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Abstract

This study aims to investigate the binding potential of chemical compounds of Senna in

comparison with the experimentally tested active phytochemicals against SARS-CoV-2 pro-

tein targets to assist in prevention of infection by exploring multiple treatment options. The

entire set of phytochemicals from both the groups were subjected to advanced computa-

tional analysis that explored functional molecular descriptors from a set of known medicinal-

based active therapeutics followed by MD simulations on multiple SARS-CoV-2 target pro-

teins. Our findings manifest the importance of hydrophobic substituents in chemical struc-

tures of potential inhibitors through cross-validation with the FDA-approved anti-3CLpro

drugs. Noteworthy improvement in end-point binding free energies and pharmacokinetic

profiles of the proposed compounds was perceived in comparison to the control drug, vizim-

pro. Moreover, the identification of common drug targets namely; AKT1, PTGS1, TNF, and

DPP4 between proposed active phytochemicals and Covid19 using network pharmacologi-

cal analysis further substantiate the importance of medicinal scaffolds. The structural

dynamics and binding affinities of phytochemical compounds xanthoangelol_E, hesperetin,

and beta-sitosterol reported as highly potential against 3CLpro in cell-based and cell-free

assays are consistent with the computational analysis. Whereas, the secondary metabolites

such as sennosides A, B, C, D present in higher amount in Senna exhibited weak binding

affinity and instability against the spike protein, helicase nsp13, RdRp nsp12, and 3CLpro. In

conclusion, the results contravene fallacious efficacy claims of Senna tea interventions cir-

culating on electronic/social media as Covid19 cure; thus emphasizing the importance of

well-examined standardized data of the natural products in hand; thereby preventing unnec-

essary deaths under pandemic hit situations worldwide.

Introduction

Due to continuously evolving genetic makeup of the SARS-CoV-2 virus and its ability to

spread rapidly, it has taken a huge toll on individuals, communities and societies across the

world by ruthlessly affecting over 340 million people globally leading to 5.5 million deaths as

of 20th, January 2022 [1]. However, several vaccines worldwide namely; Oxford–AstraZeneca,
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Pfizer-BioNTech, Sinopharm-BBIBP, Moderna, Sinovac, Johnson & Johnson, and mRNA-

1273 (developed by Moderna Inc.), have been given authorization on emergency basis due to

overwhelmed health systems that have caused widespread social and economic disruption [2].

Despite the rollout of vaccines to general public, trend in daily number of cases reported is still

on the higher side signifying the end of the SARS-CoV-2 pandemic as implausible [3, 4]. One

of the foremost reasons is the unavailability of vaccines especially in low-income and middle-

income countries leading to a standstill to achieve global control of SARS-CoV-2 [5]. Another

big reason is that a large number of people are reluctant to get a vaccine shot rather they

believe in using herbal medicines as an alternative cure to SARS-CoV-2 [6]. Nevertheless, tra-

ditional medicinal plants have a vast history in treating infectious diseases. For example,

malaria was treated for a very long time with Artemisia Annua (sweet wormwood) in China

and Cinchona Officinalis (Cinchona tree) in South America [7]. Another example is the use of

Chinese traditional medicine Lianhuaqingwen in the treatment of SARS-CoV-2 exhibiting

inhibition of virus replication in a dose-dependent manner with IC50 of 411.2 ug/ml [8]. Thus,

the role of herbal medicines in these unprecedented times of ongoing pandemic has resulted

in a global catastrophe that cannot be ignored.

While the effectiveness of some medicinal plants has been scientifically proven, there is a

global tendency for self-medication with different herbal medicines without proper scientific

evidence. There has been a myth regarding the use of famous Senna tea in treatment of

Covid19 that has eventually lead to its excessive use followed by a drastic hike in prices [9, 10].

It is generally used as an herbal tea made from Senna pods or leaves cultivated in different

countries having different species commonly known as Alexandrian Senna, Tinnevelly Senna,

Indian Senna, and Sanna Makki. The plant extracts of different species consist of many active

anthraquinones and flavonoids including sennosides, aloe-emodin, rhein, iso-rhamnetin and

kaempferol [11, 12]. Limitation of long term use of Senna is reported to be concomitant with

dehydration and diarrhea [13]. Apprehensions on the propagation of misleading information

about its use in Covid19 treatment were enhanced through social and mainstream media with-

out sufficient scientific evidence [14]. It is of utmost importance to remove ambiguity about

using Senna tea in Covid19 treatment, which can rather aggravate the symptoms by causing

irritated bowl linings, dehydration, and electrolyte imbalance that can ultimately be fatal [15–

17].

The scope of this study, therefore, serves to analyze potential binding of particularly those

phytochemicals that have been suggested to inhibit the major protease of SARS-CoV-2, 3-Chy-

motrypsin-Like Protease (3CLpro) in vitro with IC50 0–10 μM in comparison with the phyto-

chemicals present in Senna. Inhibition of 3CLpro is crucial in viral lifecycle and design of

SARS-CoV and SARS-CoV-2 inhibitors [18]. It is highly conserved among the SARS-CoV

viruses and displays 96% similarity with the zoonotic genome, especially the bat coronavirus

[19, 20]. To further explore the possibility of chemical compounds of Senna to be active against

other Covid19 protein targets, we elucidated its structural properties with additional essential

proteins of SARS-CoV-2 namely; spike protein, helicase nsp13, and RdRp nsp12. The findings

of this study will assist in distinguishing potential phytochemicals from a group of known and

social media acclaimed plant based Covid19 treatments based on comparative structural

dynamics. Moreover, compounds proposed in this study will hold a rationale to inhibit both

PLpro and 3CLpro and provide avenues to use the scaffolds of these molecules in the design of

more specific SARS-CoV-2 inhibitors in future.

Methodology

The complete workflow of the current study is mentioned in Fig 1.
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Dataset collection for pharmacophore modeling

Training set. Two training sets were required for the generation of two pharmacophores

namely; 3D-QSAR pharmacophore and common feature pharmacophore. A dataset consisting

of diverse structural information with in vitro data on medicinal plants that have exhibited

high potential in inhibiting 3CLpro was collected from different resources and used for the gen-

eration of 3D-QSAR pharmacophore [21–23]. The inhibitory studies conducted on SARS--

CoV-2 reported the IC50 value of chloroquine between 1.13 to 5.47 μM [24], thus establishing

a threshold to include those medicinal compounds that exhibited IC50 value from 0–15 μM.

Training set for the generation of 3D-QSAR pharmacophore is mentioned in the S1 Table.

Whereas, Senna compounds constituting phenolic acids, flavonoids, and coumarins with the

highest quantity of benzoic acid as well as anthraquinones were used in the training set to gen-

erate a common feature pharmacophore (S2 Table).

Test set. To validate the generated pharmacophores, we investigated both the known

active and inactive medicinal compounds between IC50 values 1.2 μM to 226 μM. Moreover, to

randomize the test set, a set of 77 known active and inactive FDA-approved compounds

recently released against 3CLpro by the National Center for Advancing Translational Sciences

(NCATS) ("SARS-CoV-2 cytopathic effect (CPE)", 2021) [25] were also added in the test set.

To keep the study consistent with experimental results, we particularly added the controls

reported in multiple in vitro studies including hesperetin (8.3 μM), aloe-emodin (132 μM), api-

genin (280.8 ± 21.4 μM), luteolin (20.0 ± 2.2 μM), quercetin (23.8 ± 1.9 μM), and remdesivir

(5 μM) [26].

Fig 1. Workflow of the current study to identify potential phytochemicals against Covid19 drug targets from a list of known and

social media acclaimed natural products.

https://doi.org/10.1371/journal.pone.0268454.g001

PLOS ONE Myths and realities behind covid19 therapeutic interventions

PLOS ONE | https://doi.org/10.1371/journal.pone.0268454 June 14, 2022 3 / 30

https://doi.org/10.1371/journal.pone.0268454.g001
https://doi.org/10.1371/journal.pone.0268454


Pharmacophore modeling

All the protocols such as; 3D-QSAR pharmacophore modeling, common feature pharmaco-

phore modeling, ligand pharmacophore mapping, and feature mapping were carried out with

the BIOVIA Discovery Studio (DS) [27]. In this study, we generated two pharmacophore mod-

els; 1) 3D-QSAR pharmacophore model for biologically active phytochemicals reported

against 3CLpro and 2) a common feature pharmacophore for Senna compounds with no

reported experimental activity with a given target. 3D-QSAR pharmacophore generation pro-

tocol that is designed to generate predictive pharmacophores based on ligands with known

activity against a specific biological target was run with input ligands set to a training set of 27

active phytochemicals against 3CLpro. The HypoGen algorithm generated 200 conformations

with an energy threshold for each ligand maintained within a 10 kcal/mol energy range that

were further optimized using simulated annealing. The ligands in the dataset used pre-defined

‘Activ’ and ‘Uncert’ values. ‘Activ’ refers to the tested biological values of the input ligands

(IC50). Whereas; ‘Uncert’ that is the uncertainty value was set to 1.5 implying the variation

between experimental and estimated values during model generation up to two times and also

affects the regression fitting of the pharmacophores during optimization. Moreover, to deter-

mine the best features that should be considered during the pharmacophore models genera-

tion, we used a Feature mapping tool that maps solvent-accessible features and identifies all

possible locations of the selected pharmacophore features on the given ligand. The parameters

for “Max” and “Min” in the feature mapping protocol were set to 5 and 1, respectively. The

results exhibited hydrogen bond acceptor (HBA), hydrogen bond donor (HBD), hydrophobic

(HYD), positive ionizable (PI), and ring aromatic (RA) features as commonly mapped features

from the training set compounds.

However, in the absence of biologically predicted values for Senna compounds against

3CLpro, a common feature pharmacophore was generated with the phytochemicals of Senna
presented in S2 Table. We assumed all compounds to be equally active that were considered as

reference ligands exhibiting HBA, HBD, HYD, PI, and RA as common features as a result of

the feature mapping tool analysis. The protocol carried out both the model generation with a

training set and validation with a test set simultaneously. The output file lists the SD file for

each pharmacophore aligned to the ligands and the receiver operating characteristic (ROC)

curve exhibiting the trade-off between sensitivity and specificity of selected pharmacophores.

Each pharmacophore uses the FitValue property to ascertain which ligand uses the maximum

features for mapping. Higher FitValue is indicative of more features mapped in a suitable

conformation.

Pharmacophore validation

Two methods: the cost analysis and test set analysis were used to determine the best 3D-QSAR

pharmacophore models. A test set of ligands with similar receptor binding that was not used

for model generation was employed to assess the ability of generated pharmacophores to esti-

mate activity of test ligands. The protocol to generate a 3D-QSAR pharmacophore model for

the given training set and validation with a test set takes place simultaneously in BIOVIA DS

resulting in a detailed report with 10 hypothesis models generated with different statistical

parameters. The output file contains an SD file of the input ligands aligned to each pharmaco-

phore with a report summary that includes regression statistics and a plot of LogEstimate vs.

LogActiv for the test ligands to quickly determine the best pharmacophore with the ability to

predict the activity of test ligands. Whereas; for the cost analysis, the overall cost of each

hypothesis was calculated by summing these 3 cost factors; 1) FitValue property that indicates

the total number of features mapped that are HBA, HBD, HYD, PI, and RA 2) high correlation
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coefficient (r2), 3) lowest total cost while exhibiting highest cost difference and 4) low root

mean square deviation (RMSD) values. Another method ligand pharmacophore mapping pro-

tocol was run with the test ligands as input to validate the performance of selected pharmaco-

phores and return an estimated value that should be close to the experimental values. It

anticipates the activity of selected pharmacophore based on a decent correlation coefficient

with the test set ligands and 95% cross-validation confidence.

However, to determine the best common pharmacophore model and to quickly identify the

matches, a ligand profiler protocol was used with input data set to test set that was mapped

against the generated common feature pharmacophores. Ligand profiler generates a heat map

to quickly determine the best set of ligands mapped against a pharmacophore based on the Fit-

Values. From the heat map, the pharmacophores that do not map to any of the test set com-

pounds can be easily identified, making the selection of pharmacophores easier with higher

FitValue and more relevant alignment. The validated pharmacophores were subsequently used

for lead identification from the molecular libraries.

Virtual screening for lead identification

The selected 3D-QSAR pharmacophore model was used to screen a library of 2,287 com-

pounds comprising alkylated chalcones, phlorotannins, tanshinones, bioflavonoids, and flavo-

noids. Whereas, the common feature pharmacophore model was used to screen a library of in-

house built Senna compounds collected using the Chembl similarity searching tool [28] against

sennosides and anthraquinones present in Senna. We chose 3D-QSAR pharmacophore model

Hypo1 and the common feature pharmacophore model 10 as a 3D query to screen the input

ligands against each pharmacophore feature present in the query to extract the more relevant

pharmacophore models. The screen library protocol in BIOVIA DS was used with the mini-

mum features parameter set to 3, the maximum features parameter set to 4, and the maximum

subset of pharmacophore parameter set to 100. This suggests that 100 pharmacophore subsets

of all possible 3 and 4 feature pharmacophore from the 5 features will be used for screening.

The resulting subset of both the libraries was then subjected to molecular docking.

Molecular docking

LibDock algorithm of BIOVIA DS was run to dock the screened ligands from 3D-QSAR phar-

macophore of phytochemicals and common feature pharmacophore consisting of Senna com-

pounds separately. The screened compounds against 3D-QSAR pharmacophore were reported

specifically as anti-3CLpro ligands with known biological activity, thus they were not tested for

other Covid19 targets and subjected to docking into the active site His164 of 3CLpro [29]. Lib-

Dock calculates a hotspot map for the given receptor site containing polar and apolar groups,

which are used to generate favorable ligand-receptor interactions followed by the energy mini-

mization step. Due to the conformational differences in the monomeric and dimeric structure

of 3CLpro as suggested in the literature [30], we subjected all the complexes to MD simulations

with the monomer; whereas, only those compounds were tested with dimer that were unstable

with monomer. Moreover, due to the absence of any experimental data on screened com-

pounds sennoside A, B, C, and D of Senna against 3CLpro, we expanded our research scope

and chose four additional proteins that are crucial for the survival of SARS-CoV-2 namely;

spike protein (PDB: 6LZG), helicase nsp13 (PDB: 6JYT), RdRp nsp12 (PDB: 6M71) and

3CLpro (PDB: 6LU7). In order to validate further, based on dynamics and conformational

changes, we selected three FDA-approved drugs against Covid19 namely; remdesivir, hydroxy-

chloroquine, and vizimpro [31], which were used as a control. The top-scoring compounds
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from each dataset were then subjected to molecular dynamics (MD) simulations with

Amber16 [32].

Molecular dynamics simulations

MD simulations were carried out on the active phytochemicals, vizimpro and Senna com-

pounds to check the behavior of protein with their proposed ligands. There were 6 phytochem-

icals and vizimpro in complex with 3CLpro, 2 complexes of spike protein (docked at both the

regular and allosteric site), helicase nsp13, RdRp nsp12, and 3CLpro with Senna compounds.

For this purpose, parameter/topology files were generated using the LEaP program followed

by the system preparation by neutralizing it with counter ions (Na+/Cl-). TIP3P tetrahedral

solvation box was adjusted for 12 Å and General Amber Force Field (GAFF) and ff14SB was

used to get insights into the intermolecular and intramolecular interactions. Furthermore, in

the next step, preprocessing was performed for all the systems with 500 steps and 1000 cycles

of minimization with 200kcal/mol/Å2. The whole system’s atoms were again minimized for

1000 cycles with 5kcal/mol/Å2 by applying restraints on carbon alpha atoms, while 300 mini-

mization steps were run for non-heavy atoms to further relax the system. The system was

slowly heated with restraints on the backbone and restraint weight 5 kcal/mol/Å2 using Lange-

vin dynamics till 300 K. The system was then equilibrated for 100 ps to make it stabilized

according to the environment. The pressure was sustained through the NPT ensemble allow-

ing the restraint weight of 5kcal/mol/Å2. All these systems then underwent production run of

minimum 200 ns with a non-bounded cut-off set to 8.0 Å. However, only those systems were

extended that exhibited instability in their RMSD trend mentioned in S7 Fig.

Trajectories analysis

The generated trajectories were analyzed through Amber CPPTRAJ module 16 to observe the

stability of the complex. Different parameters such as RMSD, root mean square fluctuations

(RMSF), beta-factor (β-factor), and radius of gyration (Rg) were calculated. The generated

graphs and trajectories were analyzed using the Visual Molecular Dynamics [33] and Chimera

[34].

Binding free energies

Binding free energies were calculated using the MMPBSA/GBSA package of Amber16 [35],

which used the generated trajectories of MD simulations and subjected them to MM(PB/GB)

SA.py module [36]. The system works by calculating the energy difference between complex,

unaided protein and ligand. The MMPBSA.py module was used to generate the prmtop files of

protein, ligand, and complex, which subsequently follow the total binding energies calculation

and decomposition binding free energy calculations. The total 450 frames each after every 0.2

seconds were mined from the entire MD trajectories and exposed to MMPBSA calculations.

Poisson-Boltzmann (PB) or Generalized-Born (GB) approaches were used to accomplish the

analysis. The binding free energy provides information about the significant residues that help

to analyze the components that participated in keeping the protein and ligand intact. Further-

more, these binding energies were decomposed into per residue using the MMPBSA.py mod-

ule of Amber 16.

Axial frequency distribution

The axial frequency distribution (AFD) was employed to have insights about the positioning

of ligand with respect to coordinates. It gives a detailed assessment of binding pattern of ligand
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by providing insights into distribution of atoms of ligands with respect to the x and y coordi-

nates. To run AFD, the protein atom was chosen as a point of reference, and a 3D histogram

was generated. The axial distribution of atoms is represented through the following equation:

AFD ¼
Xk;l

i¼1;j¼1

mi; j

Where, i and j represent the coordinates of ligand atoms on X and Y plane, respectively, k and

l represent the cutoff values on X and Y plane, whereas mi,j is the number of observations for i

and j coordinates [37].

Toxicity analysis

ADMET protocol of BIOVIA DS software was used to calculate the ADMET properties of

selected compounds whereas; TOPKAT suite of BIOVIA DS software carried out the toxicity

prediction based on built-in and validated rodent models. The parameters such as solubility

level, absorption level, blood-brain barrier (BBB) penetration level, plasma protein binding

(PPB) prediction with a cutoff score of -2.209, CYP2D6 (cutoff score 0.161), and hepatotoxic

prediction using a cutoff value of -4.154 were calculated. Moreover, the TOPKAT calculated

toxicity based on validated models present in BIOVIA DS such as; FDA rodent carcinogenicity

test, the prediction of tumorigenic dose rate 50 (TD50) of a drug, rat maximum tolerated dose

(MTD), test rat oral acute median lethal dose (LD50) of a chemical, prediction of rat chronic

lowest observed adverse effect level (LOAEL), ocular and skin irritancy.

Network pharmacological analysis

The network pharmacological approach was used to decipher the signaling pathways associ-

ated with target proteins of proposed phytochemicals against Covid19. Proposed phytochemi-

cals including Senna compounds were subjected to http://www.swisstargetprediction.ch/ to

identify the drug targets. Whereas, the DisGeNET (http://www.disgenet.org/) disease target

prediction analysis platform was used to find the drug targets of Covid19. Drug targets that

were common between Covid19 and phytochemicals were selected and merged by Cytos-

cape3.9.1 software to construct an active ingredient-key targets Covid19 network.

Results

Pharmacophore modeling

Ligand-based 3D-QSAR pharmacophore modeling resulted in the generation of 10 hypotheses

that aligned to the ligands present in training set. The best hypothesis Hypo1 was selected

based on the highest correlation value of 0.74, highest cost difference of 115.21, and the lowest

RMSD of 1.39 Å. The statistical values of 10 hypotheses are summarized in Table 1. The high-

est cost difference values indicate the ability of pharmacophore to predict estimated values

with respect to experimental values with 90% significance. The selection of best pharmaco-

phore model was also based on the highest FitValue of 4.36 that is based on the alignment of

training set ligands to the pharmacophore. Four common features consisting of 1 HBA, 2

HYD, and 1 RA were observed in Hypo1 as presented in S1 Fig. It was noted that all the fea-

tures of pharmacophore were mapped to the most active medicinal compound xanthoange-

lol_E having IC50 = 1.2 ± 0.4 μM, depicted in S1 Fig. Moreover, a list of Hypo1 estimated and

experimental values with their corresponding error values against medicinal compounds are

also given in Table 2. Interestingly, it was also noted that among the four features, only RA was
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missing from other active phytochemicals endorsing the importance of HBA and HYD fea-

tures, which might be responsible for the experimental activity.

However, in the case of Senna compounds, it was observed that the common feature phar-

macophore no. 10 aligned with the training set compounds with highest FitValues exhibiting 3

HBA and 1 RA features as presented in S2 Fig. The compound isoquercetin mapped to the

common feature pharmacophore with highest FitValue of 0.975 as displayed in S2 Fig. How-

ever, it is noteworthy that the presence of hydrophobic pockets and basic residues in 3CLpro

have been reported in the literature [29], highlighting the significance of hydrophobic features,

which is missing in the case of common feature pharmacophore.

Table 1. Statistical parameters of top 10 3D-QSAR pharmacophore hypotheses generated using HypoGen algorithm.

Hypothesis No. Total Cost Cost Difference RMSDb Correlation Featuresc

1 125.43 115.2 1.39 0.741 HBA, HP, RA

2 129.24 111.39 1.44 0.729 HBA, HP, RA

3 137.88 102.76 1.52 0.707 HBA, HP, RA

4 141.68 98.961 1.55 0.697 HBA, HP, RA

5 145.10 95.537 1.57 0.691 HBA, HP, RA

6 145.21 95.429 1.58 0.689 HBA, HP, RA

7 146.72 93.917 1.60 0.682 HBD, HP

8 153.04 87.594 1.65 0.667 HBA, HP, RA

9 154.81 85.827 1.68 0.660 HBA, HP, RA

10 157.02 83.620 1.75 0.653 HBD, HP

The null cost and the fixed cost are 240.64 and 109.19, respectively
a Cost difference between the null and the total cost
b RMSD, root mean square deviation
c Abbreviation used for features: HBA, hydrogen bond acceptor; HYD, hydrophobic; RA, Ring Aromatic.

https://doi.org/10.1371/journal.pone.0268454.t001

Table 2. Predicted and experimental IC50 values of the training set compounds based on the 3D-QSAR Hypothesis 1 pharmacophore model.

Name FitValue Predicted IC50 (μM) Experimental IC50 (μM) Error Status Mapping

Xanthoangelol_E 4.36 1.60 1.20 1.40 active [6 20 12 9]

Hesperetin 3.68 6.60 8.30 1.50 active [1 23 14 �]

Iguesterin 3.08 8.10 2.70 3.10 active [2 25 4 �]

Dieckol 3.14 5.70 2.70 2.10 Moderately active [12 37 33 �]

Tanic acid 2.12 61 3.00 20 moderately active [11 � � 61]

Psoralidin 3.71 5.30 4.20 1.30 moderately active [5 23 17 �]

Tomentin 3.00 7.90 5.00 1.60 moderately active [3 32 21 �]

Pristimerin 3.07 6.70 5.50 1.20 moderately active [2 33 24 �]

Amentoflavone 3.00 8.00 8.30 -1.0 moderately active [9 21 � 13]

Tingenone 2.81 12 9.9 1.20 moderately active [3 25 5 �]

Betulinic acid 3.03 7.30 10 -1.40 moderately active [1 31 14 �]

Diplacone 3.11 6.1 10 -1.70 moderately active [6 29 16 �]

Celastrol 2.74 15 10 1.40 moderately active [4 16 18 �]

Dihydro tanshinone I 2.18 53 14 3.70 moderately active [� 15 � 1]

Mimulone 3.13 5.80 14 -2.50 moderately active [5 22 15 �]

�Refers to the missing features.

https://doi.org/10.1371/journal.pone.0268454.t002
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Validation of pharmacophore models

Validation of any 3D-QSAR hypothesis model is primarily based on the cost analysis of two

theoretical values 1) total cost value and 2) null cost value. A good quality pharmacophore has

a cost difference of 40 to 60-bit score representing 70–90% confidence level along with other

important parameters such as lowest RMSD and the highest correlation values. However, the

3D-QSAR model selected in this study represents the probability of more than 90% correlation

among the data sets with the highest total cost difference 115.21 and highest correlation value

0.74, exhibiting a pharmacophore model with high prediction ability for lead identification.

Apart from the cost analysis of the training set, the 3D-QSAR pharmacophore model was vali-

dated using error values estimated between the experimental and estimated activity values gen-

erated as a result of the ligand pharmacophore mapping protocol. 33 test set compounds

mapped to Hypo1 pharmacophore with error value of =<10 depicting order one difference

between the experimental and estimated IC50 values. The statistical analysis indicated higher

regression coefficient (R2) value of 0.646 for the test set while cross-validating the results with

training set that displayed regression coefficient value R2 = 0.495, depicted in Fig 2.

Fig 2. Correlation graph in logarithmic scale for experimental values vs. predicted values of training and test

ligands that mapped the 3D-QSAR pharmacophore model Hypo1.

https://doi.org/10.1371/journal.pone.0268454.g002
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Moreover, the FDA-approved drugs, vilazodone and lapatinib both having IC50 of 10 μM

from the test set mapped the 3D-QSAR pharmacophore model highest FitValue of 3.56 as

depicted in S1 Fig. From these results, it was conceived that the presence of chemical features

HBA, HYD, and RA for 3CLpro inhibitory activity are crucial and are also found in FDA-

approved drugs currently under clinical trials. Furthermore, in the case of common feature

pharmacophore modeled for the Senna compounds, the ROC curve was used to evaluate the

degree of false positivity of the model with known active and inactive compounds. The curve

plots true positives against false positives and indicates if the model predicted active com-

pounds higher than the inactive compounds. The AUC value lies between 0 and 1; 0 is indica-

tive of a bad classifier, however, the selected model exhibited a fair accuracy score of 0.710 as

presented in Fig 3. S3 Table displays sensitivity and specificity values of the selected model

with an ability to distinguish between active and inactive compounds. Additionally, the results

of ligand profiler protocol exhibited mapping of 15 test set compounds accurately with the

selected pharmacophore and labeled active compounds as red and inactive as blue that can be

seen in Fig 3. It is therefore determined from the validation results that both pharmacophore

models exhibited the capability to classify active and inactive compounds. The 3D-QSAR phar-

macophore model however exhibited all the significant features that are required for binding

of 3CLpro, while the common feature pharmacophore model failed to identify hydrophobicity

as a common feature.

Virtual screening

The validated 3D-QSAR Hypo1 model and the common feature pharmacophore model No.

10 were used as a query to screen for new lead compounds from the medicinal library of 2,287

compounds and Senna compounds. The compounds from the virtual screening that best

Fig 3. a) Heat map generated by the ligand profiler for validation of common feature pharmacophore model No. 10 with

the test set b) ROC curves generated for the validation of common feature pharmacophore model with the test set c)

Logarithmic graph between estimated and experimental values of the training set and test set of common feature

pharmacophore.

https://doi.org/10.1371/journal.pone.0268454.g003

PLOS ONE Myths and realities behind covid19 therapeutic interventions

PLOS ONE | https://doi.org/10.1371/journal.pone.0268454 June 14, 2022 10 / 30

https://doi.org/10.1371/journal.pone.0268454.g003
https://doi.org/10.1371/journal.pone.0268454


mapped to the pharmacophore models were selected based on the highest FitValues. The com-

pounds with FitValue ranging from 3.98–2.46 from each library were selected and subjected to

molecular docking.

Molecular docking

Since 3D-QSAR pharmacophore was generated with respect to only one target, the resulting

compounds from virtual screening along with the 27 training set compounds of the active phy-

tochemicals were subjected to molecular docking with 3CLpro. The top six compounds;

xanthoangelol_E with the highest LibDock score of 202, beta-sitosterol with a score of 198,

hesperetin with a score of 152, luteolin-7-O-glucopyranoside, isoquercetin, and calceolariosi-

de_B with LibDock score 124, 114, and 112 from the medicinal library were chosen, respec-

tively. However, considering the fact that theoretically one of the tea ingredients of Sennamay

bind a different Covid19 protein and/or key cellular protein, it was necessary to expand our

research to determine the binding potential of Senna compounds. Therefore, the Senna com-

pounds screened for common feature pharmacophore that does not require a specific target

for model building were subjected to docking with four additional proteins (both structural

and non-structural) of Covid19. The standing of selected proteins in the structure of Covid19

virion is presented in Fig 4. The docked compounds present in high quantity in Senna namely;

sennoside A, B, C, and D were chosen for further analysis on the basis of Libdock score against

each target protein. Herein; we also subjected three recently approved FDA drugs remdesivir,

hydroxychloroquine, and vizimpro to molecular docking to validate results based on compara-

tive analysis. However, the topmost compound vizimpro with the highest docking score of 129

was further subjected to MD simulations to further validate representative pharmacophore

models and demonstrate their efficiency.

Fig 4. SARS-CoV-2 virion with the four selected proteins. The structure of virion is taken from [40].

https://doi.org/10.1371/journal.pone.0268454.g004
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Active phytochemicals

The topmost compound, xanthoangelol_E is an alkylated chalcone capable of inhibiting both

3CLpro and PLpro in a significant dose-dependent manner with IC50 ranging from 1.2 ± 0.4 to

46.4 ± 7.8 μM [38]. Xanthoangelol_E completely occupied the catalytic pocket of 3CLpro mak-

ing interactions with all the sub-pockets S1, S2, S3, S4, and S5 as depicted in S3 Fig. Whereas,

the second and third topmost compounds; beta-sitosterol, and hesperetin, are phytochemicals

with reported inhibitory activity for 3CLpro with IC50 115 μM and 8.3 μM, respectively [39].

Both these compounds exhibited strong hydrogen bond interactions with significant residues

of 3CLpro such as Glu166, Thr190 and His164 presented in S3 Fig while occupying the sub-

pockets S3, S4 and S5. Beta-sitosterol also exhibited other significant interactions such as alkyl,

pi-alkyl, and pi-pi T-shaped with residues Leu50, Leu167, Ala191, Met165, Pro168, and His41,

respectively. Whereas, hesperetin not only exhibited interactions with the catalytic dyad but

the–OH substitutes displayed strong hydrogen bond interactions with Arg489, Gln493,

His464, and Leu442.

Furthermore, the fourth topmost compound is luteolin-7-O-glucopyranoside, which is a

phytochemical essentially a derivative of luteolin and cynaroside. Luteolin is commonly

known for its anti-inflammatory activities both in vitro and in vivo based on its pharmacologi-

cally competent mechanism of action [41]. The glucopyranoside ring of this compound tar-

geted the sub-pockets S1 and S3 while exhibiting interactions with His163, Glu166, and

Gln192 as depicted in S4 Fig lying near the catalytic dyad (Cys145- His41). Whereas, the fifth

compound, a hydroxycinnamic acid, calceolarioside_B exhibited potential binding affinity

with the sub-pockets S1, S2, and S3. The oxygen atoms of the ligand molecule have shown con-

ventional hydrogen bond interactions with Asn142, His41, and Gly143 residues of the binding

pocket depicted in S4 Fig. Moreover, the last topmost docked compound, isoquercetin, which

is a secondary metabolite from a class of flavonoids, exhibited hydrogen bonding between the

aromatic ring of quercetin and the neighboring residues Gln189, Gln192, Val186, and Arg188

as depicted in S4 Fig. Our analysis identified 6 significant active phytochemicals that exhibited

strong binding interactions with 3CLpro catalytic triad Cys145-His41 and Glu166. However,

the role of Glu166 and the neighboring residues in anchoring the sub-pockets of active site

and dimerization of 3CLpro has been regarded as critical by [42, 43], which is analyzed during

MD simulation studies in detail.

Senna compounds

To get insights into the binding potential of Senna compounds, they were subjected to docking

with four additional essential proteins of SARS-CoV-2 to conclude and convey the larger sig-

nificance of this study.

3CLpro. The docking results of 3CLpro with Senna compounds presented in Fig 5 exhibit con-

ventional hydrogen bond interactions with residues Gly170, Gly138, Lys5, Val125, and Glu288

with Libdock score of 109. Compared to the docking results of active phytochemicals against

3CLpro, Senna has shown weak binding affinity and few intermolecular interactions suggesting

that this might not be a potential lead compound for the inhibition of target protein.

Helicase Nsp13. Nsp13 is an interesting drug target as it plays a crucial role in the transcrip-

tion-replication complex of CoVs. Docking of Senna compounds against helicase nsp13 has

resulted in the Libdock score of 114. Significant hydrogen bond interactions of oxygen atoms

of the ligand can be observed in Fig 5 with residues Glu377, Ser312, Gln539, Ser541, Thr288,

Arg445, and Glu321. Furthermore, Ala314 and Ala318 were involved in pi-alkyl interactions

with benzene ring of the ligand playing a crucial role in adjusting and anchoring the ligand

within the binding pocket.
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RdRp Nsp12. Non-structural proteins such as nsp12 are highly conserved proteins, which

are essential for viral infection. Senna compounds have shown a Libdock score of 102 against

RdRp nsp12. Active pocket residues Trp617, Lys798, Asp760, Cys622, Lys551, and Lys621

have made crucial hydrogen bond interactions with the oxygen atoms of the ligand as depicted

in Fig 5. Furthermore, the benzene ring of the ligand has made pi-anion interactions with

Asp618.

Fig 5. Preferred binding modes of sennosides docked with four essential proteins of SARS-CoV-2 depicting 2D

binding interactions. a) 3CLpro b) Helicase nsp13 c) Spike protein-ACE2 receptor complex docked at two different

sites d) RdRp nsp12.

https://doi.org/10.1371/journal.pone.0268454.g005

PLOS ONE Myths and realities behind covid19 therapeutic interventions

PLOS ONE | https://doi.org/10.1371/journal.pone.0268454 June 14, 2022 13 / 30

https://doi.org/10.1371/journal.pone.0268454.g005
https://doi.org/10.1371/journal.pone.0268454


Spike protein. Spike protein aids in the attachment of virus to the host cell and thus is a sig-

nificant drug target for inhibition studies. Docking of Senna compounds against receptor-

binding domain (RBD) of spike protein bound with ACE2 receptor resulted in Libdock score

of 118. The active site residues involved in crucial interactions with the protein are Asp30,

Gly416, Arg408, His34, Ser494, Tyr495, Glu37, Ala387, and Tyr421. Significant hydrogen

bond interactions of binding site residues with ligand oxygen atoms have firmly anchored the

ligand within the active pocket as depicted in Fig 5.

Furthermore, several other intermolecular interactions such as pi-anion and pi-alkyl

between receptor and ligand have also contributed to enhanced binding affinity. Moreover, to

analyse the conformational changes in spike-ACE2 complex and to estimate the capability of

Senna compounds to disrupt interactions between spike protein and ACE2 receptor, molecu-

lar docking at the allosteric site of spike protein has revealed a Libdock score of 126. Protein

residues Ala330, His356, Glu357, Asp332, and Asn376 have exhibited strong hydrogen bond-

ing interactions with the lead compound. However, Glu384 has exhibited pi-anion interactions

with two benzene rings of the ligand.

Molecular dynamics simulations

All the complexes including vizimpro (the control) were subjected to MD simulations to have

insights into the dynamics and conformational stability of active phytochemicals in complex

with the SARS-CoV-2 3CLpro and Senna compounds with 3CLpro, RdRp nsp12, helicase

nsp13, and spike-ACE2.

Analysis of active phytochemicals. The first compound beta-sitosterol exhibited note-

worthy results during 200 ns of MD simulations. It possess stability with both the chains A and

B throughout simulations and moved even deeper in the binding pocket of 3CLpro as displayed

in Fig 6. Interestingly, beta-sitosterol was observed making alkyl and pi-alkyl interactions

more often with the residues of the active site with an average RMSD of 1.78 Å, Rg 22.2 Å and

β-factor 31.6 Å as exhibited in S5 Fig. The influence of electrostatic interactions in attaining

conformational stability has been explained in the literature several times [44], proposing beta-

sitosterol as an interesting candidate for further analysis.

Whereas, the second compound hesperetin was run for 200 ns and exhibited stability for

the first 60 ns followed by a sudden increase in RMSD resulting in detachment of hesperetin

Fig 6. MD simulations of beta-sitosterol exhibited strong electrostatic interactions and stable conformational dynamics with both the chains of dimer

3CLpro.

https://doi.org/10.1371/journal.pone.0268454.g006
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from chain A, while remaining intact with chain B of the dimer as depicted in Fig 7. Average

RMSD of 1.35 Å is shown in S5 Fig, which also exhibits the maximum fluctuations observed

mainly in domain III with the Rg value 22.1 Å and β-factor 25.8 Å. Nonetheless, the role of

critical residues such as His143, Phe140, Gln189, and Glu166 was again highlighted as they

were involved in making significant interactions with chain B of 3CLpro.

Similarly, xanthoangelol_E, the most active medicinal compound reported in experimental

assays against 3CLpro exhibited the same behavior as hesperetin. However, increase in trend of

RMSD graph was observed till 200 ns, which was extended to 300 ns to corroborate the struc-

tural dynamics (see S7 Fig for extended simulations). The ligand stayed intact with only chain

B of the dimer protein displaying overall stability in protein structure as shown in Fig 7. How-

ever, the active site residues of chain B were actively involved in making interactions with

xanthoangelol_E with an average RMSD of 2.04 Å as displayed in S5 Fig.

Furthermore, the structural and conformational dynamics of luteolin-7-O-glucopyranoside

during 200 ns exhibited extraordinary results with an average RMSD of 3.03 Å exhibiting the

formation of 13 hydrogen bonds between glucopyranoside ring and the active site residues of

3CLpro. A significant increase was observed between 50 ns to 75 ns with the highest peak noted

at 65th ns with an RMSD value of 6.07 Å. This noticeable change can be visually observed in

simulation trajectories where increased bonding with the loop region (185–200 residues) that

connects domain II to domain III caused the third domain to open up as displayed in Fig 8.

Moreover, the number of bonds formed by the ligand significantly increased from 9 to 22, of

which, 13 were hydrogen bonds while the rest comprised of C-H bonds and pi-alkyl bonds.

The protein was seen to open up to incorporate the ligand into its binding pocket completely

at 10 ns forming and breaking hydrogen bonds after every 10 ns up to 75 ns. However, after 80

Fig 7. a) Hesperetin detached itself from chain A due to structural dynamics in its cavity but stayed intact with chain B till 200 ns as displayed in the top-right

image. b) Xanthoangelol_E exhibited the same behavior with the chain while displaying strong hydrogen bond interactions and ligand movement deeper in the

cavity of chain B till 300 ns, as presented in the bottom-right corner image.

https://doi.org/10.1371/journal.pone.0268454.g007
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ns, strong hydrogen bonding was observed stabilizing the RMSD as presented in S6 Fig mak-

ing domain III returned to original position with the aid of residues Thr190 and Ala191 that

kept the critical residues of the active site intact.

The next simulation run with isoquercetin, exhibited fluctuations in domain II and domain

III resulting in increased RMSD at 150 ns therefore MD simulations were extended to 300 ns to

confirm the structural stability of this complex (see S7 Fig for extended simulations). However,

after 200 ns, it was observed that isoquercetin detached from the active site resulting in instabil-

ity of the complex. Furthermore, the last MD simulation run of calceolarioside_B with 3CLpro

exhibited significant fluctuations in RMSD throughout the 200 ns run. The simulations were

further extended to 400 ns to explore the stability of the compound in its binding pocket (see S7

Fig for extended simulations). Results yielded showed that a significant rise of RMSD at 250 ns

is associated with domain III movement covering 21.6 Å from its initial position as depicted in

Fig 8. The ligand adjusted itself in the binding pocket of the receptor to form strong hydrogen

bond interactions with crucial residues Glu166, which play a central role in making interactions

with a catalytic dyad (Cys145 and His41) and is critical for the proteolytic activity of the viral

protein [45, 46]. However, further insights into the simulation results show that the domain

moved back to its original position after 300 ns leading to stabilization in RMSD. All the 6 com-

pounds were further compared with a control vizimpro based on MD simulation results, which

exhibited the exact behavior between chain B (1–302 residues) of vizimpro and the dimer

3CLpro. The ligand from chain A drifted away from the active site after 150 ns. Whereas, the

ligand tightly attached itself to chain B and completely occupied the active site while moving

inside the cavity making even stronger interactions with the active site residues of the receptor.

Our analysis was further extended to the calculation of binding free energies of all the 7 com-

plexes using MMPBSA and MMGBSA calculations to conclude our study.

Analysis of Senna compounds. Five complexes were subjected to MD simulations com-

prising a span of 200 ns each. The first simulation run with 3CLpro exhibited detachment of

sennoside (ligand) from the active site as depicted in Fig 9. However, the second most

Fig 8. a) MD simulations analysis of luteolin-7-O-glucopyranoside for 200 ns. Snapshots from 0 ns, 60 ns, and 200 ns are superimposed depicting an increase

in RMSD due to the domain movement. b) MD simulations analysis of calceolarioside_B depicting ligand movement attempting to completely occupy the

binding site thus leading to the increase in RMSD observed as a consequence of domain movement.

https://doi.org/10.1371/journal.pone.0268454.g008
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interesting complex with spike protein and ACE2 receptor was analysed with two different

sites to identify the conformational changes if any. Ligand bound at RBD of spike protein

exhibited stability till 200 ns exhibiting the inability of ligand to abrogate interactions between

the spike protein and ACE2 receptor of SARS-Cov-2 as shown in Fig 9. However, the ligand

docked at the allosteric site of ACE2 receptor resulted in protein fluctuations but eventually

detached itself from the active site after 150 ns as shown in Fig 9. As an outcome, interactions

between spike protein and ACE receptor were not abolished that are essential for its inhibitory

activity [47, 48]. The same results were observed with RdRp nsp12 and helicase nsp13 com-

plexes. None of the active sites retained sennosides probably due to the absence of hydropho-

bic interaction, which were reported in different studies as significant for inhibitory activity of

SARS-CoV-2 proteins [49, 50]. Moreover, the Senna compounds that remained intact with the

protein even farther from the active site were still subjected to binding free energy profiles to

get insights into the energetics between proteins and ligands; respectively.

Binding free energy analysis

The end-point free energy calculations were performed to find energetics between active phy-

tochemicals in complex with 3CLpro, Senna compounds in complex with RdRp and spike-

ACE2, and vizimpro. The distribution of energetics of top three active phytochemicals

xanthoangelol_E, beta-sitosterol, and hesperetin as a result of MMGBSA calculations is men-

tioned in Table 3. The sum of binding free energy with a dimer 3D structure of 3CLpro

Fig 9. Insights into MD simulations of sennosides with a) 3CLpro, b) Spike-ACE2 with ligand attached at RBD, c)

Spike-ACE2 with ligand attached at allosteric site, d) RdRp nsp12, and e) Helicase nsp13.

https://doi.org/10.1371/journal.pone.0268454.g009

Table 3. Binding free energy and its components in MM/GBSA and MM/PBSA for the active phytochemicals, Senna compounds, and vizimpro in complex with

3CLpro, RdRp, and spike-ACE2 proteins in kcal/mol.

Energy

Components

Vizimpro

3CLpro

Beta-

Sitosterol

3CLpro

Heperetin

3CLpro

Xanthoangelol,

_E 3CLpro

Luteolin

3CLpro

Calceolarioside B

3CLpro

Isoquercetin

3CLpro

Sennoside

3CLpro

Sennoside

RdRp

Sennoside

Spike-ACE2

MM/GBSA

VDWAALS -52.8713 -172.9954 -163.6940 -170.2654 -62.0288 -45.7566 -38.7973 -23.4553 -47.3276 -34.9620

EEL 67.9698 -604.9742 -672.0357 -610.7079 -8.5579 44.2002 123.7085 -15.2853 -133.0586 -34.9601

EGB -61.5635 673.5643 720.7120 671.3829 25.4674 -29.4643 -100.7974 31.6589 147.1077 67.0213

ESURF -6.3440 -22.6008 -21.9985 -22.0860 -7.9486 -5.2809 -4.7543 -2.8773 -7.6417 -4.9811

DELTA G gas 15.0985 -737.5308 -791.6253 -738.7731 -70.5867 -1.5564 84.9112 -38.7405 -180.3862 -69.9221

DELTA G

solv

-67.9075 650.9634 698.7134 649.2969 17.5187 -34.7452 -105.5516 28.7816 139.4660 62.0402

DELTA

TOTAL

-52.8090 -86.5674 -92.9119 -89.4762 -53.0680 -36.3016 -20.6405 -9.9590 -40.9203 -7.8819

MM/PBSA

VDWAALS -52.8713 -172.9954 -163.6940 -170.2654 -62.0288 -45.7566 -38.7973 -23.4553 -47.3276 -34.9620

EEL 67.9698 -604.9742 -672.0357 -610.7079 -8.5579 44.2002 123.7085 -15.2853 -133.0586 -34.9601

EPB -50.0416 595.4107 657.6581 587.1260 39.0509 -22.3992 -85.5626 29.4452 159.2216 63.4209

ENPOLAR -34.9171 -124.0661 -116.7880 -119.7822 -41.3287 -26.2835 -24.6040 -15.9147 -36.8856 -25.2096

EDISPER 60.2918 243.8727 223.9269 236.2362 74.5756 50.7137 46.2899 33.8181 72.2494 55.3440

DELTA G gas 15.0985 -737.5308 -791.6253 -738.7731 -70.5867 -1.5564 84.9112 -38.7405 -180.3862 -69.9221

DELTA G

solv

-24.6669 715.2173 764.7971 703.5800 72.2978 2.0309 -63.8767 47.3485 194.5854 93.5553

DELTA

TOTAL

-9.5684 -22.3135 -26.8282 -35.1931 1.7110 0.4745 21.0345 8.6080 14.1991 23.6332

https://doi.org/10.1371/journal.pone.0268454.t003
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exhibited impressive values ranging from -86.56 to -92.91 kcal/mol. The highest number of

binding interactions resulted from the van der Waals interactions with values -163.69 to

-172.99 kcal/mol between dimer and the selected ligands. However, the MMGBSA value of

vizimpro, a control FDA-approved drug for SARS-CoV-2 exhibited a value of -52.80 kcal/mol.

Moreover, the energetics of xanthoangelol_E, beta-sitosterol, and hesperetin as a result of

MMPBSA calculations mentioned in Table 3 exhibited values ranging from -22.31 to -26.82

that were striking as compared to the control drug, vizimpro that was -9.56 kcal/mol.

Whereas, energetics of other three compounds namely; luteolin-7-O-glucopyranoside and

calceolarioside B, and isoquercetin exhibited MMGBSA calculations that lied between -20.64

to -53.06i kcal/mol. The major contributions came as a result of van der Waals interactions

with values ranging from -38.79 to -62.02 kcal/mol. Moreover, total binding energy values

from MMPBSA calculations exhibited values ranging from 0.4745 to 21.0345 kcal/mol with

mostly contributions from the van der Waals interactions that lied between -45.75 to -62.02

kcal/mol. Furthermore, free energy calculations of all three complexes with sennosides lied

from 8.60 to 23.63 kcal/mol, which were comparatively weak as compared to active phyto-

chemicals and the control drug, vizimpro.

Axial frequency distribution

AFD was carried out on those complexes that exhibited conformational changes/movements

in ligand-receptor complex to attain stability during MD simulations. The findings were con-

sistent with MD simulations analysis that exhibited change in orientation of hesperetin while

forcing itself to move deeper into the binding cavity while making interactions between

His164@NE2 and the ligand atoms O6. Hesperetin displayed higher density distribution with

His143 at the beginning of the simulation, which was later shifted to His41 of the second chain

covering more surface area but decreased density distribution as exhibited in Fig 10.

Fig 10. AFD plots to compare point of coordinates and geometry between the active phytochemicals a) Hesperetin at 10 ns, b)

Hesperetin at 200 ns, c) Xanthoangelol_E at 10 ns, d) Xanthoangelol_E at 200 ns, e) Vizimpro at 10 ns, and f) Vizimpro at 200 ns.

https://doi.org/10.1371/journal.pone.0268454.g010
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Similarly, xanthoangelol_E and vizimpro exhibited weak hydrogen bonding with His resi-

dues in the first 10 ns however it displayed higher density distribution later while retaining sta-

ble interactions with the same residue. Both the ligands displayed movement around the active

site as seen in Fig 10 and exhibited stronger interactions at the end of simulations.

Moreover, luteolin-7-O-glucopyranoside and calceolarioside_B also exhibited hydrogen

bonding between two His residues (His41@O of Chain A and His143@HE2 of chain B) and

ligand atoms H35 and O13 in the first 10 ns. Fig 11 exhibits instabilities in density distribution

between calceolarioside_B atoms and His residues however the fluctuations in distances are

representative of ligand movement between the two chains. Whereas, lutelolin exhibited

strong hydrogen bonding with maximum density distribution together with decrease in dis-

tance between His143 and the ligand atoms till the end of MD simulations (200 ns), presenting

luteolin as more stable than calceolarioside_B. The results from AFD highlight the significance

of His residues present in both the chains of 3CLpro that participated in maintaining the stabil-

ity of all the complexes under study.

Pharmacokinetic profiling analysis

ADMET analysis. The ADMET analysis exhibited good absorption values of xanthoange-

lol_E and hesperetin indicating ability of both the compounds to enter blood circulation as

compared to beta-sitosterol, and Senna compounds including sennoside A and sennoside B as

displayed in Table 4. Notably, only hesperetin presented less blood-brain barrier (BBB)

Fig 11. AFD plots to compare point of coordinates and geometry of a) Calceolarioside_B at 10 ns, b)

Calceolarioside_B at 400 ns, c) Luteolin-7-O-glucopyranoside at 10 ns, and d) Luteolin-7-O-glucopyranoside at 200 ns.

https://doi.org/10.1371/journal.pone.0268454.g011
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penetration ability to penetrate CNS as compared to other active phytochemicals that dis-

played high or very high BBB values. Moreover, hesperetin and beta-sitosterol exhibited good

solubility values as compared to xanthoangelol_E, and calceolarioside_B. Furthermore,

xanthoangelol_E and beta-sitosterol emerged as non-inhibitors of CYP2D6 exhibiting negative

hepatotoxicity and greater than 90% ability to bind to plasma proteins.

Toxicity analysis. The results of TOPKAT are compared with the FDA-approved drugs

for the purpose of protocol validation and comparative analysis given in Table 5. The toxicity

analysis suggested two active phytochemicals; xanthoangelol_E, and hesperetin as non-carcin-

ogens and non-mutagen as compared to beta-sitosterol and Senna compounds Moreover, the

TD50 rat model exhibited values ranging from 148–0.19 mg/Kg-1 body weight as compared to

remdesivir that displayed TD50 value 0.96 mg/Kg-1 body weight. Most of the Senna com-

pounds exhibited high TD50 values as compared to hesperetin and beta-sitosterol.

Moreover, the active phytochemicals exhibited rat MTD values ranging from 2.62–0.05 g/

Kg body weight while beta-sitosterol displayed lowest MTD values 0.03 g/Kg body weight.

Comparatively, FDA-approved drugs including XL-888, vilazadone, and remdesivir presented

MTD values of 0.24, 0.93 and 0.09-g/Kg body weights, respectively. Furthermore, the oral

LD50 and rat chronic LOAEL values of active phytochemicals stayed within the range of

11.27–0.62 g/Kg body weight and 0.29–0.001 g/Kg body weight, respectively. However, the

Table 4. ADMET properties of chemical compounds present in Senna in comparison with the active phytochemicals and FDA-approved drugs.

Name aAbsorption level bBBB level cSolubility Level dCYP2D6 eHepatotoxicity fPPB

Cynaroside 3 4 3 FALSE TRUE FALSE

Gallic acid 0 3 4 FALSE TRUE FALSE

Benzoic acid 0 3 4 FALSE TRUE FALSE

Kaempferol 0 3 3 FALSE TRUE FALSE

Isorhamnetin 0 4 3 FALSE TRUE FALSE

Psoralen 0 2 3 FALSE TRUE FALSE

Syringic acid 0 3 4 FALSE TRUE TRUE

Vanillic acid 0 3 4 FALSE FALSE FALSE

Sennoside A 3 4 2 FALSE TRUE FALSE

Sennoside B 3 4 3 FALSE TRUE FALSE

Xanthoangelol_E 0 4 2 FALSE FALSE TRUE

Beta-sisterol 3 4 3 FALSE FALSE TRUE

Hesperetin 0 3 3 TRUE TRUE FALSE

Calceolarioside B 3 4 1 FALSE FALSE FALSE

Isoquercetin 3 4 3 FALSE FALSE FALSE

Luteolin 0 4 3 TRUE TRUE FALSE

Vilazadone 1 4 2 FALSE TRUE FALSE

Lapatinib 2 4 3 FALSE TRUE TRUE

XL-888 1 4 3 FALSE TRUE TRUE

Hydroxychloroquine 0 1 3 TRUE TRUE FALSE

Remdesivir 3 4 2 FALSE TRUE FALSE

aAbsorption level: (0, good; 1, moderate; 2, poor; 3, very poor)
bBlood brain barrier (BBB) level; (0, very high; 1, = high; 2, medium; 3, low; 4, very low)
cSolubility level (0, extremely low; 1, very low; 2, low; 3, good; 4, optimal)
dCYP2D6 prediction: (cutoff score 0.161)
eHepatotoxicity prediction: (cutoff score -4.154)
fPlasma protein binding (PPB) value: (cutoff score -2.209 presenting >90% binding ability of compounds to the plasma protein.

https://doi.org/10.1371/journal.pone.0268454.t004
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LOAEL of beta-sitosterol was lower than other active phytochemicals. Notably, Senna com-

pounds came out as ocular irritants but predicted the values of skin irritancy as non-moderate.

The statistical data of TOPKAT analysis is exhibited in Table 5.

Network pharmacological analysis

482 Covid19 drug target genes were predicted along with 8 xanthoangelol_E drug target genes,

44 target genes for beta-sitosterol, 88 for hesperetin, 24 for calceolarioside-B, 100 for luteolin,

and only 2 for sennosides. Complete details of drug target genes corresponding to phytochem-

icals are listed in the S4 Table with Uniprot IDs, common names, and target class. Moreover,

to generate a network of common interactions between target genes of Covid19 and phyto-

chemicals, only those drug targets were selected that were common between both the groups

as presented in Fig 12. Active phytochemicals that were most actively involved in interactions

were beta-sitosterol, hesperetin, and luteolin. However, the sennosides failed to exhibit any

interactions with Covid19 drug target genes.

The Network pharmacological analysis also highlighted the significance of proposed com-

pounds by identifying common drug targets with Covid19 (presented in Fig 12). The phyto-

chemicals hesperetin, luteolin, and xanthoangelol_E exhibited the maximum number of

interactions and identified AKT1, PTGS1, TNF, and DPP4 as the most affected drug targets.

Table 5. Toxicity properties of chemical compounds present in Senna in comparison with the active phytochemicals and FDA-approved drugs calculated with

TOPKAT.

Name FDA Rodent

Carcinogenicity

aCarcinogenic potency

TD50 Rat

bRat MTD

feed

cOral

LD50

dRAT chronic

LOAEL

Ames

prediction

Skin

irritancy

Ocular

irritancy

Cynaroside Non-Carcinogen 12.65 1.23 1.35 0.03 Non-Mutagen None Moderate

Gallic acid Carcinogen 101.13 1.85 1.29 0.29 Non-Mutagen None Moderate

Benzoic acid Single-Carcinogen 148.56 1.15 1.60 0.28 Non-Mutagen None Moderate

Isorhamnetin Non-Carcinogen 11.72 0.69 1.20 0.11 Mutagen None Mild

Kaempferol Non-Carcinogen 54.54 1.03 0.95 0.14 Mutagen None Moderate

Psoralen Multi-Carcinogen 16.52 0.05 0.27 0.01 Non-Mutagen Mild Mild

Syringic acid Non-Carcinogen 47.00 0.40 1.84 0.16 Non-Mutagen None Moderate

Vanillic acid Non-Carcinogen 77.02 0.38 2.38 0.19 Non-Mutagen None Moderate

Sennoside A Non-Carcinogen 0.37 1.99 11.27 0.08 Non-Mutagen None Mild

Sennoside B Non-Carcinogen 0.37 1.99 11.27 0.08 Non-Mutagen None Mild

Xanthoangelol_E Non-Carcinogen 131.03 0.46 3.70 0.10 Non-Mutagen Mild Mild

Beta-sisterol Single-Carcinogen 0.71 0.03 1.57 0.001 Non-Mutagen Moderate None

Hesperetin Non-Carcinogen 8.66 0.45 0.925 0.07 Non-Mutagen None Mild

Calceolarioside B Non-Carcinogen 2.17 2.62 5.56 0.05 Non-Mutagen Mild Mild

Isoquercetin Non-Carcinogen 4.54 1.75 0.84 0.07 Non-Mutagen None Moderate

Luteolin Non-Carcinogen 140.46 0.83 0.77 0.11 Non-Mutagen None Mild

Vilazadone Non-Carcinogen 0.93 0.13 1.17 0.02 Non-Mutagen None Moderate

Lapatinib Non-Carcinogen 9.62 0.15 2.22 0.01 Non-Mutagen None Mild

XL-888 Non-Carcinogen 0.24 0.08 0.74 0.02 Non-Mutagen None Moderate

Hydroxychloroquine Non-Carcinogen 1.30 0.357 0.20 0.03 Mutagen None Severe

Remdesivir Non-Carcinogen 0.96 0.09 0.27 0.001 Non-Mutagen Mild None

aTumorigenic dose rate 50 TD50 in unit mg/kg body weight
bMaximum tolerated dose MTD in unit g/kg body weight
cMedian lethal dose LD50 in unit g/kg body weight
dLowest observed adverse effect level LOAEL in unit g/kg body weight.

https://doi.org/10.1371/journal.pone.0268454.t005
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Role of these kinases, oxidoreductases, upregulation of DPP4, and inhibition of PI3K/AKT sig-

naling pathway have been highlighted in multiple studies in the treatment of Covid19 [51–53].

Discussion

While the spread of SARS-CoV-2 is inevitable despite the availability of different vaccines [54],

it is imperative to explore every possible treatment to curb this viral disease. Based on viral

studies conducted in clinical trials by the U.S. Food and Drug Administration, 2020, the use of

combination therapy has been highly recommended such as lopinavir, ritonavir in combina-

tion with chloroquine, hydroxychloroquine, and interferon-alpha since they have exhibited

potential in the treatment of SARS-CoV-2 infection [55, 56]. Similarly, the combination ther-

apy with natural products has delivered promising results while targeting the specific stages of

viral life cycle critical for its survival [57, 58]. It is therefore indispensable to expand the treat-

ment options and include medicinal plants in our research.

In the current study, we derived two pharmacophore models 1) a 3D-QSAR pharmaco-

phore model focused on active phytochemicals that have exhibited biological activity (IC50)

against 3CLpro with less or no toxicity, and 2) a common feature pharmacophore model

derived from Senna compounds due to its popularity in India, Pakistan, China, Thailand, Sin-

gapore, South East Asia, and inhabitants of these regions residing in the United States, U.K,

and Europe as Covid19 treatment. The ligand-based pharmacophore models were validated

with FDA compounds in clinical trials for inhibition of main proteases released by the NCATS

Fig 12. Medicinal compounds disease-target-network. Red dots represent the five-screened active phytochemicals

and yellow dots represent the drug targets common between the proposed active phytochemicals and Covid19.

https://doi.org/10.1371/journal.pone.0268454.g012
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[25]. 3D-QSAR pharmacophore model identified HBA, HYD, and RA as common features

from the training set of active phytochemicals and validated with a test set. Whereas, a com-

mon feature pharmacophore model lacked a significant attribute of hydrophobic groups in its

framework that is essential for the bioactivity of 3CLpro [47, 48]. Moreover, the 3D-QSAR

pharmacophore also mapped to the FDA-approved drugs vilazodone and lapatinib from the

test set that are currently in clinical trials for SARS-CoV-2. Vilazodone is a novel anti-depres-

sant and its use in combination with ritonavir and lopinavir that works by affecting the

CYS3A4 is reported to inhibit 3CLpro with IC50 values below 15 μM [59–61]. Whereas; lapati-

nib suppressed the SARS-CoV-2 cytopathic effect and cleaved clustering of N protein in

MRC5 (human pulmonary fibroblast cell line), thus exhibiting the potential to block 3CLpro

[62]. The above results validate the ability of 3D-QSAR pharmacophore to predict the activity

of test ligands as active and inactive. Thus, a 3D-QSAR pharmacophore model comprising all

the fundamental features for 3CLpro activity proved to be superior to the common feature

pharmacophore.

Furthermore, the MD simulations and binding free energy analysis conducted on screened

compounds using 3D-QSAR pharmcophore identified xanthoangelol_E, hesperetin and beta-

sitosterol as promising inhibitors of 3CLpro exhibiting binding energy values of -35.1 kcal/mol,

-26.9 kcal/mol, and -22.3 kcal/mol respectively. Beta-sitosterol displayed hydrophobic interac-

tions with both the chains of a dimer throughout 200 ns probably because of the hydrophobic

constituents in its chemical structures. It is noteworthy that xanthoangelol_E and hesperetin

displayed higher binding energies than beta-sitosterol even though they stayed intact with only

one chain of the dimer. The findings of MD simulations revealed the significance of hydropho-

bic interactions in keeping the ligands intact with a dimer while it has been previously estab-

lished both computationally and experimentally that only one chain of dimer 3CLpro is active

at a time [30]. In agreement with the simulations studies, experimental analysis conducted by

Cheng-Wen Lin et al., 2005 [39] on the inhibitory activity of main proteases also revealed

xanthoangelol_E as the most active compound against 3CLpro and PLpro with IC50 values

(11.4 ± 1.4 μM) and (1.2 ± 0.4 μM) respectively [38]. In another study by Park et al. 2016,

hesperetin and beta-sitosterol were reported to be capable of inhibiting main protease dose-

dependently in both the cell-free and cell-based assays with the IC50 value of 8.3μM and

115 μM, respectively [39]. Keeping in view the scope of this study and capability of these com-

pounds in experimental assays to inhibit both the 3CLpro and PLpro, we also subjected PLpro to

molecular docking followed by 50 ns MD simulations on top complexes (S5 and S6 Tables),

which can be used as a lead to design more specific dual inhibitors in future (S8 Fig). The

structural insights of these compounds might offer clues for development of anti-SARS-CoV-2

drugs and could be used in combination as alternate medicine to prevent Covid19 infection.

In comparison, the secondary metabolites like sennosides A, B, C, and D present in higher

percentage in Senna [12] exhibited instability and weak binding affinity during computational

analysis against 3CLpro. Furthermore, to explore the possibility of binding of Senna com-

pounds with other Covid19 target proteins, we expanded the prospect of our research. The

findings suggested that Senna compounds failed to act as a candidate of high ligand affinity

capable of disrupting contact between the spike protein RBD and ACE2 receptor. Moreover,

these sennoside ligands completely left binding sites of all other targets namely helicase nsp13,

spike-ACE2, and 3CLpro except RdRp nsp12 exhibited in Fig 9, which also resulted in displace-

ment of sennoside with weak binding energy (14.199 kcal/mol). The ADMET and TOPKAT

protocols have also marked few Senna compounds as carcinogens and mutagens after under-

going rat carcinogenicity, TD50, LD50, and LOAEL tests. In conclusion, these findings dis-

credit the use of Senna tea as whole with all its chemical constituents in Covid19 treatment,

which can rather be harmful in the absence of insufficient clinical data.
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However, as an outcome of this work, it is suggested as a matter of general global dissemi-

nation that Senna tea has nothing to do with the killing of the SARS-CoV-2. This unintention-

ally held us responsible for deaths of geriatric patients particularly, via diuresis/dehydration/

kidney failure through overconsumption of Senna tea. Negation of false claim through scien-

tific research is necessary not only to reduce overall burden but at the same time uncertified

facts when disseminated through the electronic and print media, is and can remain a curse

under the situation of deadly pandemic https://twitter.com/i/status/1262403722006724608.

Statements without proper workout from renowned personalities are cherry on top that may

have disastrous impact to an already poverty and/or illiteracy hit regions of the world, which is

avoidable [63]. While our analysis has a limitation of providing a predictive viewpoint of

Senna compounds in the absence of experimental data on this plant, further clinical analysis

should be considered and implemented in the future. Our study hints and thus recommends

that the use of media to propagate any unscientific thought or actions without scientific cura-

tion and clarification must be discouraged worldwide. This also urges the need for a scientific

body from the WHO platform to control the propagation of scientific information in a manner

to prevent a wider community worldwide from spreading unchecked information under the

disguise of scientific nomenclature.
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S1 Table. Small molecule medicinal inhibitors of 3CLpro with reported activity (IC50 val-

ues) against SARS-CoV-2 selected as training set for 3D-QSAR pharmacophore modeling.

(DOCX)

S2 Table. Chemical compounds of Senna alexandrina of Cassia senna and Tinnevelly senna
of Cassia angustifolia used for common feature pharmacophore modeling and molecular

docking.
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S3 Table. Statistical variations of common feature pharmacophore models.
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S4 Table. Complete details of drug target genes corresponding to proposed phytochemi-

cals used in network pharmacological analysis.
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S5 Table. GOLD docking scores of proposed medicinal compounds with additional phyto-

chemicals docked in the active cavity of 3CLpro.

(DOCX)

S6 Table. GOLD docking scores of proposed medicinal compounds with additional phyto-

chemicals docked in the active cavity of PLpro.

(DOCX)

S1 Fig. a) 3D-QSAR pharmacophore exhibits four common features consisting of 1 hydrogen

bond acceptor (HBA), 2 hydrophobic (HYD), and 1 ring aromatic (RA) b) 3D-QSAR pharma-

cophore model with distance between chemical features. c) The most active medicinal com-

pound; xanthoangelol_E from the training set mapped with the highest FitValue of 4.36 d)

The top compound, vilazodone mapped against 3D-QSAR pharmacophore with the highest

FitValue of 3.56 from the test set. e) The second top compound lapitinib with a FitValue of

3.54 mapped against 3D-QSAR pharmacophore from the test set.

(TIF)
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S2 Fig. a) Common feature pharmacophore results of Senna compounds exhibit four com-

mon features consisting of 3 hydrogen bond acceptors (HBA) and 1 ring aromatic (RA) fea-

tures b) Common feature pharmacophore model with distance between chemical features. c)

Isoquercetin mapped the common feature pharmacophore with highest FitValue of 0.99 from

the training set. d) Compound with lowest FitValue.

(TIF)

S3 Fig. Preferred binding mode of active phytochemicals in the binding site of 3CLpro depict-

ing two-dimensional (2D) docked complex with a) Xanthoangelol_E having an IC50 value 11.4

±1.4 μM b) Hesperetin having an IC50 value 8.3 μM c) Beta-sitosterol with an IC50 value

1210 μM.

(TIF)

S4 Fig. Preferred binding mode of active phytochemicals in the binding site of 3CLpro depict-

ing two-dimensional (2D) docked complex with a) Luteolin-7-O-glucopyranoside b) Calceo-

larioside_B c) Isoquercetin.

(TIF)

S5 Fig. Insights into the MD simulations of vizimpro, hesperetin, beta-sitosterol, and

xanthoangelol_E for the time period of 200 ns each complex. a) RMSD in complex with

3CLpro b) Radius of gyration c) RMSF of 3CLpro residues d) Beta-factor.

(TIF)

S6 Fig. Insights into the MD simulations of vizimpro, luteolin, calceolarioside_B, and isoquer-

cetin for the time period of 200 ns each complex a) RMSD in complex with 3CLpro b) Radius

of gyration c) RMSF d) Beta-factor.

(TIF)

S7 Fig. RMSD graphs of extended MD simulations of compounds that exhibited instability

till 200 ns. a) 100 ns of extended MD simulations of xanthoangelol_E b) 200 ns of extended

MD simulations of calceolarioside_B c) 100 ns of extended MD simulations of isoquercetin.

(TIF)

S8 Fig. RMSD of 50 ns MD simulations of corylifol_A and papyriflavonol_A docked at

PLpro active site.

(TIF)
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