamic travel, only the left front wheel was considered as an example.

Under bumpy conditions, the peak dynamic stroke of the left-front tire with the DRNN con-

trol method was 3.4 mm, while the peak dynamic stroke with the pre-DRNN control algorithm

was 2.4 mm. These results highlight the pre-DRNN control effect.

This result can also be verified using the vibration analysis of the vehicle seats. Taking the

left front seat and the right rear seat as an example, as shown in Figs 17 and 18, when the inter-

mittent bumpy road excitation is applied, the root mean square value of the seat acceleration

resulting from the Pre-DRNN algorithm is lower than that of the DRNN algorithm. This indi-

cates that the control method can effectively improve passenger comfort.

6. Conclusion

In this paper, a recursive matching algorithm based on the continuous scanning of a single-

line LIDAR sensor is proposed to obtain accurate foresight road elevation information. Conse-

quently, the adjustment parameters of the control quantity of the semi-active suspension actu-

ator can be determined. The semi-active suspension controller adopts the pre-DRNN

algorithm. A simulation platform and a real vehicle test platform were built; after parameter

debugging and verification, the obtained results revealed that the proposed method can effec-

tively control the semi-active suspension and improve ride comfort and stability.

Supporting information

S1 Appendix. The experimental test results.

(RAR)

Fig 18. Right rear seat acceleration.

https://doi.org/10.1371/journal.pone.0269406.g018
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