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Abstract

Liver performs number of critical physiological functions in human system. Intoxication of

liver leads to accumulation of free radicals that eventually cause damage, fibrosis, cirrhosis

and cancer. Carbon tetrachloride (CCl4) belongs to hepatotoxin is converted to a highly

reactive free radical by cytochrome P450 enzymes that causes liver damage. Plant extracts

derived quercetin has substantial role in hepatoprotection. This study highlights the possible

mechanism by which quercetin plays significant role in hepatoprotection. HPLC analysis

revealed the abundance of quercetin in the fruit extracts of Gynocardia odorata and Dios-

pyros malabarica, were isolated, purified and subjected to liver function analysis on Wistar

rats. Post quercetin treatment improved liver function parameters in the hepatotoxic Wistar

rats by augmenting bilirubin content, SGOT and SGPT activity. Gene expression profile of

quercetin treated rats revealed down regulation of HGF, TIMP1 and MMP2 expressed dur-

ing CCl4 induction. In silico molecular mechanism prediction suggested that quercetin has a

high affinity for cell signaling pathway proteins BCL-2, JAK2 and Cytochrome P450

Cyp2E1, which all play a significant role in CCl4 induced hepatotoxicity. In silico molecular

docking and molecular dynamics simulation have shown that quercetin has a plausible affin-

ity for major signaling proteins in liver. MMGBSA studies have revealed high binding of quer-

cetin (ΔG) -41.48±11.02, -43.53±6.55 and -39.89±5.78 kcal/mol, with BCL-2, JAK2 and

Cyp2E1, respectively which led to better stability of the quercetin bound protein complexes.

Therefore, quercetin can act as potent inhibitor against CCl4 induced hepatic injury by regu-

lating BCL-2, JAK2 and Cyp2E1.
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Introduction

Liver plays a crucial role in the detoxification of xenobiotic compounds, toxins, and chemo-

therapeutic drugs alongside its usual function of metabolism, secretion, and storage. Carbon

tetrachloride (CCl4), a potent hepatotoxin, is activated by the enzyme cytochrome P450 in

endoplasmic reticulum. It causes the synthesis of highly reactive free radical products followed

by lipid peroxidation in liver [1]. Hepatic tissue injury is instigated by those free radical deriva-

tives mediated by lipid peroxidation [1]. The liver microsomal cytochrome P450 interceded

lipid peroxidation and tissue damage by trichloromethyl free radicals are well established facts

[2–4]. In addition, many cell signal-transducing proteins as well as major transcription activa-

tor elements e.g., SATA3, JAK2 (Janus Kinase 2), and BCL-2 (B-cell lymphoma-2) etc. are

upregulated by CCl4 resulting in hepatotoxic effects [5]. CCl4-induced hepatotoxicity, on the

other hand, exhibited apoptotic response declination by increasing BCL-2 (B-cell lymphoma-

2) related putative X protein and downregulating apoptotic regulator BCL-2; thus, BCL-2 was

demonstrated to be a key role on regulatory pathway in cancer development [6].

Medicinal plants have traditionally been used to cure several diseases, including liver disorders,

without causing much toxic side effects. Numerous plants have been investigated hitherto against

liver toxicity ailments. A few that have extensively been used includes Camellia sinensis, Picrorhiza
kurroa, Glycyrrhiza glabra, Silybum marianum and Curcuma longa etc. [7–9]. The antioxidants pres-

ent in medicinal plants may cure different diseases by offering cytoprotection from damage caused

by free radicals, the highly reactive oxygen compounds [6]. Analogous to Braviscarpin’s crude flavo-

noid, natural flavonoids have been widely employed for the treatment of hepatotoxicity, as in the case

of reversing the change in JAK2, BCL-2, and SATA3 [6]. A polymethoxy flavonoid has recently been

reported to have anti-inflammatory and immunomodulatory action in enhancing BCL-2 to lower

the effect of CCL4-induced hepatotoxicity [10]. Silybum marianum derivedcompound, silymarin, has

profound antioxidant and hepatoprotective activity as it inhibits the free radical induced liver toxicity

produced from CCl4, acetaminophen and ethanol [11]. In another report, Mahli and coworkers

investigated the potent hepatoprotective activity of silymarin in rats having acute liver injury [1].

Quercetin, an important dietary flavonoid has a wide range of health benefits, including anti-

oxidative, anti-inflammatory, and anti-apoptotic attributes [12]. Quercetin has been shown to

present in many plants and this flavonoid has been shown to protect cells against oxidative stress

caused by xenobiotics [13, 14]. Furthermore, quercetin has been shown to protect liver from hepa-

totoxin-induced damage [15]. Due to its antioxidant properties in addition to hepatoprotective

action, bark extract of Diospyros malabarica (Ders.) Kostel has been reported to possess a wide

range of therapeutic applications. [16] The seed extracts of Gynocardia odorata R. Br. hasbeen

used traditionally as anti-diabetic and antiulcer agent. For instance, phytoconstituents from

methanolic extract of Gynocardia odorata R.Br. were reported to encompass many antidiabetic,

anti-inflammatory and hepatoprotective compounds [17]. Diospyros malabarica and Gynocardia
odorata has been reported to contain quercetin [18]. Owing to high importance and usefulness of

these two medicinal plants, the present investigation has centered on the evaluation of quercetin

responsible for hepatoprotective efficacy from the fruit extracts of Diospyros malabarica and

Gynocardia odorata and understanding the possible mechanistic role in hepatoprotection.

Materials and methods

Chemicals

Methanol, DPPH, Ascorbic acid, Gallic acid, Hydrogen peroxide, and CCl4 were procured

from HiMedia Pvt. Ltd., India. RNA isolation kit and cDNA synthesis kit were procured from

Life Technologies, India.
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Collection of plant material and extract preparation

The fruits of D. malabarica and G. odorata were procured from the province of Nilachal hill,

Kamrup, Assam, India (26˚1100@N 91˚4400@E). Fruits were rinsed thoroughly with distilled

water, carved, dried, powdered and stored at 4˚C for further analysis. The collected plants

were subjected to harbarium preparation and followed by identification at GUBH, the Dept. of

Botany, Gauhati University, Assam, India. Nevertheless, accession numbers were assigned to

the individual plants as D. malabarica (Acc. No. 18071 dt.04.11.2015) and G. odorata (Ac.No.

18072dt.04.11.2015).

Qualitative and quantitative estimation of phytochemicals

Methanolic extract (70% v/v) of fruit samples of D. malabarica and G. odorata were prepared

to estimate the phytochemicals such as flavonoids, tannins, saponins and alkaloids qualitatively

as described earlier by Trease and Evans [19]. Bio-macromolecules viz. total protein, total car-

bohydrates present in the fruit extracts were estimated as per Lowry’s method and Anthrone

method, respectively [20, 21]. The presence of ascorbic acid in the fruit extract was measured

in 4% oxalic acid by titrating against the 2,6-dichlorophenolindophenoldye until pink color

appeared for confirmation. Folin-Ciocalteau’s approach was used to determine the total phe-

nol contents in the fruit extract [22]. In-vitro antioxidant activities of quercetin and histopath-

ological studies of liver were performed, and details incorporated in the S1 File.

HPLC analysis of plant extracts

Quercetin (QR), a polyphenolic flavonoid compound, is found in large amounts in fruit

extracts derived from plants, which protects against oxidative stress and hepatotoxicity [23].

The abundance of quercetin as an active component in the fruit extracts of D. malabarica and

G. odorata, was determined using HPLC (SYS-LC-138, Systronics, India). A mobile phase was

preparedusing a mixture of 0.1% (v/v) methanol and (65:35%, v/v) ortho-phosphoric acid. The

adjusted flow rate of mobile phase was 1.0 ml/min in the column (4.6 mm × 250 mm × 5μM,

HiQ Sil C18-HS) and temperature maintained at 28˚C, while the injection volume was kept at

20 μL. An isocratic elution was carried out per sample for 15 min.

Animals

A total of 30 Wistar albino rats (either sex) (8 to 12 weeks old), weighing from 100 g to 120 g

were used in this study. The rats were kept in animal house of Gauhati University and acute

oral toxicity OECD/OCED (423) guideline for the testing of selected plant samples (OECD/

OCED (423) was followed in cages (6 Wistar albino rats per group/3 male and 3 female) under

normal laboratory condition of humidity, temperature (22–25 oC) and light (12/12 hour light

dark cycle.) [24]. Animal models were fed with Normal pellet diet.

Ethics statement. All procedures performed in studies involving animal models were in

accordance with the ethical standards of the institutional ethics committee (Animal ethical

committee, Gauhati University, Ref. No. IAEC/PER/2014-2015/01; 08/05/2015).

Experimental design

Acute toxicity study for purified flavonoid quercetin from the fruits extracts of Diospyros mala-
barica and Gynocardia odorata was carried out as per the OECD guidelines for testing chemi-

cals [24]. The Wistar rats received doses of methanolic extracts of the fruits orally which was

prepared one day prior to oral dose in various concentrations viz: 50, 100, 200, 500, 1000, 1500

and 2000 mg/kg body weight of the animals respectively. Animal lay-up conditions (described
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in the previous section) were maintained at least for 7 days prior to dosing with free access to

water and food ad libitum for acclimatization to the laboratory conditions. Five groups (A-E)

of 6 rats each of either sex were used for the CCl4-induced hepatotoxicity model. CCl4 (10% in

liquid paraffin, 1 mL/kg per day for seven consecutive days) was administered orally to induce

liver injury in the four groups (B-E) [4]. 200 mg/kg body weight each of D. malabarica, G.

odorata, and Silymarin were administered orally to these groups of animals at 2, 24 and 48 h

interval after the administration of the last dose of CCl4 (Table 1).Two hours after the final

dose of extracts, Silymarin and saline water, all the animals were sacrificed.

The resulting body weight after fasting of each animal was determined and the dose is cal-

culated according to the body weight. Food was withdrawn for next 3–4 hours in rats after the

extract has been administered. The animals were observed for toxic symptoms continuously

for the first 4 hours after dosing followed by their mortality and behavioral response for 48

hours. This observation was followed daily for a total of 14 days. Individual weights of animals

were determined before the fruit extracts were administered. Change in body weight was cal-

culated and recorded each day. From the collected blood samples, serum was tested for liver

markers such as total protein (TP), albumin (Alb), globulin (Glob), total bilirubin, SGOT,

SGPT, etc. Invitro antioxidant activity of fruit extracts and the histopathological studies were

performed and details have been given in S1 File.

Gene expression profiling and real time PCR analysis

Expression profiling of gene markers i.e., hepatocyte growth factor (HGF), metalloproteinase

tissue inhibitor (TIMP1) and Matrix metalloproteinase (MMP2) were carried out from the

extracted liver of different groups of experimental rats. RNA was extracted using QIAamp

RNA Blood Mini Kit from the frozen liver as suggested by the manufacturer. RNA quantifica-

tion for purity was analyzed using a spectrophotometer (Cary50, Agilent, Germany) and fol-

lowed by cDNA synthesis following similar methods employed elsewhere [17]. Two

endogenous housekeeping genes, hypoxanthine peptidylprolyl isomerase A (Ppia) and phos-

phoribosyltransferase 1 (Hprt1) were used to compare the relative amount of the transcripts in

all groups [25].

Molecular redocking for validation of docking score

Liver cytochrome P450 2E1 (Cyp2E1) belongs to the family of cytochrome P450 enzyme that

plays a vital role in toxin, alcohol, drug, lipid, and carcinogen metabolism [26]. Molecular

docking studies were carried out between the target protein Cyp2E1, silymarin and quercetin.

The three-dimensional coordinates of Cyp2E1 X-ray 1.8 Å
´

resolution in pdb format was

Table 1. Experimental design in five different groups of rats including control, silymarin and plant extracts of D.

malabarica and G. odorata.

Name of

Groups

No. of rats in each

group

Details of group Treatment details

GROUP A 6 Negative

control

Normal saline water

GROUP B 6 Negative

control

CCl4

GROUP C 6 Positive control CCl4 + Silymarin (200 mg/kg body weight)

GROUP D 6 Treatment

group

CCl4 + quercetin D. malabarica (200 mg/kg body

weight)

GROUP E 6 Treatment

group

CCl4 + quercetin G. odorata (200 mg/kg body

weight)

https://doi.org/10.1371/journal.pone.0263917.t001
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downloaded from RCSB PDB repository (PDB ID: 3T3Z). Two other major cell signaling pro-

teins JAK2 and BCL-2 were also investigated for understanding the mechanism of quercetin

action. The coordinate files for JAK2 (PDB ID: 2B7A) with atomic resolution 2.00 Å and for

BCL-2 (PDB ID: 4IEH) atomic resolution 2.10 Å were fetched from protein databank for fur-

ther analysis. 3D structures of quercetin and silymarin were procured from public database

pubchem (https://pubchem.ncbi.nlm.nih.gov/compound/quercetin#section=Top) in SDF format

and subsequently converted in pdb format using OpenBabel 2.2.3 [27]. Autodock version v

4.2.1 was used for the molecular docking studies. During molecular docking studies, three rep-

licates were performed having the total number of solutions computed 50 in each case, with

population size 500, number of evaluations 2500000, maximum number of generations 27000

and rest the default parameters were allowed. After docking, the RMSD clustering maps were

obtained by re-clustering with a clustering tolerance 0.5 Å,1 Å and 2 Å, respectively, in order

to obtain the best cluster having lowest energy score with high number of populations.

In order to obtain accurate binding affinities for quercetin QM-Polarized Ligand Docking

(QPLD) was performed using Schrodinger 2018–4 package (https://www.schrodinger.com/qm-
polarized-ligand-docking). Quantum mechanics ligand docking gave accurate treatment of

electrostatic charges to quercetin to avoid charge polarization induced by the Cyp2E1, BCL-2

and JAK2 environment. QPLD combines the docking power of Glide with the accuracy of

QSite in QM/MM software. To perform QM docking, glide docking was executed within a

grid size of (nx, ny, nz) Å = (200, 208, 200) for Cyp2E1, Å = (69, 80, 65) for BCL-2 and Å =

(81, 98, 76) for JAK2 proteins followed by addition of QM charges using Jaguar tool embedded

in the Schrodinger 2018–4 package. Then redocking was performed in high precision with an

approximate ligand van der Waals spacing 0.8 Å and maximum atomic displacement 1.3 Å. A

maximum of 10 ligand docking poses were generated with RMS deviation 0.5 Å.

Molecular dynamics simulation (MD) and free energy landscape analysis

The MD simulations studies were carried out in triplicate on the QPLD dock complexes for

BCL-2, JAK2 and Cyp2E1 with quercetin using the Desmond 2020.1 from Schrödinger, LLC.

The triplicate samplings were made using same parameters for each MD run in order to obtain

reproducibility of the results. The OPLS-2005 force field [28–30] and explicit solvent model

with the SPC water molecules were used in this system [31]. Na+ ions were added to neutralize

the charge. 0.15 M, NaCl solution was added to the system to simulate the physiological envi-

ronment. Initially, the system was equilibrated using NVT ensemble for 100 ps to retrainover

the protein-quercetin complex. Following this step, a short run of equilibration and minimiza-

tion were carried out using NPT ensemble for 12 ps.The NPTensemble was set up using the

Nose-Hoover chain coupling scheme [32] with temperature at 27˚C, the relaxation time of 1.0

ps and pressure 1 bar maintained throughout the simulations. A time step of 2 fs was used.

The Martyna-Tuckerman–Klein chain coupling scheme [33] barostat method was used for

pressure control with a relaxation time of 2 ps. The particle mesh Ewald method [34] was used

for calculating long-range electrostatic interactions, and the radius for the coulomb interac-

tions were fixed at 9Å. RESPA integrator was used for a time step of 2 fs for each trajectory to

calculate the bonded forces. The root means square deviation (RMSD), radius of gyration

(Rg), root mean square fluctuation (RMSF) and number of hydrogen (H-bonds) were

calculated to monitor the stability of the MD simulations. Free energy landscape of protein

folding on quercetin bound complex was measured using geo_measures v 0.8 [35]. Geo_mea-

sures include powerful library of g_sham and form the MD trajectory against RMSD and

radius of gyration (Rg) energy profile of folding recorded in a 3D plot using matplotlib python

package.
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Molecular Mechanics Generalized Born and Surface Area (MMGBSA)

calculations

The binding free energy (ΔGbind) of the docked complexes during MD simulations of BCL-2,

JAK2 and Cyp2E1 complexed with quercetin were estimated using the molecular mechanics

generalized born surface area (MMGBSA) module (Schrodinger suite, LLC, New York, NY,

2017–4). The OPLS 2005 force field, VSGB solvent model, and rotamer search algorithms

were used to define the binding free energy during the calculation [36]. The MD trajectories

frameswere selected at each 10 ns interval after MD run. The Eq 1 was used to calculate the

total free energy binding:

DGbind ¼ Gcomplex � ðGproteinþ GligandÞ ð1Þ

Where, ΔGbind = binding free energy, Gcomplex = free energy of the complex,

Gprotein = free energy of the target protein, and Gligand = free energy of the ligand. The

MMGBSA outcome trajectories were analyzed further for post dynamics structure

modifications.

Dynamic cross correlation and principal component (PCA) analysis

In order to analyze the domain correlations, dynamic cross correlation matrix (DCCM)was

generated across all Cα-atoms for all the complexes during the MD simulation of 100 ns. PCA

analysis was performed to extract the global motions of the trajectories during 100 ns simula-

tion of BCL-2, JAK2 and Cyp2E1 complexed with quercetin. A covariance matrix was gener-

ated to calculate the PCA as described elsewhere [37]. 20 different conformational modes of

principal component as the motion of trajectories were calculated and a comparison of first

highest mode (PC1), with PC2, PC3 and PC20 analyzed for conformational analysis of the

quercetin bound complex. Free energy landscape of protein folding on quercetin bound com-

plex was measured using geo_measures v 0.8 [35]. Geo_measures include powerful library of

g_sham and form the MD trajectory PC1, PC2, PC3 and PC20 mode were recorded in a 3D

plot using matplotlib python package.

Results

Screening of phytochemicals in the fruit extracts of D. malabarica and G.

odorata
The active phytochemicals screening in qualitative analysis revealed that the methanolic fruit

extracts of D. malabarica and G. odorata were well endowedwith flavonoids, tannins, saponins,

ascorbic acid and alkaloids. The other biochemicals were determined quantitatively: carbohy-

drate (%, w/v) 8.56 ± 0.20 and 9.25 ± 0.38, protein (%, w/v) 4.77 ± 0.17 and 3.52 ± 0.24, signifi-

cant quantities of phenolic content (μg GAE/mg) 223.5 ± 0.26 and 206.14 ± 0.52 and ascorbic

acid content (mg/100g) 55.57 ± 0.75 and 42.66 ± 0.83.

HPLC analysis of plant extracts

HPLC analysis of Diospyros malabarica and Gynocordia odorata fruit extracts displayed the

abundance of a peak at retention time 1.512 minute (Fig 1A and 1C) which corroborated with

the standard quercetin exhibiting retention time at 1.513 minutes (Fig 1B). The purified frac-

tion of quercetin was collected using a fraction collector (FRC-10A, Shimadzu, Japan) and the

fractions were pulled into a final concentration of 25μg/mL. Purity of the extracted quercetin

from fruit extracts were determined by comparing with the standard Quercetin in HPLC.
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Hence, quercetin is one of the abundant bioactive molecules present in the D. malabarica and

G. odorata fruit extracts which might possesses the hepatoprotective activity.

Liver function analysis

Experimentally designed groups of Wistar rats were observed continuously for any abnormali-

ties as a result of toxicity such as writhing, gasping, palpitation and respiratory rate, or mortal-

ity. The liver function analysis is displayed in Table 2. Histopathology study was explained in

detail in S1 File. The oral dose of Diospyros malabarica and Gynocordia odorata fruit extracts

did not display any mortality neither showed any signs of toxicity at an applied dose 2000 mg/

kg body weight. The effect of fruit extracts from Diospyros malabarica and Gynocordia odorata
displayed lowering of bilirubin 0.41±0.007 g/dl and 0.45±0.005, SGOT 127.25±2.02 and 132.15

±2.17 U/mL, SGPT 83.58±1.78 and 87.82±1.56 U/mL, respectively, as compared to the

Fig 1. HPLC profile with retention time of quercetin compound from fruit extracts of (A) Diospyros malabarica and

(C) Gynocordia odorata fruit extracts. (B) Profile of standard quercetin molecule. (D) Gene expression profile in real

time PCR of quercetin on Group D and E rats.

https://doi.org/10.1371/journal.pone.0263917.g001

Table 2. Effects of methanolic extract from Diospyros malabarica and Gynocardia odorata on liver Total protein, Albumin, Globulin, Total bilirubin, SGOT and

SGPT on CCl4 induced hepatotoxicity in rats.

Groups Total protein

(g/dL)

Albumin

(g/dL)

Globulin (g/dL) Total bilirubin (g/dL) SGOT (U/mL) SGPT(U/mL)

Control 6.84±0.14 3.95±0.37 3.28±0.14 0.26±0.014 80.64±1.22 41.98 ±1.60

CCl4 treated (1mL/kg) 5.36±0.12 2.62±0.22 2.60±0.06 0.69±0.009 189.20±3.95 102.42±1.59

CCl4 + Silymarin (200 mg/kg) 6.47±0.06 3.28±0.10 3.19±0.06 0.32±0.004 109.12±1.51 69.54±2.01

CCl4+ quercetin D. malabarica (200 mg/kg) 6.16±0.26 3.12±0.06 3.00±0.26 0.41±0.007 127.25±2.02 83.58±1.78

CCl4+ quercetin G. odorata (200 mg/kg) 5.94±0.31 2.98±0.08 3.13±0.21 0.45±0.005 132.15±2.17 87.82±1.56

https://doi.org/10.1371/journal.pone.0263917.t002
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hepatotoxic rats treated with CCl4 and the results were quite comparable with silymarin

treated rats. In some cases, e.g., the quantities of SGPT and SGOT, in fact,were comparatively

lower than the commercial drug silymarin treated rats. On the other hand, quantities of total

protein, albumin and globulin did not show much significant variance among the control and

treated groups (Table 2). Significant free radical scavenging activities of quercetin present in

Diospyros malabarica and Gynocordia odorata fruit extracts against DPPH and H2O2 were also

observed (S1 File). Histopathological studies of rat liver displayed the ameliorating pattern

after treatment with quercetin containing Diospyros malabarica and Gynocordia odorata fruit

extracts (S1 File).

Gene expression profiling

Integrity of RNA. The 260/280 ratio for the RNA isolated from the liver tissue samples

ranged from 2.08–2.14 suggesting good quality RNA (Table ST3 in S2 File). The integrity of

RNA was checked on agarose gel showing discrete 28S and 18S ribosomal RNA band on each

sample suggesting that the RNA in each case was intact and could be used for qPCR analysis

(Fig S3 in S2 File).

Real time PCR analysis

In the qPCR analysis, high expression of genes, hepatocyte growth factor (HGF), the tissue

inhibitors metalloproteinase (TIMP1) and Matrix metalloproteinase (MMP2) from the liver

tissue of animal models were observed in the CCl4 treated animals (Group B) (Fig 1D). In con-

trast, down regulation of these were noted for positive control (Group C), treated with com-

mercial drug silymarin as well as in the Group D treated with quercetin obtained from D.

malabarica and G. odorata (Group E) (Fig 1D). Hprt1 and Ppia were used as housekeeping

genes for this study. The qPCR outcome was examined using the students t-test (P< = 0.05)

(Group B versus other groups individually).

Molecular redocking for validation of docking score

In molecular docking analysis of BCL-2, JAK2 and Cytochrome P450 Cyp2E1 with the ligand

quercetin in Autodock output, the best conformation was displayed in a dock complex

(Table 3). The best dock pose was seleccted based on low RMSD tolerance 0.5 Å and binding

energy having maximum within that RMSD cluster. BCL-2-quercetin complex showed free

energy of binding (Δ;G) -8.7 kcal/mol, inhibitory concentration 5.06 μM, ligand efficiency

-0.5, total internal energy -3.1 kJ/mol, and tortional energy 1.25 kJ/mol. The principal residues

making the binding pocket around quercetin is comprised of Phe97, Tyr101, Phe105, Leu108,

Glu129, Leu130, Asp133, Arg139, Ala142, Ser145 (Fig 2A). On the other hand, JAK2-quercetin

complex displayed free energy of binding (Δ;G) -8.8 kcal/mol, inhibitory concentration

1.14 μM, ligand efficiency -0.11, total internal energy -4.1 kJ/mol, and tortional energy 0.72 kJ/

Table 3. Binding energy properties of BCL-2, JAK2 and Cyp2E1 with quercetin in docking and redocking in QPLD.

Quercetin docked

with

ΔGbind (kcal/

mol)

ΔGbind(QPLD) (kcal/

mol)

Ki

(μM)

Residues at the binding site cavity

BCL -8.7 -11.41 5.06 Phe97, Tyr101, Phe105, Leu108, Glu129, Leu130, Asp133, Arg139, Ala142, Ser145

JAK -8.8 -12.02 1.14 Leu828, Gly829, Phe833, Lys855, Glu871, Leu900, Met902, Tyr904, Leu905, Gly908,

Cys909, Arg953, Asn954, Asp967

Cyp2E1 -6.05 -8.71 22.01 Leu313, Met316, Pro462, Leu463, Val464, Asp468, ILE469, Asp470, Pro483, Tyr485,

Lys486

https://doi.org/10.1371/journal.pone.0263917.t003
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mol. Residues conforming the quercetin binding pocket are Leu828, Gly829, Phe833, Lys855,

Glu871, Leu900, Met902, Tyr904, Leu905, Gly908, Cys909, Arg953, Asn954, Asp967, however,

Glu871 and Arg953 involved in forming conventional hydrogen bonds (Fig 2B).

The quercetin bound to Cyp2E1 with convincing binding energy (Δ;G) -6.05 kcal/mol,

inhibitory concentration (Ki) 22.01 μM, ligand efficiency -0.29, total internal energy -1.8 kJ/

mol and tortional energy 2.09 KJ/mol. Quercetin (ligand) in the Cyp2E1 complex exhibited

Leu313, Met316, Pro462, Leu463, Val464, Asp468, ILE469, Asp470, Pro483, Tyr485, Lys486

are major amino acid residues involved in the formation of binding cavity (Fig 2C). However,

Leu463, Asp470 and Lys486 were involved in conventional hydrogen bonds (Fig 2C, right

panel 2D plot). The quercetin-BCL-2, JAK2 and Cyp2E1 complex docking energies were recal-

culated using glide, QPLD with QM and MM optimized redocking following extra precision

protocol (XP) showed -11.41, -12.0 and -8.71 kcal/mol binding free energies at the same bind-

ing site used in Autodock tool, respectively. Therefore, validated docking scores confirmed sig-

nificant binding of quercetin with diverse liver targets involved in cell signaling. Binding

energies suggested that quercetin has good affinity for the target proteins BCL-2, JAK2 and

Cyp2E1.

Molecular dynamics simulation (MD) and free energy landscape analysis

Molecular dynamics and simulation (MD) studies were carried out to determine the stability

and convergence of quercetin bound protein complexes. Each simulation of 100 ns displayed

stable conformation while comparing the root mean square deviation (RMSD) values. The

Cα-backbone of BCL-2 bound to quercetin exhibited a deviation of 1.1 Å (Fig 3A), while JAK2

Fig 2. Best docked pose of quercetin with (A) BCL-2, (B) JAK2 and (C) Cytochrome P450 Cyp2E1 displaying 2D

interaction plot on the left panel. Green dashed lines indicating the conventional hydrogen bonds and residues

embedded in light green sphere indicating to involve in hydrophobic interactions. On the center panel, surface view of

(A) BCL-2, (B) JAK2 and (C) Cytochrome P450 Cyp2E1 displaying binding cavity of quercetin and right panel

displaying the zoomed out binding pocket having amino acid residues at 3Å surrounding the quercetin molecule.

https://doi.org/10.1371/journal.pone.0263917.g002
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Fig 3. Analysis of MD simulation trajectories for 100 ns. RMSD plots displaying the molecular vibrations of Cα
backbone of (A) BCL-2 (B) JAK2 and (C) Cyp2E1. Radius of gyration plots for the deduction of compactness of

protein (D) BCL-2, (E) JAK2 and (F) Cyp2E1. RMSF plots showing the fluctuations of respective amino acids

throughout the simulation time 100 ns for (G) BCL-2, (H) JAK2 and (I) Cyp2E1. Number of Hydrogen bonds formed

during the course of simulation between quercetin and (J) BCL-2, (K) JAK2 and (L) Cyp2E1. 2D interaction plot of

post simulation time between the quercetin and (M) BCL-2 (N) JAK2 and (O) Cyp2E1. Free Energy Landscape

displaying the achievement of global minima (ΔG, kj/mol) of (P) BCl-2 (Q) JAK2 and (R) Cyp2E1 in presence of

quercetin with respect to their RMSD (Å) and radius of gyration (Rg, Å).

https://doi.org/10.1371/journal.pone.0263917.g003
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displayed comparatively stable 0.5 Å deviation (Fig 3B). On the other hand, Cα-backbone of

Cyp2E1 displayed more RMS deviation as compared to BCL-2 and JAK2 with 1.5 Å fluctua-

tion (Fig 3C). RMSD plots are within the acceptable range signifying the stability of proteins in

the quercetin bound state before and after simulation.It can also be suggested that quercetin

bound BCL-2, JAK2 and Cyp2E1 are quite stable in complex due to higher affinity of the

ligand. Radius of gyration is the measure of compactness of the protein. Here in this study,

BCL-2 backbone displayed less fluctuating radius of gyration (Rg) initially till 80 ns of simula-

tion while later upto 100 ns became stable (Fig 3D). JAK2 backbone displayed the lowering of

Rg till 85 ns but later went up to regain the compactness of the protein (Fig 3E). On the other

hand, stable Rg observed in case of Cyp2E1 except a deep angle at 45 ns which has regained its

shape thereafter and thus confirming significant compactness of the protein in quercetin

bound state (Fig 3F). The overall quality analysis from RMSD and Rg it can be suggested that

quercetin bound to the protein targets posthumously in the binding cavities and played a sig-

nificant role in stability of the proteins. The plots for root mean square fluctuations (RMSF)

displayed significant spike of fluctuation (7 Å) of amino acid residues Gln26 and Val30 in

BCL-2 protein while the rest of the residues less fluctuating during the entire100 ns simulation

(Fig 3G). RMSF plot of JAK2 displayed less fluctuation of residues of 3–4 Å indicating the sta-

ble amino acid conformations during the simulation time (Fig 3H). Cyp2E1 displayed signifi-

cant amino acid fluctuations from Trp214 to Tyr274 residues while the rest of the residues

were less fluctuating (Fig 3I). Therefore, for RMSF plots it can be suggested that the proteins

structures were stable during simulation in quercetin bound conformation. Quercetin formed

single conventional hydrogen bond with Ser145 of BCL-2 protein at a frequency of 38%

throughout simulation time. While water bridges, pi-pi and hydrophobic interactions also

helped to form stable complex (Fig 3J). Quercetin bound to JAK2 with significant numbers of

conventional hydrogen bonds as displayed in 2D interaction plot (Fig 3K). Glu871, Arg953

and Asp967 are the key residues in JAK2 protein formed hydrogen conventional hydrogen

bonds at a frequency 95%, 62% and 33%, respectively with quercetin. On the other hand, quer-

cetin formed hydrogen bonds with Leu463 with 50%, Asp470 with 35% and couple of hydro-

gen bonds with Lys486 via–OH groups of quercetin with frequencies 86% and 47%

throughout the 100 ns simulation time (Fig 3L).The non-bonded interactions played critical

role in quercetin and protein complex integrity. Quercetin formed an average of single hydro-

gen bond with BCL-2 (Fig 3M) whereas with JAK2 confined to average 3 hydrogen bonds (Fig

3N). While Cyp2E1 displayed conventional hydrogen bond with Asp470 and Lys486 (Fig 3O).

The 2D quercetin and binding cavity residues interaction plots displayed good agreements

with the outcome of hydrogen bonds formation.

The free energy landscape of (FEL) of achieving global minima of Cα backbone atoms of

proteins with respect to RMSD and radius of gyration (Rg) are displayed in Fig 3. BCL-2

bound to quercetin achieved the global minima (lowest free energy state) at 2.75 Å and Rg

14.65 Å (Fig 3P). The FEL envisaged for deterministic behaviour of BCL-2 to lowest energy

state owing to its high stability and best conformation at quercetin bound state. While one the

other hand, JAK2 Cα backbone atoms conformed into lowest energy state at RMSD 3.4 Å and

Rg 19.8 Å to achieve global minima and stable state (Fig 3Q). Similarly, Cyp2E1 exhibited

global minima state at 3.5 Å andRg 22.9 Å (Fig 3R). FEL is the indicator of the protein folding

to attain minimum energy state and that aptly achieved due to quercetin bound state.

The energy profiles of the protein quercetin complex systems were determined to display

the stability of the entire system. In this regard, the total energy (ETOT) of the BCL-2 querce-

tin system shownto be very stable with an average total energy -45 kcal/mol (Fig 4A, red).

However, van der Waal’s energy (vdW) displayed to be merged over the total energy with an

average energy -35 kcal/mol, contemplating as principal contributor to the stability of the
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BCL-2 quercetin complex (Fig 4A, green). In addition, coulombic interactions played minor

role in the system stability and contributing an average energy -5.0 kcal/mol (Fig 4A, blue).

Energy profile of JAK2-quercetin complex displayed an average of -40 kcal/mol of ETOT (Fig

4B, red), while vdW energy contributed -25 kcal/mol (Fig 4B, green) and coulombic interac-

tion -10 kcal/mol (Fig 4B, blue). Similar behavior was also observed in case of Cyp2E1 bound

quercetin system where average ETOT was measured to be -65 kcal/mol (Fig 4C, red), and

contributing vdW (Fig 4C, green) and coulombic energies (Fig 4C, blue) were -22 kcal/mol

and -30 kcal/mol, respectively. The high negative values indicating lowest potential energy in

the individual systems to achieve global minima of protein-quercetin complex.

Molecular Mechanics Generalized Born and Surface Area

(MMGBSA) calculations

MMGBSA is a popular method in calculating the binding energy of ligand to protein mole-

cules. The estimation of the binding free energy of each of the protein-quercetin complexes, as

well as the role of other non-bonded interactions energies were estimated. It is evidenced from

Table 4, the binding free energy (ΔGbind) of proteins BCL-2, JAK2 and Cyp2E1 and quercetin

complex, The average binding energy of the ligand quercetin with BCL-2-41.48±11.02 kcal/

mol, while with JAK2–43.53±6.55 kcal/mol and with Cyp2E1–39.89±5.78 kcal/mol. The

ΔGbind is influenced by of various types of non-bonded interactions, including ΔGbind

Fig 4. Energy plot of protein (A) BCL-2 (B) JAK2 and (C) Cyp2E1 and quercetin complex system during the entire

simulation event of 100 ns. The total energy (red), van der Waal’s energy (green) and coulomb energy (blue) of the

entire system indicating the stability of the individual systems bound to quercetin molecule.

https://doi.org/10.1371/journal.pone.0263917.g004
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Coulomb, ΔGbindCovalent, ΔGbindHbond, ΔGbindLipo, ΔGbindSolvGB and ΔGbindvdW

interactions. Among all the types of interactions ΔGbindvdW, ΔGbindLipo and ΔGbindCou-

lomb energies contributed most to achieve the average binding energy. In contrast, ΔGbind-

SolvGB and ΔGbindCovalent energies contributed the lowest to attain the final average

binding energies. In addition, the values of ΔGbindHbond interaction of quercetin protein

complexes showed the stable hydrogen bonds with the amino acid residues. In all the com-

plexes ΔGbindSolvGB and ΔGbindCovalent showed unfavorable energy contributions and

thus opposed binding. It is observed from Fig 5A (left panel), at pre-simulation (0 ns) querce-

tin at the binding pocket of BCL-2 undergone substantial angular movement of the pose

(curved to straight) after post simulation (100 ns) (Fig 5A, right panel). However, in JAK2

binding cavity, the ligand quercetin during pre-simulation was quite flat (Fig 4B, left panel)

but later after post-simulation (at 100 ns) observed to be change in the tortional angles with an

opened conformation facing toward the pocket (Fig 5B, right panel). On the other hand,

Cyp2E1 bound quercetin displayed relative movement form initial position 0 ns to final 100 ns

trajectory (Fig 5C, right and left panel). These conformational changes consequences the better

acquisition at the binding pocket as well as the interaction with the residues for higher stability

and better binding energy.

Thus MMGBSA calculations resulted, from MD simulation trajectories well corroborated

with the binding energies calculated from the docking results. Therefore, it can be suggested

that the quercetin molecule has good affinity for the major targets BCL-2, JAK2 and Cyp2E1.

The MMGBSA trajectories displayed the conformational changes in the quercetin to achieve

the best fitting in the binding cavity of the protein.

Dynamic cross correlation and principal component (PCA) analysis

MD simulation trajectories are analysed for dynamic cross correlation among the domains

within protein chains bound with quercetin molecule. For correlative dynamic motion, the

cross correlation matrices of BCL-2, JAK2 and Cyp2E1 were generated and displayed in Fig 6.

The blue blocks displayed in the plot indicated the residues having high correlated movement

and red having least correlation. The amino acid residues of quercetin bound BCL-2 showed

concerted movement of residues (Fig 6A) coformed into a α-helix (5–25, red), residues 82–122

(green) conformed into two α-helices and 125–135 conformed into partial α-helix and loop

(magenta) (Fig 6A). On the other hand, quercetin bound JAK2 diplayed 92–150 residues

highly correlated movement and conformed into a loop (red) (Fig 6B). However, quercetin

bound Cyp2E1 displayed small blocks of correlated motion from residues 1–50, 80–100, 382–

Table 4. Binding energy calculation of quercetin with BCL-2, JAK2 and Cyp2E1 and non-bonded interaction

energies from MMGBSA trajectories.

Energies (kcal/mol)� BCL-2 JAK2 Cyp2E1

ΔGbind -41.48±11.02 -43.53±6.55 -39.89±5.78

ΔGbindLipo -9.20±1.02 -9.98±0.76 -9.90±0.75

ΔGbindvdW -35.97±5.77 -37.49±3.34 -26.91±1.28

ΔGbindCoulomb -8.48±3.64 -16.97±4.73 -12.32±4.24

ΔGbindHbond -0.92±0.65 -2.15±0.42 -2.10±0.55

ΔGbindSolvGB 15.48±5.63 23.14±2.37 8.10±1.52

ΔGbindCovalent 0.73±0.20 1.88±0.47 3.28±0.87

�Results are calculated in mean ± SD.

https://doi.org/10.1371/journal.pone.0263917.t004
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385 (Fig 6C) conformed into loop (red), α-helix (green) and a helical turn (magenta), respec-

tively (Fig 6C).

Principal component analysis (PCA) of the MD simulation trajectories for BCL-2, JAK2

and Cyp2E1 bound to quercetin molecule was analyzed to interpret the randomized global

motion of the atoms of amino acid residues. This analysis interprets the more flexible scattered

trajectories owing the distortion of the protein structure. The internal coordinates mobility

into three-dimensional space in the spatial time of 100 ns were recorded in a covariance matrix

and rational motion of each trajectories are interpreted in the form of orthogonal sets or Eigen

vectors. PCA analysis of BCL-2.

MD simulation trajectory Cα atoms displayed scattered unordered orientation owing to

their less equilibrated form in first three modes. The first highest mode (PC1) displayed 28.7%

Fig 5. MMGBSA trajectory (0 ns, before simulation and 100 ns, after simulation) exhibited conformational changes of

quercetin upon bidning with the proteins (A) BCL-2, (B) JAK2 and (C) Cyp2E1. The arrows indicating the overall

positional variation (movement and pose) of quercetin at the bidning site cavity.

https://doi.org/10.1371/journal.pone.0263917.g005
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of the trajectories having 64.024 variance with least coordinated aggregate motion 28.717.

While in the second mode (PC2) high variance 34.762 among the 15.9% trajectories with an

aggregated motion 43.12 and the third mode (PC3) variance 20.106 is found among 9.0% tra-

jectories with aggregated motion 53 (Fig 7A). However, the PC20 described very less variance

1.312 among 0.59% trajectories with aggregated motion 84.638. The combined plots of all the

three PC modes displayed in Fig 7A. It is also observed from the PCA plots, as the sampling

size increased upto PC mode 20 the trajectories are more aligned (Fig 7A, green). Following

BCL-2 complex, quercetin bound JAK2 Cα atoms trajectory analysis displayed three distinct

scattered clusters in PC1, PC2 and PC3 modes with 23.43%, 13.93% and 9.42%, respectively

(Fig 7B). The variance in each mode was calculated as 90.623, 53.894 and 36.456 and aggre-

gated motion 23.43, 37.37 and 46.80, respectively for PC1, PC2 and PC3. However, at mode

PC20 the scatteredness reduced to a uniform cluster to 0.703%, variance 2.732 and aggregated

motion 78.08. On the other hand, quercetin bound Cyp2E1 displayed 31.21%, 12.97% and

5.18% contribution to scattered motion of trajectories in PC1, PC2 and PC3 modes. Average

variance was observed to be 197.927, 82.291 and 32.898 and aggregated motions of the trajec-

tories were recorded 31.21, 44.195 and 49.384 respectively at PC1, PC2 and PC3. While in

PC20 (Fig 7C) the observed scattered 31.21% with variance 3.398 and aggregated motion

77.822. Therefore, PCA analysis suggested that the Eigen vectors of relative aggregated motion

of the trajectories became better at higher mode PC20 into a converted global motion of the

trajectories during simulation indicating high ordered protein structure and conformation

during quercetin bound state. Moreover, it can be suggested that the complex between querce-

tin and BCL-2, JAK2 and Cyp2E1 are very stable complex. The FEL between the highest mode

(PC1) and lowest (PC20) in protein conformational variation are displayed in Fig 7D.

The protein conformational stability of BCL-2 in quercetin bound state achieved due to the

positive correlation motion of the MD trajectories. Moreover, highest and lowest PCA modes

Fig 6. Dynamic Cross Correlation matrix (DCCM) of (A) BCL-2, (B) JAK2 and (C) Cyp2E1 and correlated amino

acids conformed into secondary structural domains (colored) and non-correlated domains (grey) of (D) BCL-2, (E)

JAK2 and (F) Cyp2E1 proteins bound with quercetin (green).

https://doi.org/10.1371/journal.pone.0263917.g006
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exhibited the more feasible and quicker thermodynamically favorable conformation of BCL-2

[Fig 7D (i)]. Whereas the FEL for JAK2 against the dominant PCA modes exhibited quick and

thermodynamically favorable protein folding [Fig 7D (ii)]. This behavior is observed due to

correlated motions among the dynamic trajectories in JAK2 [Fig 7D (ii)]. Cyp2E1 showed

interesting FEL where the PCA mode contribution attributed for quicker thermodynamically

favorable protein folding and stabilizing the conformation [Fig 7D (iii)]. Therefore, it can be

suggested from the free energy landscape of proteins in quercetin bound state achieve high

favorable conformations meant for higher binding and stable complex.

Discussion

Medicinal plants have phytochemicals which act as active principle against hepatio-toxins in

prevention of hepatic injury. Gynocardia odorata R. Br. and Diospyros malabarica (Ders.) Kos-

tel are two important plants endowed withmany medicinal components. The present study

encompasses the presence of active flavonoid compound “quercetin” in the methanolic fruit

extracts from G. odorata and D. malabarica. Fruit extracts of G. odorata and D. malabarica
exhibited comparable antioxidant activity as reported from the plant extracts elsewhere [16,

38]. Earlier investigations have revealed that the antioxidant activities of phytochemicals have

significant impact on hepatoprotection [38–40]. Antioxidant scavenging activity against

DPPH and H2O2 of active phytochemical in the fruit extracts G. odorata and D. malabarica
were assessed in this current study (S1 File). The significant hepatoprotective activities of the

Fig 7. PCA plots of four PC modes where PC1 the highest variance and PC20 the lowest variance Eigen values.

PC2 and PC3 are the second and third highest variances respectively. The 3D PCA plots of among PC1, PC2 and PC3

(in left panel) and PC1, PC2 and PC20 (right panel) displayed for (A) BCL-2, (B) JAK2 and (C) Cyp2E1, bound to

quercetin molecule. The round up zones in the PCA plots displaying the clustered trajectories in the respective modes.

The representation of free energy landscape (FEL) against PC1 and PC2 for the proteins (D) (i) BCL-2, (ii) JAK2 and

(iii) Cyp2E1, respectively.

https://doi.org/10.1371/journal.pone.0263917.g007
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active flavonoid compound quercetin from the G. odorata and D. malabarica were observed

against CCl4 persuaded hepatic injury in rats by enumerating the total serum albumin, globu-

lin, and bilirubin. These findings were quite comparable with the positive control silymarin.

Maintenance of the total serum albumin, globulin, bilirubin levels in blood serum indicates

the improved liver condition while comparing with a healthy liver. On the other hand, the low-

ered levels of SGOT and SGPT in the quercetin treated blood serum content as compared to

CCl4 intoxicated mice signifies the improved level of hepatic health. This finding is also cor-

roborated with the SGPT and SGOT levels of silymarin treated rats. Similar study has been

reported earlier where the aqueous extracts of Curcuma longa down regulate the serum SGPT

and SGOT during hepatoprotection in CCl4 induced hepatic injury [40]. Histopathological

studies of quercetin-treated liver tissues exhibited the reduction of polynuclei, granular cyto-

plasm and regeneration of blood vessels as well as hepatocytes in the CCl4 induced liver (S1

File). Similar observation was found in case of commercial drug silymarin treated liver. Analo-

gous report also suggested that extract of Homalium letestui stem against paracetamol-induced

liver injury improved the liver morphology by rearrangements of blood vessels and reduction

of inflammatory cells [41, 42]. The upregulation of Hepatocyte growth factor (HGF), the tissue

inhibitors metalloproteinase (TIMP1) and matrix metalloproteinase (MMP2) genes Haf,

timp1 and mmp2, respectively, in the hepatocytes play a major role in liver fibrosis and dam-

age [42, 43]. A contrasting dominance of down regulation of HGF and metalloproteinase in

quercetin-treated liver injured with CCl4 leading to hepatoprotection has confirmed the regen-

eration of hepatic cells. In silico studies by molecular docking, molecular dynamics and simu-

lations suggested that the quercetin molecule binds with significant binding energy with

hepatic microsomal Cytochrome P450 Cyp2E1 which is a major target site for drug metabo-

lism and detoxification. During liver injury by the induction of CCl4, the instability of Cyto-

chrome p450 Cyp2E1 protein is leading to enormous oxidative stress and dysfunction [44].

While the in-silico analysis exhibited that quercetin molecule stabilizes the molecular architec-

ture by making a compact orientation of the constitutive amino acids at the binding site. That

leads to a stable conformation of the Cyp2E1 protein which may help to detoxification of CCl4

rapidly and to regain the hepatic health. In addition, quercetin molecule showed significant

stable binding with BCL-2 and JAK2 regulatory proteins of cell signaling proteins. BCL-2 acti-

vation may lead to deleterious effect on hepatocarcinoma leading to cell death [45]. Therefore,

inhibition of BCL-2 leading to prevention of hepatocarcinoma in insilico MD simulation gave

suggestive approach for invitro and invivo studies [45]. Similarly, quercetin, in this study

exhibited significant binding, stability, and inhibition of BCL-2 in MD simulations corrobo-

rated the ameliorating effect in CCl4 induced hapatocarcinoma in rats. Another route to hepa-

tocarcinoma induction by chemical agents is due to JAK2 autophosphorylation leading to

inability of STAT3 binding to DNA [46]. In addition, Zhong and coworkers reported the in sil-

ico prediction about JAK2 inhibition by natural products and ameliorating activity of hepato-

carcinoma [46]. Similar findings have corroborated our results on quercetin displayed

significant inhibition in molecular docking. MD simulation studies and free energy landscape

(FEL) of JAK2 while bound to quercetin deciphered the good stability of the complex and

plausibly allowed to predict quercetin as potent inhibitor against JAK2 during

hepatoprotection.

The quercetin-induced stability of the Cyp2E1, BCL-2 and JAK2 perhaps unlocked a novel

theragnostic approach for diminishing the effects of CCl4 and reduced hepatotoxicity. There-

fore, a detailed study on the dynamic functions of quercetin compound from G. odorata and

D. malabarica may pave a potential route towards the identification of a new drug molecule

for hepatoprotective function.
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