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Abstract

The Adolescent Brain Cognitive Development (ABCD) Neurocognitive Prediction Challenge

(ABCD-NP-Challenge) is a community-driven competition that challenges competitors to

develop algorithms to predict fluid intelligence scores from T1-w MRI images. In this work, a

two-step deep learning pipeline is proposed to improve the prediction accuracy of fluid intelli-

gence scores. In terms of the first step, the main contributions of this study include the fol-

lowing: (1) the concepts of the residual network (ResNet) and the squeeze-and-excitation

network (SENet) are utilized to improve the original 3D U-Net; (2) in the segmentation pro-

cess, the pixels in symmetrical brain regions are assigned the same label; (3) to remove

redundant background information from the segmented regions of interest (ROIs), a mini-

mum bounding cube (MBC) is used to enclose the ROIs. This new segmentation structure

can greatly improve the segmentation performance of the ROIs in the brain as compared

with the classical convolutional neural network (CNN), which yields a Dice coefficient of

0.8920. In the second stage, MBCs are used to train neural network regression models for

enhanced nonlinearity. The fluid intelligence score prediction results of the proposed

method are found to be superior to those of current state-of-the-art approaches, and the pro-

posed method achieves a mean square error (MSE) of 82.56 on a test data set, which

reflects a very competitive performance.

1 Introduction

Understanding cognitive development in children may potentially improve their health out-

comes through adolescence. Thus, determining the neural mechanism underlying general

intelligence is a critical task. Fluid intelligence is one crucial component of general human

intelligence, which involves the capacity to think logically and solve problems in novel situa-

tions and is independent of acquired knowledge [1]. It has been widely accepted that fluid

intelligence reaches a peak in late adolescence, after which it declines. Thus, its quantification

and accurate prediction are important for teenagers, as it foresees creative achievement,
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scholastic performance, employment prospects, socioeconomic status, etc., in their future

years. Structural and functional magnetic resonance imaging (MRI) images are one of the

most powerful tools to help predict fluid intelligence. Aiming at the precise prediction of fluid

intelligence scores, the ABCD dataset provides data and MRI images of a large number of ado-

lescent participants, which have been adjusted for different data collection sites, demographic

variables, and whole brain volumes.

The study of fluid intelligence has traditionally been concerned with the identification of

the underlying mechanism responsible for cognitive ability. The research results indicate a

strong correlation between brain volume and intelligence, and the magnitude of this effect is

likely large [2]. More recently, MRIs have been shown to contain useful structural information

with a strong correlation to fluid intelligence [3]. In the most related work, the reference [4]

has outlined machine learning approaches employed to predict fluid intelligence from brain

MRI data.

The traditional method for the prediction of fluid intelligence scores is to calculate features

extracted with the assistance of existing computer-aided tools, and then to train a machine

learning model on these features. FreeSurfer extracts the volume and thickness features

describing the brain structure, which can provide more information for the prediction of fluid

intelligence scores [5]. The National Consortium on Alcohol and Neurodevelopment in Ado-

lescence (NCANDA) pipeline can be used to complete brain image noise reduction, correc-

tion, and feature extraction [6]. Moreover, the subcortical regions of subjects have been

segmented by FSL FIRST; these regions were mainly cortical and did not include any subcorti-

cal regions of interest (ROIs) [7]. Furthermore, brain global shape features have been calcu-

lated via the implementation of the Insight Segmentation and Registration Toolkit (ITK) [8].

In recent years, deep learning methods have emerged as state-of-the-art solutions to many

problems spanning various domains, such as natural language processing, bioinformatics, and

medical imaging [9]. The convolutional neural network (CNN), a type of deep learning model,

has been a useful tool for the analysis of image data [10]. Some studies have utilized structural

MRI images to predict fluid intelligence scores, and brain volume has been demonstrated to be

related to quantitative reasoning and working memory [11]. Moreover, a novel framework has

been proposed for the estimation of a subject’s intelligence score via sparse learning based on

neuroimaging features [12].

The use of traditional deep learning methods for fluid intelligence score regression is char-

acterized by the following weaknesses: (1) the structure of the segmentation model is not well

optimized: first, the high-layer and low-layer features of the segmentation framework are not

fused [13]. As a result, a substantial amount of spatial information in the image is lost in the

lower layer; second, the attention mechanism is not introduced into the segmentation model.

The attention mechanism guides segmentation model by giving the higher weight to focus fea-

tures while minimizing the irrelevant features, giving them lower weights; (2) the segmentation

results are not used to create a neural network; instead, machine learning methods are used

[14]. Thus, the traditional methods cannot fit the intelligence score well, resulting in unsatis-

factory prediction accuracy.

In the present work, T1-weighted MRI images of adolescents are utilized to predict their

fluid intelligence scores with a novel precise two-step deep learning framework. The main con-

tributions of this work are three-fold: (1) residualized fluid intelligence scores are predicted

based on an improved 3D U-Net architecture that utilizes the concepts of the residual network

(ResNet), squeeze-and-excitation network (SENet), and symmetry learning mechanism; (2)

the pixels in symmetrical brain regions share the same label, and the minimum bounding cube

(MBC) operation is employed to eliminate interference from the background; (3) more
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accurate and stable results are obtained via fine segmentation, and these results are more help-

ful for improving the prediction accuracy of fluid intelligence scores.

2 Data

2.1 Dataset

Data were provided by the 2019 ABCD Neurocognitive Prediction Challenge (ABCD-NP--

Challenge) [15], and included data on children aged 9–10. Participants were given access to

T1-weighted MRI scans from 3739 children for training, scans from 415 children for valida-

tion, and scans from 4515 children for testing. The fluid intelligence scores recorded by the

ABCD study were measured via the NIH Toolbox Neurocognition battery, as detailed in the

electronic S1 File (ESI). To minimize the impact of confounds that are not related to the brain

structure, the raw scores were pre-residualized by the ABCD-NP- Challenge organizers based

on sex at birth, ethnicity, highest parental education, parental income, parental marital status,

brain volume, and image acquisition site.

3D T1-w MRI images were pre-processed by the challenge organizers. The pre-processing

steps involved first transforming raw data into NIfTI formats [16]. The brain mask was created

by a majority voting approach among the outputs of a series of neuroimaging software includ-

ing FSL BET, AFNI 3dSkullStrip, FreeSurer mri gcut, and Robust Brain Extraction (ROBEX).

The final mask was obtained by taking a majority voting of the resulting masks, and it removed

noise and corrected for bias-field inhomogeneities. Based on the final masks, the T1-w MRI

image was segmented into gray matter, white matter, and cerebrospinal fluid via Atropos [17].

Afterwards, the skull-stripped T1-w image and corresponding gray matter segmentations were

affinely mapped to the SRI24 atlas [18].

Finally, 122 brain regions of interest (ROIs) extracted by the challenge organizers based on

the SRI24 atlas. 14 brain ROIs with unique anatomical characteristics and the roles in cognitive

functions were selected to predict fluid intelligence score, as specifically described in the next

section.

2.2 Selected brain regions

Most of the 14 ROIs for analysis by the proposed method have previously been reported and

are highly associated with cognitive ability, as shown in Table 1. It has been found that the hip-

pocampus, an important component in the limbic system, plays an important role in memory

and spatial navigation, and the thalamus is conceptualized as a switchboard of information

that processes and relays sensory information[1, 19, 20]. The inferior frontal gyrus has also

been found to be related to semantic task processing. Moreover, recent novel views of thalamic

functions emphasize integrative roles in cognition, ranging from learning and memory to flex-

ible adaption [21]. The caudate nucleus is related to cognitive tasks such as organizing behav-

ioral responses and using verbal skills in problem-solving [22]. Considerable evidence suggests

that the human amygdala plays an important role in higher cognitive functions in addition to

its well-known role in emotional processing [23].

In anatomy, the frontal gyrus has six regions, including L inferior frontal gyrus—opercular,

R inferior frontal gyrus—opercular, L inferior frontal gyrus—triangular, R inferior frontal

gyrus—triangular, L inferior frontal gyrus—orbital, and R inferior frontal gyrus—orbital; the

hippocampus has two regions, including L hippocampus and R hippocampus; the amygdala

has two regions, including L amygdala and R amygdala; the caudate nucleus has two regions,

including L caudate nucleus and R caudate nucleus; the thalamus has two regions, including L

thalamus and R thalamus.
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3 Methodology

3.1 Symmetry learning mechanism

The vertebrate cerebrum (brain) is formed by two cerebral hemispheres that are separated by a

groove, namely the longitudinal fissure. The brain can thus be described as being divided into

left and right cerebral hemispheres. Macroscopically, the hemispheres are roughly mirror

images of each other, with only subtle differences. On the microscopic level, the cytoarchitec-

ture of the cerebral cortex reveals the functions of cells, the quantities of neurotransmitter lev-

els, and receptor subtypes to be markedly asymmetrical between the hemispheres [24, 25].

However, while some of these hemispheric distribution differences are consistent across

human beings, many vary from individual to individual [26]. It is precisely because the hemi-

spheres are roughly mirror images of each other that the pixels in symmetrical brain regions

were assigned the same label in the segmentation process. The ROIs presents macroscopic

symmetry, the specific details are presented in Fig 1.

3.2 Technical details

The traditional pipeline of the regression of brain MRI images and fluid intelligence

scores is based on the original deep learning architecture and post-processing. First, in the

pre-processing stage, the segmentation framework needs to be further optimized. Second,

the post-processing stage only uses the median predicted scores as the final prediction

result, or extracts the high-level feature map information for regression, which causes

information loss in the pre-processing stage. Finally, the fluid intelligence score regression

operation is performed for only one ROI at a time, which ignores the interaction between

other brain areas [13].

To improve the prediction accuracy of fluid intelligence scores, a two-step deep learning

network is proposed. This network was inspired by the original 3D U-Net architecture,

ResNet, SENet, and the symmetry learning mechanism. The improved 3D U-Net can perform

accurate 3D segmentation tasks, after which the fluid intelligence score is predicted based on

the feature of each finely segmented brain ROI.

Table 1. The labels and names of the ROIs in the SRI24 space.

ROIs Label Name

L Inferior frontal gyrus—opercular 11 Frontal gyrus

R Inferior frontal gyrus—opercular 12

L Inferior frontal gyrus—triangular 13

R Inferior frontal gyrus—triangular 14

L Inferior frontal gyrus—orbital 15

R Inferior frontal gyrus—orbital 16

L Hippocampus 37 Hippocampus

R Hippocampus 38

L Amygdala 41 Amygdala

R Amygdala 42

L Caudate nucleus 71 Caudate nucleus

R Caudate nucleus 72

L Thalamus 77 Thalamus

R Thalamus 78

L/R indicates a location in the left/right hemisphere.

https://doi.org/10.1371/journal.pone.0268707.t001
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A. Segmentation stage. The brain MRIs of subjects have high similarity, and the original

3D U-Net is able to extract a large number of features. However, due to the existence of indi-

vidual differences, it is necessary to further enhance the attention mechanism of the network

to obtain more refined segmentation results.

While deeper networks can extract more structural information, they lose more local infor-

mation due to the continuous reduction of the feature map resolution. The architecture of the

proposed network is illustrated in Fig 2, and consists of four layers including the bottleneck. It

is assumed that the use of four layers is sufficient to extract more location information. The

motivation behind the proposed architecture is to improve the attention mechanism.

Therefore, skip connections in the bottleneck between the encoder and decoder layers, the

recommendation block, and the SegS-E block are added to the network architecture to

improve its ability to capture spatial and spectral information; more details are comprehen-

sively provided in the next subsection.

The encoder takes a 3D input patch with size of 112 × 112 × 112 from the set of input

images. In the first layer, the 16-channel 112 × 112 × 112 feature maps are generated with a

1 × 1 × 1 convolution operation, and 32-channel 112 × 112 × 112 feature maps are generated

with the subsequent recombination block operation. The number of feature maps is increased

in the subsequent layers to learn the deep features, which is followed by max-pooling and the

down-sampling of features in the encoding layer. To match the size of feature maps in the

channel, the 64-channel 28 × 28 × 28 feature maps after the 1 × 1 convolution operation are

transformed into 96-channel 28 × 28 × 28 feature maps. The skip performs an element-wise

addition operation (�) in the selected channel to ensure the volumes at this addition operation

are the same size. Similarly, in the decoding layer, the feature maps are upsampled. In the

Fig 1. Example segmentation of the ROIs.

https://doi.org/10.1371/journal.pone.0268707.g001
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output layer, the segmentation map predicted by the model is compared with the correspond-

ing ground truth, and the error is backpropagated.

1) Recombination block. The concepts of ResNet and SENet are referenced to construct the

recombination block.

With ResNet, the gradients can flow backward directly through the skip connections from

the later layers to the initial filters, which can effectively reduce model overfitting [27]. The

recombination block aims to enhance the semantic information between different feature lay-

ers; primarily, more convolutions and nonlinear transformations are performed so that the

model can adapt to its own structure during training.

In the recombination block, the convolution, batch normalization (BN), and SegS-E block

feature extraction modules are used. For the convenience of explanation, the labels B1-B8 are

denoted on the blue cube representing the feature map shown in Fig 3. The SegS-E block in

the recombination block is specifically introduced in the next section.

In the present work, the recombination block is formally defined as follows.

B8 ¼ FfB1;B2; . . . ;B6g þ B7: ð1Þ

In the following notation, B1 2 RD×H×W×C and B8 2 RD×H×W×C’ are respectively used to

denote the input and the output of the reco RD×H×W×C’ mbination block. Moreover,� refers to

the addition of two matrices of the same dimension, in which each element is the sum of the

original two matrix elements.

The function F{. . .} represents the residual mapping to be learned, specifically, the convolu-

tion operations on the feature maps. Convolution operations are performed on B1 with 1 × 1 ×
1 convolution kernels, resulting in the feature map B22 RD×H×W×4C with 4C channels. B32

RD×H×W×4C is obtained by performing a 3 × 3 × 3 convolution and batch normalization opera-

tion. Then, B5 2 RD×H×W×4C is obtained by performing the SegS-E block operation on B4, and

the specific definition of the SegS-E block is provided in the next subsection. Finally, B62

RD×H×W×C’ is obtained by performing a 1 × 1 × 1 convolution operation, and B72 RD×H×W×C’ is

similarly obtained by performing a 1 × 1 × 1 convolution operation.

2) SegS-E block. Via the introduction of the attention mechanism, useful features can be

captured more accurately. In the proposed method, a more fine-grained feature enhancement

Fig 2. The improved 3D U-Net architecture. Blue boxes represent feature maps, and the number of channels is

denoted after the size of each feature map. A skip connection is included in the bottleneck between the encoder and

decoder layers.� refers to element-wise addition in the selected channel. The predicted labels are compared with the

ground truth to calculate the Dice loss.

https://doi.org/10.1371/journal.pone.0268707.g002
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method with different weights at different locations is employed, as shown in Fig 4. The atten-

tion mechanism of squeeze-and-excitation network (SENet) is used for the SegS-E block [28].

Dilated convolutions “inflate” the kernel by inserting holes between the kernel elements.

Dilated convolution is utilized in the SegS-E block, and can systematically aggregate the con-

textual information of the input. With this purpose, it has applications concerned with the

integration of knowledge in the wider context with less cost while keeping the output resolu-

tions high. The goal is to increase the sensitivity of the network by explicitly modeling the

channel interdependencies via the use of gated networks. Consequently, the SegS-E block

learns how to understand the importance of each feature map in the stack of all the feature

maps extracted after a convolution operation, and recalibrates that output to reflect that

importance before passing the information to the next layer.

Fig 3. The recombination block. “Normal conv” refers to 3 × 3 × 3 convolution filters and batch normalization; “1 × 1

× 1 conv” refers to 1 × 1 × 1 convolution filters.

https://doi.org/10.1371/journal.pone.0268707.g003

Fig 4. The SegS-E block. “Dilated conv” refers to 3 × 3× 3 kernel with dilation rate of 2, and “1 × 1 × 1 conv” refers to

1 × 1 × 1 convolution filters.

https://doi.org/10.1371/journal.pone.0268707.g004
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The details of the SegS-E block are as follows. First, the size of the input feature map size is

D × H ×W, and the number of channels is C. A dilated convolution with a 3 × 3× 3 kernel and

dilation rate of 2 is then performed over each channel of the input feature maps. Next, a 1 × 1

× 1 kernel is used to perform channel-wise convolution, resulting in a set of feature maps with

C channels. Finally, the elements in the matrix of the feature map are multiplied by the ele-

ments in the matrix of the processed feature map, and the products are added.

A SegS-E block is a squeeze-and-excitation computational unit, which uses 3D dilation and

a 1 × 1 × 1 convolution to map an input X 2 RD×H×W×C to feature maps W2 RD×H×W×C, after

which a Hadamard product operator is used to map X and W to ~X 2 RD×H×W×C as the output.

In the following notation, the dilated convolution operation is considered, and V = [v1, v2,. . .,

vc] is used to denote the learned set of filter kernels, where vc refers to the parameters of the c-
th dilated convolution filter. Thus, U can be defined as U = [u1, u2,. . ., uc], where

uc ¼ vc�lX ¼
Xc=2

s¼1

vc�lx
s; ð2Þ

where �l denotes dilated convolution, and vc is a 3D kernel that acts on the corresponding

channel of X. Subsequently, a convolution operation is performed on U with c 1 × 1 × 1 convo-

lution kernels, resulting in feature maps W2 RD×H×W×C with C channels, and W = [w1, w2,. . .,

wc]. To systematically aggregate the contextual information of the input, a Hadamard product

operation is used to map X and W to ~X 2 RD×H×W×C as the output. The final output of the

SegS-E block is

~x ¼W� X ¼
Xc

1

wc � xc; ð3Þ

where ~X ¼ ½ ~x1 ; ~x2 ; . . . ; ~xc �, and� refers to the Hadamard product. In mathematics, the Hada-

mard product is the product of two matrices of the same dimensions and has the same dimen-

sion as the operands, in which each element is the product of the elements of the original two

matrices.

B. Regression stage. In the section 3.2-A, we have described the segmentation framework.

In this section, we first define the Minimum bounding cube (MBC) of the segmented ROI.

Then, we describe the process of building a neural network with resized MBCs as input to pre-

dict fluid intelligence scores.

1. Minimum bounding cube (MBC). To improve the prediction accuracy of fluid intelligence

score, we have performed the minimum bounding cube (MBC) operations on segmented

ROIs in place of the traditional resizing operation. The details of generating an MBC are as

follows: (1) the minimum bounding boxes (MBB) for ROI are generated [29]; (2) Lmax, the

longest edge of the MBB of ROI, is determined; (3) the MBB of ROI is resized to fit size of

Lmax ×Lmax × Lmax; (3) The MBB with size of Lmax ×Lmax × Lmax will be resized into a cube

of a certain size again, resulting in the minimum bounding cube (MBC). In fact, MBC can

be obtained by two interpolation operations, while traditional resizing tasks only need to

perform one interpolation operation. In this work, the input size of the regression model is

64 × 64 × 64.

2. Neural network construction. In the second stage, to explore the relationship between brain

MRI volumes by incorporating morphological information and fluid intelligence scores, a

convolutional neural network (CNN) was constructed to map each subject to the corre-

sponding fluid intelligence score based on the ROI segmentation [30].
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The greatest advantage of deep learning algorithms as compared with traditional machine

learning models is that they try to learn high-level features from data in an incremental man-

ner. In the regression stage, the convolution, BN, ReLU, and flatten operations were con-

ducted, as shown in Fig 5. The inputs of the regression model were the resized MBCs of the

ROIs with a size of 64×64×64, which consisted of the frontal gyrus, hippocampus, amygdala,

caudate nucleus, thalamus, as indicated by the orange cubes in the Fig 5. The dropout rate was

set to 0.5.

Convolution with a kernel size of 3 × 3 × 3 was applied, resulting in feature maps with a size

of 64 × 64 × 64 and 10 channels. By performing the same set of operations, feature maps with a

size of 64 × 64 × 64 × 20 were obtained. Further, feature maps with a size of 64 × 64 × 64 × 1

were obtained, as indicated by the purple cube in Fig 5.

After flattening, the flattened feature map was passed through a neural network. The

dimensions of the three fully connected layers were 262,144, 4096, and 64, respectively. Finally,

the mapping of the fluid intelligence scores from the regressions was completed.

4 Experiment

In this section, we first present materials and experimental settings used in our study. We then

present the quantitative evaluation metrics for segmentation results.

A Experimental settings

In this work, the segmentation and regression components in this framework were respectively

trained. The segmentation model is trained at first and after completed training the regression

model is trained based on the segmented ROIs. In the first step, the improved 3D U-net is

trained. We compare our proposed improved 3D U-net method with the conventional coun-

terparts in the experiments. In the second step, the CNN is trained for regression of fluid intel-

ligence score. We compare the CNN method with the conventional machine learning method.

Model training was carried out with 10 RTX 2080ti 11GB GPUs. The unwanted outermost
pixels of raw data with a size of 240 × 240 × 240 were removed as 224 × 224 × 224 pixels, in

which the outer layers of the raw data volumes were the background information. Due to the

GPU memory limitation, a patch size of 112 × 112 × 112 was adopted, and the batch size was

10. The patch was randomly selected from the training data, and each epoch set to 200 itera-

tions, i.e., 200 × 10 patches were effectively selected in each epoch. In the segmentation stage

and regression stage, we have resampled the training, test, and validation sets 5 times sepa-

rately, and performed the same training and testing procedures for each resampled data.

Fig 5. Creating a neural network to predict fluid intelligence score. “Flatten” operation is converting the data into a

1-dimensional array for inputting it to the next layer, and “Conv(3 × 3 × 3) + BN + ReLU” refers to 3 × 3 × 3

convolution filters, BN for batch normalization, and ReLU for rectified linear unit.

https://doi.org/10.1371/journal.pone.0268707.g005
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B. Quantitative evaluation metrics

To evaluate the performance of our segmentation approach compared to the counterparts in

the experiments, we implemented the following evaluation metrics [31]. We use the Dice coef-

ficient (DC) as the first evaluation metric. The dice coefficient is defined as the region-based

similarity between the segmentation result B and the ground truth A, which can be written as

DC ¼
2jA \ Bj
jAj þ jBj

; ð4Þ

where |A \ B| denotes the overlapped region between A and B, and |A |+|B| denotes the union

region.

Meanwhile, the average surface distance (ASD) also is used to measure the performance of

different segmentation algorithms, which can be written as

ASDðA;BÞ ¼

X

a2A
minb2B dða; bÞ
jAj

; ð5Þ

Where d (a, b) is the Euclidean distance between the points of a and b, a and b are the numbers

of vertices in the surface A and B, respectively.

We use the mean square error (MSE) as the our CNN method and machine learning meth-

ods evaluation metric. In statistics, the MSE is defined as average of the square of the difference

between true and predicted value, which can be written as

MSE ¼
1

N

XN

i¼1

ðy � y�Þ2; ð6Þ

where, N is the total number of subjects, y is the true intelligence score, y
�

is the predicted

score from the prediction model.

5 Results

The proposed approach was compared with four recently proposed methods about using

brain MRIs to predict fluid intelligence scores, as listed in Table 2. In comparison with the

other methods, the proposed method achieved good performance with MSE = 60.29 on the

training set, MSE = 51.72 on the validation set, and MSE = 82.56 on the test set.

Regarding the method proposed by Neil P. Oxtoby et al. [32], the structure and function of

some brain regions were relatively tightly coupled. The structural covariance network (SCN)

of the cerebral cortex was extracted, and the nodes were used as the input of the support vector

regression (SVR) model to predict the intelligence score. Yeeleng S. Vang et al. [33] trained a

CNN to compress 3D MRI data to a feature map size of 123 × 1 × 1 × 1, and used the 123

Table 2. The comparison of the MSE values of the proposed method and current state-of-the-art methods.

Method Train: MSE Val: MSE Test: MSE References

SVR 85.82 71.19 93.83 [32]

CNN + GBM 18.44 68.79 96.18 [33]

3D ConvNets 79.28 70.58 92.74 [13]

3D U-net - 71.57 102.25 [34]

Our method 60.29 (53.12, 67.46) 51.72 (45.95, 57.49) 82.56 (75.75, 89.37) -

Note:—denotes the result is not reported; ( , ) denotes the upper bound of the confidence interval lower bound of confidence interval.

https://doi.org/10.1371/journal.pone.0268707.t002
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extracted features to train a gradient boosting machine (GBM) that predicts the intelligence

score of the subject. In the experiment conducted in this study, the model performed well on

the training set, but it performed poorly on the test set. To a certain extent, the model was in a

state of overfitting, and was found to lack generalization ability. In the method proposed by

Yukai Zou et al. [13], multiple brain regions were selected to predict the residualized fluid

intelligence scores using a 3D CNN, but the median predicted score was used as the final pre-

diction result, which caused a substantial amount of information loss in the pre-processing

stage. Moreover, the regression operation of the fluid intelligence scores was performed for

only one ROI at a time, which ignored the interaction between other brain areas. Lihao Liu

et al. [34] used a basic 3D U-Net to enhance the segmentation performance. In this experi-

ment, the weights of the encoder component were fixed, and the regression component was

updated using the brain volume and the provided intelligence score.

From the preceding discussion, it is evident that the current models are not further opti-

mized in terms of their algorithms and mechanisms; instead, only the original model is used.

This is also the main reason for the poor performance of the prediction results. The results of

the experiments and the comparisons with the existing methods demonstrate the advantages

of the proposed method, which are mainly reflected in the following aspects. The current pipe-

line of the regression of brain MRI images and fluid intelligence scores is based on machine

learning, 3D ConvNets, and 3D U-Net. However, 3D ConvNets is characterized by the follow-

ing weaknesses. First, in the pre-processing stage, the high-layer and low-layer features of the

3D ConvNets framework are not fused. As a result, a large amount of spatial information in

the image is lost in the lower layer. Second, in the post-processing stage, only uses feature

maps with machine learning models predict scores as final prediction result. For the basic 3D

U-Net, only the bottom features are used for regression with the intelligence scores.

Our method has achieved relatively good results in predicting fluid intelligence scores,

mainly due to the following contributions: First, the 14 candidate ROIs are marked as five cate-

gories, i.e., when performing pixel classification, the ROIs of the same category are divided

into the same label. In the segmentation task, the fewer the categories of segmentation targets,

the higher the final segmentation accuracy. Second, the symmetric learning mechanism and

MBC operation are beneficial to improve the prediction accuracy. Third, the many improve-

ments made to the original 3D U-Net continuously strengthen the attention mechanism of the

model, and contribute to better segmentation accuracy. Finally, in the second stage, the intro-

duction of the CNN model increases the nonlinearity of the model, and is more conducive to

the model fitting of fluid intelligence scores.

6 Discussion

In this section, we first compare our proposed method with several segmentation methods for

brain ROI segmentation. Then, we study the influence of macro-symmetric ROIs given the

same label on the segmentation results. Thirdly, we compare convolutional neural network for

regression with Classical Machine Learning Methods. Finally, we present the limitations of

this work.

6.1 Comparison with current deep learning methods

Examples of frontal gyrus, hippocampus, amygdala, caudate nucleus, thalamus segmentation

results of FCN, U-Net, ResNet, FC DensNet and our method on the test dataset are shown in

Fig 6. Table 3 shows the Dice coefficient (DC) and the average surface distance (ASD) values

achieved by FCN [35], U-net [36], ResNet [27], FC Densenet [37] and our method. The
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proposed segmentation method shows the significant improvement over the counterparts on

ROIs segmentation task.

From Table 3, we can observe that the proposed method achieves the best performance for

ROIs segmentation regarding the Dice coefficient metric. For example, our method achieves

the highest Dice coefficient (i.e., 0.8920), which is significantly better than the U-Net method

(i.e., 0.8394). In general, the proposed method achieves 0.0962, 0.0526, 0.0354 and 0.0298

improvement in terms of Dice coefficient over the counterparts, i.e., FCN, U-Net, ResNet and

FC DenseNet, respectively. Besides, the proposed method also achieves better results in terms

of ASD values, compared with the counterparts. The ASD values achieved by FCN, U-Net,

Fig 6. Examples of frontal gyrus, hippocampus, amygdala, caudate nucleus, thalamus segmentation results of

FCN, U-Net, ResNet, FC DensNet and our method on the test dataset. The pixels in symmetrical brain regions are

assigned the same label.

https://doi.org/10.1371/journal.pone.0268707.g006

Table 3. Comparison of frontal gyrus, hippocampus, amygdala, caudate nucleus, thalamus segmentation results

on the ABCD dataset.

Method Dice coefficient ASD (mm)

�FCN 0.7958± 0.0257 0.577±0.081

�U-Net 0.8394± 0.0197 0.533±0.074

ResNet 0.8566±0.0256 0.5168± 0.059

FC DenseNet 0.8622±0.0270 0.496 ± 0.056

Ours 0.8920± 0.0241 0.390 ± 0.055

The terms a and b in “a ± b” denote the mean and standard deviation for different subjects, respectively. The symbol

‘�’ indicates that the proposed method achieved significantly improvement over the other segmentation methods

based on Mann Whitney U Test (p < 0.05) in terms of Dice coefficient.

https://doi.org/10.1371/journal.pone.0268707.t003
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ResNet and FC DenseNet for ROIs segmentation are 0.577, 0.533, 0.5168 and 0.496, respec-

tively. The ASD value of our method is 0.390, which is better than other counterparts. On the

other hand, compared the FCN and U-Net, the reason why U-Net performs better segmenta-

tion results is that U-Net can fuse advanced context feature information. The reason why

ResNet segmentation performance is better than U-Net is that increasing the network depth

can fit more complex feature inputs, and residual connection can effectively alleviate the deg-

radation problem. FC-DenseNet has a similar structure to U-Net, adding skip connections

from the encoder to the decoder and deepening the network. Therefore, FC-DenseNet has bet-

ter segmentation performance than ResNet and U-Net. We can see that our method achieved

the better segmentation performance than other counterparts, the possible reasons are two-

fold: firstly, the segmentation network is improved based on the U-Net network, which can

integrate the high-level and low-level feature maps; and secondly, the concepts of ResNet and

SENet are referenced to construct the network in order to suppress the degradation of the

weight matrix and increase the attention mechanism, respectively [38]. We performed 5 train-

ing and testing procedures to calculate the p-value. The proposed method shows significant

improvement over the FCN (p = 0.00023) and U-Net (p = 0.0229) in terms of Dice coefficient

on the ABCD dataset for brain segmentation, respectively. Besides, the p-values of the pro-

posed method over ResNet and FC DenseNet are 0.144759 and 0.202517293 in terms of Dice

coefficient on the ABCD dataset for brain segmentation.

6.2 Influence of symmetry learning mechanism

We segmented 14 ROIs in the ABCD dataset to validate our proposed symmetry learning

mechanism, where each ROI has a separate label. The segmentation results achieved by differ-

ent methods are shown in Table 4. Dice coefficient and ASD are still used as the evaluation

metric for our method and the counterparts.

From Table 4, we can see that the average Dice coefficient on 14 ROIs are 0.7632, 0.8084,

0.8432 and 0.8505 yielded by the counterparts, respectively, which are lower than that achieved

by the proposed method (0.8686). The achieved average surface distance on 14 ROIs is 1.049

mm by our proposed method, compared with 1.225 mm, 1.214 mm, 1.119 mm, and 1.063 mm

by FCN, U-Net, ResNet and FC DensNet, respectively. From Table 3, we can see that the FCN,

U-Net, ResNet, FC DenseNet and the proposed method achieved 0.0326, 0.031, 0.0134, 0.0117

and 0.0234 improvements in terms of Dice coefficient over the segmentation results in

Table 4, respectively. The proposed method is superior to traditional counterparts in the

Table 4. Comparison of L inferior frontal gyrus—opercular, L inferior frontal gyrus–triangular, L inferior frontal

gyrus—orbital, L hippocampus, L amygdala, L caudate nucleus, L thalamus, R inferior frontal gyrus–opercular, R

inferior frontal gyrus–triangular, R inferior frontal gyrus—orbital, R hippocampus, R amygdala, R caudate

nucleus, R thalamus segmentation results on the ABCD dataset.

Method Dice coefficient ASD (mm)

�FCN 0.7632 ±0.0244 1.225 ± 0.058

�U-Net 0.8084 ± 0.0254 1.214 ± 0.063

ResNet 0.8432 ± 0.0310 1.119 ± 0.057

FC DenseNet 0.8505 ± 0.0280 1.063 ± 0.055

Ours 0.8686 ± 0.0236 1.049 ± 0.053

L/R indicates a location in the left/right hemisphere. The pixels in symmetrical brain regions are not assigned the

same label. The terms a and b in “a ± b” denote the mean and standard deviation for different subjects, respectively.

The symbol ‘�’ indicates that the proposed method achieved significantly improvement over the other methods based

on Mann Whitney U Test (p < 0.05).

https://doi.org/10.1371/journal.pone.0268707.t004
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separation markings in two different experiments. Also, we performed 5 training and testing

procedures to calculate the p-value. The proposed method shows significant improvement

over the FCN (p = 2.594e-05) and U-Net (p = 0.0196) in terms of Dice coefficient on ABCD

dataset for brain segmentation.

It should be noted that the two experiments used the same experimental data. As shown in

Table 3, considering that the ROI exhibits macroscopic symmetry, the pixels in the symmetri-

cal brain region are assigned the same label during the segmentation process, and a better seg-

mentation result is achieved. The segmentation results in Table 4 do not use a symmetric

learning mechanism, one per ROI is assigned by one label.

These results demonstrate that incorporating the anatomical prior into networks could fur-

ther improve the performance for brain ROI segmentation. The possible reason for the

improvement is that symmetrical brain regions sharing the same label can provide more brain

anatomical information for ROI segmentation, and deep neural networks can learn image fea-

tures, which boost the segmentation performance around the ROI boundary.

6.3 Comparison with classical machine learning methods

Traditional regression methods have been widely studied in the field of predicting a continu-

ous variable from a set of features. The support vector machine (SVM) [39], random forests

(RF) [40] and gradient boosting machine (GBM) [41] are applied to predict fluid intelligence

score in comparison with the proposed CNN method. In this section, we study the influence

of the segmented ROIs preprocessed by three different ways on the fluid intelligence score

prediction.

1) MBCs after dimensionality reduction. The inputs of the classical regression model were

the five MBCs with a size of 64×64×64. After flattening, the dimension of flattened feature

map is 262,144×5. The high dimensional data is often not useful to regression analysis [42].

Therefore, principal component analysis (PCA) is used to reduce the data dimension to 256.

The input of the three machine learning models are vectors with a dimension of 256×5. We

train the convolutional neural network (CNN) model using vectors with a dimension of

262,144×5.

From the Table 5, we can observe that the proposed CNN method achieves the best perfor-

mance MSE = 82.56 on the test set. In comparison with the SVM, GB and RF methods, the

proposed CNN method achieves 26.87, 22.91 and 21.3 improvement on the test set, respec-

tively. The proposed CNN method shows the significant improvement over the traditional

counterparts on prediction fluid intelligence score task. The possible reason for the improve-

ment is that the CNN can adaptively learn the spatial hierarchy of low- to high-level features

[42]. Besides, the proposed method shows significant improvement over the SVM

Table 5. The comparison of the MSE values of the proposed CNN method and classical machine learning

methods.

Method Train: MSE Val: MSE Test: MSE

�SVM 91.79 (83.06, 100.52) 78.33 (68.69, 87.97) 109.43 (98.8, 120.06)

�GB 85.75 (77.45, 94.05) 71.88 (64.89, 78.87) 105.47 (96.86, 114.08)

�RF 83.24 (75.30, 91.18) 70.84 (63.94, 77.74) 103.86 (96.37, 111.35)

Our method 60.29 (53.12, 67.46) 51.72 (45.95, 57.49) 82.56 (75.75, 89.37)

Note: ( , ) denotes the upper bound of the confidence interval lower bound of confidence interval.

The symbol ‘�’ indicates that the proposed method achieved significantly improvement over the other methods based

on Mann Whitney U Test (p < 0.05).

https://doi.org/10.1371/journal.pone.0268707.t005
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(p = 2.0205e-06), GB (p = 3.2441e-06) and RF (p = 2.694e-06) for the fluid intelligence score

prediction, respectively. Fig 7 shows the MSEs of each model on the training set, validation set

and test set. we performed 5 training and testing procedures to estimate the mean and 95%

confidence interval of the results.

2) ROIs after dimensionality reduction. We now compare the influence of MBC operation

and traditional resizing operation on the fluid intelligence score prediction. The segmented

ROIs are resized to a size of 64x64x64 by the traditional resizing operation. The PCA is used to

reduce the dimension of the segmented ROI with size of 64×64×64 to 256. Therefore, the

input of the three machine learning models are vectors with a dimension of 256×5. We train

the convolutional neural network (CNN) model using vectors with a dimension of 262,144×5.

From the Table 6, we can observe that the proposed CNN method achieves the best perfor-

mance MSE = 86.41 on the test set. In comparison with the Table 5, the models trained with

the ROI resized by the traditional method performs slightly worse. The possible reason for the

slightly better performance shown in Table 5 is that MBC operation (two interpolation

Fig 7. The MSEs of different methods. The heights of the bars denote the means, gray lines denote the 95%

confidence intervals.

https://doi.org/10.1371/journal.pone.0268707.g007

Table 6. The comparison of the MSE values of the proposed CNN method and classical machine learning

methods.

Method Train: MSE Val: MSE Test: MSE

�SVM 93.25 (84.43, 102.07) 78.03 (68.11, 87.95) 110.08 (99.6, 120.56)

�GB 89.46 (81.39, 97.53) 72.75 (65.01, 80.49) 108.36 (99.82, 116.9)

�RF 82.37 (74.55, 90.19) 74.64 (68.06, 81.22) 105.56 (97.92, 113.2)

Our method 62.63 (55.33, 69.93) 54.37 (48.4, 60.34) 86.41 (79.47, 93.35)

Note: ( , ) denotes the upper bound of the confidence interval lower bound of confidence interval.

The symbol ‘�’ indicates that the proposed method achieved significantly improvement over the other methods based

on Mann Whitney U Test (p < 0.05).

https://doi.org/10.1371/journal.pone.0268707.t006
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operations) produces a smoother interpolation than traditional one interpolation operation,

improving the orderlity of the data, the MBC details are described in the Section 3.2—B—1).

Meanwhile, the proposed method shows significant improvement over the SVM (p = 2.8675e-
05), GB (p = 9.0128e-06) and RF (p = 3.8012e-05) for the fluid intelligence score prediction,

respectively. Fig 8 shows the MSEs of each model on the training set, validation set and test set.

we performed 5 training and testing procedures to estimate the mean and 95% confidence

interval of the results.

3) MBCs without dimensionality reduction. We now study the influence of data dimension-

ality on model performance. The MBCs used for model training is not dimensionally reduced.

The dimensions of one MBC are 262,144, details are described in the Section 3.2—B—2). We

train the convolutional neural network (CNN) model and machine learning models using vec-

tors with a dimension of 262,144×5.

From Table 7, the worse experimental results are observed compared to the Table 5. Also,

the proposed method shows significant improvement over the SVM (p = 7.1721e-07), GB

(p = 5.4398e-06) and RF (p = 1.0912e-05) for the fluid intelligence score prediction, respec-

tively. Fig 9 shows the MSEs of each model on the training set, validation set and test set. we

performed 5 training and testing procedures to estimate the mean and 95% confidence interval

of the results.

Fig 8. The MSEs of different methods. The heights of the bars denote the means, gray lines denote the 95%

confidence intervals.

https://doi.org/10.1371/journal.pone.0268707.g008

Table 7. The comparison of the MSE values of the proposed CNN method and classical machine learning

methods.

Method Train: MSE Val: MSE Test: MSE

�SVM 101.64 (92.92, 110.36) 97.86 (88.38, 107.34) 127.34 (117.04, 137.64)

�GB 97.86 (89.25, 106.47) 92.53 (84.89, 100.17) 123.55 (114.12, 132.98)

�RF 92.58 (84.97, 100.19) 90.68 (84.01, 97.35) 122.55 (113.2, 131.9)

Our method 74.26 (67.4, 81.12) 67.24 (59.89, 74.59) 95.37 (85.28, 105.46)

Note: ( , ) denotes the upper bound of the confidence interval lower bound of confidence interval.

https://doi.org/10.1371/journal.pone.0268707.t007
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In theory, a higher number of dimensions allows more information to be stored, and there

is a higher possibility of noise and data redundancy, which is not conducive to model training.

As a powerful and general dimensionality reduction algorithm, PCA can unearth potential

trends in our data. Therefore, using PCA for dimensionality reduction is more conducive to

the convergence of the model before training the model with high-dimensional data.

6.4 Limitations

The proposed method was inspired by the basic 3D U-Net framework, the main concept of

which is to consider the holistic perspective of intelligence predictions obtained from multiple

ROIs. State-of-the-art results of multiple brain regions were achieved simultaneously. Subse-

quently, the fluid intelligence scores were predicted based on the fine segmentation results,

which eliminated a large amount of interference and yielded more accurate and stable results.

The proposed framework can be generalized to other related regression problems.

However, the SRI24 atlas is an MRI-based atlas of normal adult human brain anatomy. The

participants in the ABCD project were aged between 9–10 years old, and differences in age

may lead to deviations in anatomical structure matching; this is also an important factor that

affected the fluid intelligence score prediction accuracy. Second, the complexity of the brain is

still not fully understood, and the functional areas of the brain are quite complex. Only a few

selected brain regions were used to train the model to verify the feasibility of the proposed

method. Finally, the proposed method was found to achieve good results in the prediction of

fluid intelligence scores. In subsequent research, the model will be further optimized while

considering more brain regions to further improve the prediction accuracy.

7 Conclusion

In this paper, a two-step deep learning pipeline was proposed to predict fluid intelligence

scores from T1-w MRI images. In the first step, an improved 3D U-Net was trained to segment

the 3D MRI data to obtain the target brain areas. The proposed architecture is a combination

Fig 9. The MSEs of different methods. The heights of the bars denote the means, gray lines denote the 95%

confidence intervals.

https://doi.org/10.1371/journal.pone.0268707.g009
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of ResNet, SENet, and the symmetry learning mechanism to increase the segmentation accu-

racy. In the second step, a CNN was trained to predict the fluid intelligence scores based on

the fine segmentation results. Compared with the current state-of-the-art methods for the pre-

diction of fluid intelligence scores from T1-weighted MRI images, the proposed method

includes the addition of different modules to improve the attention mechanism of the entire

model, thereby contributing to better prediction results. The proposed framework can be vali-

dated and improved in the future, and it offers a new and unique perspective for the prediction

of fluid intelligence scores based on brain morphometry.
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