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Abstract

Anomaly detection in network traffic is becoming a challenging task due to the complexity of

large-scale networks and the proliferation of various social network applications. In the

actual industrial environment, only recently obtained unlabelled data can be used as the

training set. The accuracy of the abnormal ratio in the training set as prior knowledge has a

great influence on the performance of the commonly used unsupervised algorithms. In this

study, an anomaly detection algorithm based on X-means and iForest is proposed, named

X-iForest, which clusters the standard Euclidean distance between the abnormal points and

the normal cluster centre to achieve secondary filtering by using X-means. We compared X-

iForest with seven mainstream unsupervised algorithms in terms of the AUC and anomaly

detection rates. A large number of experiments showed that X-iForest has notable advan-

tages over other algorithms and can be well applied to anomaly detection of large-scale net-

work traffic data.

Introduction

In recent years, the network environment has become increasingly complex. Traffic data have

exploded and mass infrastructure based on internet of things (IoT) technology and complex

networks has had a significant impact on society and the economy [1–3]. Due to the increase

in Internet services, network abnormalities including malicious attacks and poor quality of

network services have become more diversified and substantially affecting the operation of

web services and causing social and economic losses [4–7].

An abnormality is a pattern of data that does not conform to a clearly defined normal

behaviour [8]. The cause of the abnormality may be equipment failure or malicious intrusion.

To date, anomaly detection as a theme has already been applied in various surveys, review arti-

cles and books [9, 10], including the field of network traffic data anomaly detection [11]. It is

very difficult to detect abnormal patterns in network traffic data because the types of services

provided by the network and the user connection patterns are different, which means that the

network traffic has different characteristics and that the pattern distribution is very irregular
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[12]. In addition, threshold-based anomaly detection methods are more commonly used in the

enterprise. There are other cutting-edge unsupervised anomaly detection algorithms, such as a

local outlier factor [13] (LOF) and the histogram-based outlier score [14] (HBOS). However,

there are currently few methods that can be stable and efficient in the application scenarios of

network traffic detection. Therefore, an anomaly detection algorithm that can be applied to

high-dimensional large-scale unlabelled data and maintain robustness and high accuracy in a

complex and changing network environment is urgently needed.

Isolation forest (iForest) currently have many applications in industry. For example, in the

field of semiconductor manufacturing, the high-dimensional and massive characteristics of

optical emission spectroscopy (OES) data limit the achievable performance of anomaly detec-

tion systems. Puggini and McLoone [15]presented dimensionality-reducing variable selection

and iForest-based anomaly detection to solve this problem. The iForest-based method has also

been used in studies to detect abnormal situations in the etching process in semiconductor

manufacturing and in smart grids, and the effectiveness of the algorithm has been proven

through actual industrial data [16, 17]. This paper selects the iForest algorithm [18], which is

efficient for massive data, as a basis. iForest can maintain relatively stable detection accuracy in

massive data, and its advantages are a short training time and fast detection speed, making it

suitable for anomaly detection in many scenarios with massive amounts of data.

However, iForest determines whether a sample is an outlier by calculating the anomaly

score of the sample data. The anomaly ratio largely influences the calculation of the anomaly

score, so iForest relies heavily on the setting of the anomaly ratio. In the actual industrial net-

work environment, we can rely only on manual experience to set this ratio [19], which means

that there is no guarantee that the iForest can achieve the best performance. Inaccurate param-

eter settings can also lead to low accuracy and high false detection rates in iForest. This paper

proposes a solution to this problem, with the following key contributions:

• We propose a new X-iForest method based on iForest, using standard Euclidean distances

and upper quartile method to quantify anomaly data.

• We combine X-means [20] with iForest to cluster the standard Euclidean distance values

from the data to the cluster centre and effectively classify the data by distance.

• We use a multi-dimensional Gaussian distribution to simulate real network traffic data.

Extensive experiments are conducted on 4 simulated datasets and 4 real-world datasets, and

the results are compared with those of 6 other cutting-edge unsupervised algorithms.

• Our experimental results show that the proposed X-iForest has significant advantages in the

area under the ROC curve (AUC) and anomaly detection rate (ADR) without the need for an

accurate anomaly ratio as prior knowledge.

X-iForest maintains the efficiency of the iForest algorithm in high-dimensional big data

training and detection processes while greatly improving the AUC and ADR. When presented

with large unsupervised data with no accurate anomaly ratio and large changes in data distri-

bution, the high performance, high accuracy and robustness demonstrated by X-iForest show

that the algorithm is suitable for real and complex network traffic anomaly detection

scenarios.

This paper is organized as follows: The second part reviews several network traffic anomaly

detection methods commonly used in the industrial field. The third part explains the theoreti-

cal framework and architecture design of our method. The fourth part evaluates and compares

the performance of our proposed method with other methods in the anomaly detection. The

fifth part presents our summary and future prospects.
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Related work

Following extensive investigations of actual industrial applications and recently published arti-

cles in the field of network health analysis and network traffic anomaly detection, the main

methods can be classified as follows.

Threshold-based approaches

At present, the most widely used methods for network health analysis in the industry are based

on active detection, such as ping detection and http detection. On the basis of active detection,

a fixed parameter is set based on the experience of operation and maintenance personnel, such

as determining a threshold according to a reasonable range of server delay times and then

detecting abnormalities in network traffic data based on the threshold. This detection method

does not incur excessive computational cost but cannot be flexibly applied to varying network

traffic scenarios, especially for the accurate detection of outliers close to the normal distribu-

tion, which are difficult to identify accurately and which we define as swing points.

Statistical-based approaches

Anomaly detection algorithms based on statistics and probability models mainly make

assumptions about the distribution of data and determine the “anomalies” defined under the

assumptions, so extreme value analysis or hypothesis testing is often used. For example, they

might assume a Gaussian distribution for the simplest one-dimensional data and then consider

the data whose distance lies outside a specific range as anomalous points. After generalizing to

high dimensions, one can assume that each dimension is independent and add the abnormal-

ity of each dimension. The most representative algorithm is HBOS. Paulauskas and Baskys

[21] used the HBOS to detect anomalies in a computer network concluded that the HBOS

with dynamic bins showed better results than other approaches in detecting rare events. The

HBOS algorithm, which is based on the assumption of independence of each dimension of

multi-dimensional data, divides n partitions in each dimension. The outlier corresponding to

each interval depends on the density. The higher the density is, the lower the value. If the statis-

tical assumptions are true, then this method is simple and very effective. However, this type of

statistical method relies heavily on the distribution assumption of the data set, which also

causes the robustness of this type of algorithm in the real data set to be relatively poor.

Distance-based approaches

The distance-based method is generally regarded as the basic method of outlier detection

research. The distribution of abnormal points is different from that of normal points, so a

series of algorithms are derived to identify abnormal points through distance-representing

similarity. Wang et al. [22] proposed a distance-based proximity detection method using the

K-nearest neighbour (KNN) algorithm to analyse and detect the abnormal flow data in a wire-

less sensor network (WSN). The KNN classifier is used for anomaly detection. For parameters

k and n, the k-nearest neighbour distance is calculated for each point. The top n points are

taken as anomalies by sorting the k-nearest neighbour distances in descending order. They

implemented and tested the QualNet simulation platform and proved the effectiveness of the

proposed KNN algorithm through simulation results. The principal component analysis

(PCA)-based anomaly detection algorithm can also be regarded as a distance-based method.

One method is to find k feature vectors and then calculate the weighted Euclidean distance

from each sample to the hyperspace formed by these feature vectors and use it as the sample

abnormality. Hoang and Nguyen [23] investigated the application scenarios of PCA algorithm
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and proposed a new general formula for distance calculation and a PCA-based IoT detection

method. They verified the feasibility of their proposed method through a variety of experi-

ments. Distance-based approaches incur a very high computational cost for massive datasets,

with loss of performance when applied to network traffic anomaly detection.

Density-based approaches

These approaches introduce the concept of LOF, in which each instance is assigned a score

based on the neighbours’ local density denoting a degree of outlierness. A potential outlier is

identified by the relatively high LOF value. Based on this main idea, some extended models

have been proposed. Gan and Zhou [24] combined the LOF with the Density-based spatial

clustering of applications with noise (DBSCAN) algorithm to realize the adaptive dynamic

adjustment of parameters to changing data. The method was used to optimise the accuracy of

network traffic scenarios. The experimental results show that the method based on the

improved LOF algorithm has high practical application value. The cluster-based local outliers

factor (CBLOF) algorithm uses K-means to pre-classify the data before performing the LOF

algorithm [25] and then uses the LOF algorithm separately for the data in each cluster. The

problem with this type of method is the same as that of the distance-based method: a consider-

able amount of calculation when facing large, high-dimensional data. Moreover, density-based

anomaly detection algorithms require relatively extensive prior knowledge and experience in

the selection of parameters, which also limits the application of such algorithms to fast-chang-

ing network traffic anomaly detection.

Neural network-based approaches

In network traffic anomaly detection tasks, network traffic datasets are often massive and com-

plex. In recent years, neural network-related algorithms have been proven to be well applied in

complex scenarios and have very good performance [26]. Kim and Cho [27] proposed the

C-LSTM method to extract more complex features by combining a coevolutionary neural net-

work (CNN), long short-term memory (LSTM) and deep neural network (DNN) and verified

in experiments that its performance is better than that of other state-of-the-art machine learn-

ing techniques. Wei and Wang [28] combined a convolutional neural network (CNN) and

recurrent neural network (RNN), proposed a network anomaly detection method based on

hierarchical spatiotemporal feature learning (HAST-NAD), and proved that the time series

characteristics algorithm performs better than the spatial characteristics algorithm. Although

deep learning has shown excellent performance in many tasks, it relies heavily on high-quality

labelled data. In the actual industrial scenario of network traffic anomaly detection, it is often

difficult to obtain a large amount of labelled data, which means that the use of neural network-

based methods face the problem of cold starting. Moreover, network traffic data have different

distributions on different servers, different applications, and different times; thus, generaliza-

tion is a severe problem faced by neural-network-based methods.

Isolation forest-based approaches

Since the data in network health analysis and network traffic anomaly detection scenarios

often involve large data volume, high-dimensional data and a small proportion of anomalies,

iForest are very suitable for network traffic anomaly detection. Compared with other algo-

rithms, iForest can maintain higher detection performance and accuracy with massive data.

IForest is used as an ensemble learning method, which contains multiple isolation trees. Each

tree can be regarded as a weak classifier. The training set used for each weak classifier is

obtained by random sampling from the full dataset using the bootstrap method. The final
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result is obtained by combining the results of all the isolation trees, which means that the iFor-

est has a good generalization performance and can largely prevent overfitting. Hariri et al. pro-

posed an extended isolated forest algorithm(EiForest) [29] that allows the branching

hyperplanes to take on any slope as opposed to hyperplanes only parallel to the coordinate

frame. EiForest addresses the impact of bias introduced in the standard isolated forest case on

the anomalous scores for a given data point. The experimental results show that the EiForest

possesses stronger robustness. Although the EiForest solves the problem caused by bias, it does

not take into account the effect of the abnormal ratio on the detection results. Ding and Fei

[30] used a sliding window frame and proposed an adaptive streaming data anomaly detection

algorithm iForestASD based on iForest, which can be used to detect network traffic data gen-

erated in applications such as computer networks and sensor networks, and used experiments

to prove that their proposed algorithm can effectively detect anomalies in the data stream. Pug-

gini and McLoone proposed an anomaly detection method based on reduced dimensional var-

iable selection and isolated forests [15]. The method is used to solve the problem that the high

dimensionality and correlation of optical emission spectral data limit the performance of

anomaly detection systems, and it is more interpretable compared to methods such as PCA.

Wang et al. used the isolated forest algorithm for aero-engine fault detection [31], and the

experimental results showed that the method has higher detection accuracy and shorter run-

ning time. Alsini et al. combined the local outlier factor (LOF) algorithm with isolated forests

to solve the limitations of LOF in evaluating concrete mixtures [32], and experimental results

demonstrated that the method was more effective in detecting anomalous sequences. Chen

et al. combined Gaussian mixture model (GMM) with isolated forest for anomaly detection

and identification of key behavioral attributes in continuous state monitoring (CM) data [33],

and experimentally demonstrated that the method is more effective for high-dimensional data

compared with other methods. Zhou et al. used the isolated forest algorithm to predict the

final welding quality [34], and the experimental results showed that the isolated forest pos-

sessed better classification performance. Wang et al. proposed a general separation method

based on linear prediction analysis and isolated forest [35], which separate multi-source partial

discharge signals and distinguish various partial discharge signals. The experimental results

confirmed that the method can effectively separate and distinguish various partial discharge

signals. Ahmed et al. use isolated forests to detect covert data integrity assault (CDIA) utilizing

non-labeled data in smart grid (SG) communication networks [17], and simulation results

show that the method can handle non-labeled historical measurement datasets well and signif-

icantly improve attack detection accuracy. Xing et al. used isolated forest to identify the inter-

est flooding attack [36], and the simulation results showed that the method has high attack

detection accuracy and fast detection speed.

However, the unavailability of sufficient high-quality data and the requirement for a priori

knowledge make these iForest-based methods still difficult to apply to real network traffic

monitoring scenarios. We introduce X-Means and standard Euclidean distances to quantify

the anomalies of the data for this problem, and address the problem of not having sufficient a

priori knowledge and labeled data in realistic anomalous traffic monitoring.

Materials and methods

This section describes our approach and the algorithmic tools used. The proposed X-iForest is

composed of iForest and X-means. After obtaining the normal clustering centres by iForest,

the standard Euclidean distance from the data points to the normal clustering centres was used

to quantify the degree of abnormality. The degree of abnormality was clustered using X-means
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after filtering the extreme values by the upper quartile method. Finally the 2-means method

was used as a classifier to classify the data into normal and abnormal classes.

X-means

X-means clustering is an improved algorithm based on K-means [20]. It is used to solve the

main problem of K-means clustering, which requires prior knowledge about the number of

clusters. In this method, the number of clusters k is estimated in an unsupervised manner

based on the data set itself, using kmax and kmin respectively as upper and lower limits for the

possible values of x. In the first step of X-means grouping, X-means performs a clustering

where x = kmin. In the next step, each cluster is regarded as an initial parent category, and a cal-

culation is performed on each parent category which is calculates the BIC scores before and

after classification and compares them to decide whether to divide the parent class into two

groups. The BIC score, which helps determine the best representation for sample data, is

defined as:

BICð�Þ ¼ l̂�ðDÞ �
P�
2
� log R ð1Þ

where ϕ represents the model and Î�ðDÞ is the log-likelihood of the data according to the

ϕ model, and taken at the maximum likelihood point. Pϕ is the number of parameters in

model ϕ. For example, model ϕ2 is better than model ϕ1 if BIC (ϕ2)> BIC (ϕ1).

In this way, clusters provide an accurate distribution of samples. As a result, the algorithm

either replaces the parent generation with the centroid or maintains the centroid and keeps it.

Then, the structure is continuously updated according to each choice until the estimated num-

ber of clusters reaches xmax or has converged to the best structure.

Isolation forest algorithm

Algorithm 1 iTree(D, h, l)
Input: D = (x1, x2, . . ., xn)—dataset,h—the height of tree,l—height limit
Output: an iTree t
Initialize: t = ⌀
1: if h >= l or Size(D) <= 1 then
2: return t
3: else
4: randomly select qi a feature of D
5: randomly select a split point p 2 (min(qi), max(qi))
6: Dl  filter (D, qi < p)
7: Dr  filter (D, qi >= p)
8: repeate iTree(Dl, h + 1, l) and link the obtained tree as the left

tree of t
9: repeate iTree(Dr, h + 1, l) and link the obtained tree as the

right tree of t
10: end if

The iForest was proposed by Liu et al. [18]. It has many applications in the industrial field

and involves an ensemble of isolation trees, similar to random forests and decision trees. By

definition, an iForest is composed of a certain number of isolation trees:

IF ¼ ft1; . . . ; tTg ð2Þ

where iTree is obtained according to the flow of Algorithm1. The path length h(x) of the sam-

ple x is the number of edges passed from the root node of the isolation tree to the leaf node.
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The average number of steps required to isolate a sample x in a forest is then

hðxÞ ¼
1

T

X

t2IF
htðxÞ ð3Þ

Intuitively, clusters with high density need to be cut many times to be isolated, but those with

low density can easily be isolated. Under this random segmentation strategy, abnormal points

usually have shorter paths. Let n be the number of samples in the data set, c(n) be the average

path length of the tree, and c(n) be defined as:

cðnÞ ¼ 2Hðn � 1Þ �
2ðn � 1Þ

2n
ð4Þ

where H(i) is the harmonic number estimated as:

HðiÞ � ln ðiÞ þ 0:5772156649 ð5Þ

The normalized anomaly score s(x, n) of sample is defined as:

sðx; nÞ ¼ 2
hðxÞ
cðnÞ ð6Þ

If instances return s very close to 1, then they are definitely anomalies, if instances have s much

smaller than 0.5, then they are quite safe to be regarded as normal instances, and if all the

instances return s� 0.5, then the entire sample does not really have any distinct anomaly.

X-iForest: Improved isolation forest based on X-means

Although iForest are more suitable for massive unlabelled data than other algorithms to a cer-

tain extent, similar to other unsupervised algorithms, the performance of the algorithm is very

dependent on the settings of the abnormal ratio. The actual network conditions are very com-

plicated, causing the definition and data distribution to change very quickly, so it is necessary

to always use the newly captured unlabelled data as the training set to update the model. In

this case, we can rely only on manual experience to determine the value of the abnormal ratio,

but an inaccurate abnormal ratio would destabilize the performance of the iForest, resulting in

low accuracy and a high false detection rate. In this study, the X-means clustering algorithm is

used to improve the iForest to improve the performance of algorithm anomaly detection when

the real anomaly ratio is unknown, even exceeding the performance of the original iForest

algorithm with an accurate abnormal ratio.

According to the actual situation in industry, we treat the dataset as a completely unlabelled

dataset; that is, the training set has no labels, and the abnormal ratio is unknown. Our algo-

rithm is described as follows:

Algorithm 2 X-iForest Algorithm
Input: D = (x1, x2, . . ., xn)—dataset, kmax—the upper limit of the number

of clusters in X-means
Output: the index list of normal values Nlist, the index list of

abnormal values Alist
Initialize: iForest,Nlist = ⌀,Alist = ⌀, distance list Dlist = ⌀
1: set the contamination parameter of iForest to 2 times the back-

ground knowledge of the relevant field
2: get preliminary classification result L = (l1, l2, . . ., ln) of D with

iForest
3: for each label li in L do
4: if li = 1 then
5: Nlis append xi
6: else
7: Alist append xi
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8: end if
9: end for
10: calculate the cluster center C of Nlist
11: for each sample si in Alist do
12: calculate the standard Euclidean distance di between si and C
13: Dlist append di
14: end for
15: MAX  box plot (Dlist)
16: Dlist  filter (Dlist, di < MAX)
17: perform X-means clustering on Dlist and calculate the cluster

center of each cluster to get the result X = {xclu1, xclu2, . . .,
xcluk}, where k <= kmax

18: perform K-means clustering with k = 2 on X and get the result
K = (kclu1, kclu2), where the center of kclu1 < kclu2

19: for each sample si in kclu1 do
20: Nlist append si
21: Alist remove si
22: end for
23: return Nlist,Alist

For other algorithms that require a priori knowledge, they need to learn the true abnormal

ratios of many datasets to do a priori fitting. The closer the regression results are to the true

ratios the more effective these algorithms will be, and once they encounter a little noise (which

is extremely common and unavoidable in reality) the algorithms will be much less effective or

even ineffective. Such algorithms, which rely on a priori knowledge, are not stable in reality.

Our proposed algorithms can perform well as long as they have basic background knowledge

of the scenario in a real-world application. For example, in network traffic anomaly detection,

the usual anomaly rate in this domain is about 0.02 to 0.05, and we simply need to set the

parameters higher than that to achieve excellent detection results. In contrast, we prefer to call

our algorithm background knowledge-based rather than a priori knowledge-based.

First, iForest are used for preliminary detection, and the contamination parameter is seted

to 2 times the background knowledge of the relevant field. This is to detect as many outliers as

possible. In actual situations, the cost of misclassifying an abnormal value as a normal value is

higher than the misevaluation of a normal value as an outlier. The first task should be to detect

as many outliers as possible. Since our estimated anomaly ratio is higher than the true ratio,

there may be cases where the normal value is misclassified as an outlier after the initial detec-

tion. We need to minimize misclassification as much as possible while maximising the abnor-

mal detection rate. This part is reflected in lines 1 to 8 in Algorithm 2.

Second, we calculate the cluster centre of this part of the normal data in the preliminary

detection and then calculate the standard Euclidean distance from the suspected abnormal

value to the normal cluster centre. The standardized Euclidean distance is an improvement

scheme intended to address the shortcomings of the simple Euclidean distance [37], mainly

for data with large differences in data distribution in each dimension.

Let a = (x11, x12, . . ., x1n) and b = (x21, x22, . . ., x2n) be the observed data, where sn is the

standard deviation and where the standardized Euclidean distance between a and b is:

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

k¼1

�
x1k � x2k

sk

�2
s

ð7Þ

The abnormal ratio assumed in the preliminary calculation is higher than the true ratio, so the

data evaluated to be normal after the initial detection are the data whose distribution in the

data set most conform to the normal definition and do not include swing points. The closer

the distance to the cluster centre is, the closer the data are to the normal data distribution, and
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the farther the distance is, the higher the abnormality of the data. This step is shown in lines 9

to 13 in Algorithm 2.

Third, extreme values in the distance value are filtered out through box plot [38]. Let Q1 be

the upper quartile and Q3 be the lower quartile. The MAX and MIN observations can be

defined as:

MAX ¼ Q1 � 1:5� ðQ3 � Q1Þ ð8Þ

MIN ¼ Q3 þ 1:5� ðQ3 � Q1Þ ð9Þ

Extreme values affect subsequent clustering by causing the overall characteristics of the data to

shift. Therefore, in this step, we filter out extreme values whose distance value is greater than

the MAX observation value, and classify these points directly as anomaly values. Since the

Euclidean distance calculation result is not less than 0, we do not consider the case of values

less than the MIN observation value. This part is reflected in line 14 and line 15 in Algorithm 2.

Fourth, the distance value calculated in the second step is used for X-means clustering with

kmin = 2. This setting is used because this part of the data contains misdetected normal values

and real abnormal values, so these data should be divided into at least 2 clusters to prevent the

data distribution from being too uniform and causing X-means to collect the data into 1 clus-

ter. Line 16 in Algorithm 2 are this part.

Finally, we calculate the standard Euclidean distance from the cluster centre of each cluster

obtained by X-means clustering to the normal cluster centre. Then, K-means clustering with

k = 2 is performed on these distance values, and all clusters are divided into normal and abnor-

mal categories. This step is shown in lines 17 to 22 in Algorithm 2.

To show the process of X-iForest more intuitively, we determine the approximate range of

normal and abnormal values based on the distribution of actual network traffic data and ran-

domly generated a simulation data set within the distribution range to demonstrate the steps of

the algorithm. We simulated normal data X ¼ ðx1; . . . ; x6Þ 2 R
n�6

with n = 500 samples and

the abnormal data Y ¼ ðy1; . . . ; y6Þ 2 R
n�6

with n = 30 samples. For each feature, the elements

in X and Y are independent random samples of normal distribution and abnormal distribu-

tion, respectively. The data set has a total of 530 samples, each of which has 6 dimensions. The

results after X-means clustering are shown in Fig 1(a). To make the results more intuitive, we

use PCA for dimensionality reduction [39]. The triangle represents the centre of a cluster, and

the point with the same colour as the triangle represents the data grouped into that category.

The blue dot represents the normal data detected in the first step. The marked numbers repre-

sent the distance from the centre of each cluster to the centre of the normal cluster. The abnor-

mal data are divided into 4 clusters by X-means. The smaller the standard Euclidean distance

from the centre of the normal cluster is, the closer the cluster is to the normal data distribution.

The result of K-means clustering is shown in Fig 1(b); the smaller type is shown in green,

which represents that the points contained in the clusters of this type are close to the normal

data distribution of the preliminary detection, so these points are considered to be normal val-

ues that were misevaluated as abnormal and reclassified into the normal class. The data con-

tained in the other cluster are shown in red, representing classification as anomaly data. Fig 1

(c) shows the final anomaly detection result.

Experiments

Evaluation metric

The metrics for evaluating outlier detection are the ADR and AUC. The ADR refers to the ratio

of detected abnormal values to all abnormal values. In industrial applications, the cost of
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Fig 1. The result of X-means clustering on standard Euclidean distance from the abnormal cluster centers to the

normal cluster center. (a): The result of K-Means clustering. (b): The final anomaly detection result of the generated

data bu using X-iForest. (c): Demonstration of X-iForest on a test dataset.

https://doi.org/10.1371/journal.pone.0263423.g001

PLOS ONE X-means and isolation forest based methodology for network traffic anomaly detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0263423 January 31, 2022 10 / 18

https://doi.org/10.1371/journal.pone.0263423.g001
https://doi.org/10.1371/journal.pone.0263423


erroneous anomaly detection is much greater than the cost of false detection of normal values.

The first task of an anomaly detection algorithm in practical applications should be to identify

outliers as much as possible, so the ADR is an important evaluation indicator in industrial

applications. DN is the number of abnormal data detected correctly, and AN is the number of

abnormal data in the entire test set. The ADR is defined as:

ADR ¼
DN
AN

ð10Þ

The AUC is calculated from the recall (REC) and false positive rate (FPR). Let TP be the num-

ber of detected true positives, FP the number of detected false positives, TN the number of

detected true negatives and FN the number of detected false negatives. The recall and false pos-

itive rate are defined as follows:

REC ¼
TP

TP þ FN
ð11Þ

FPR ¼
FP

FPþ TN
ð12Þ

Data

To better evaluate the performance of algorithms in different network environments, we used

four simulation datasets, which are obtained by simulating the real network traffic data cap-

tured on the load balancer. We desensitize the existing real data, expand the real data set

according to the distribution of real network traffic data. The simulated data are sampled from

a mixture of two multivariate Gaussian distributions. The multivariate Gaussian distribution

mixture model can be represented by the following equation [40]:

pðx; m;SÞ ¼
1

ð2pÞ
n
2jSj

1
2

exp �
1

2
ðx � mÞTS� 1ðx � mÞ

� �

: ð13Þ

where n is the dimension of the feature and the nondimensional vector μi is defined as the

mean value of the i-th feature, μ = (μ1, μ2, . . ., μn) is a n-dimensional vector. Here, S is the

covariance of the feature, which is an n-dimensional matrix:

S ¼

sðx1; x1Þ � � � sðx1; xnÞ

..

. . .
. ..

.

sðxn; x1Þ � � � sðxn; xnÞ

2

6
6
4

3

7
7
5 2 R

n�n ð14Þ

The multivariate Gaussian distribution is chosen because it is the maximum entropy distribu-

tion for a given mean and variance [40]. Therefore, a minimum number of assumptions are

imposed on the simulation data. We usually assume that there is a correlation between the var-

ious features of network traffic data and that a multivariate Gaussian distribution can automat-

ically capture the correlation between the features, which makes this approach suitable for the

simulation of network traffic data. We use two multivariate Gaussian distributions to simulate

the normal data and abnormal data of real network traffic data and sample them to form simu-

lation datasets. The configuration of the 4 simulation datasets is as follows:

Simulation 1. The first simulation dataset has a total of 6-dimensional features; the training

set contains 1 million samples, and the abnormal ratio is approximately 2%. The dataset is
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characterized by a large amount of data, and abnormal points are abnormally distributed in

all dimensions. According to the above characteristics, the distribution of the abnormal

data is quite different from that of the normal data, so the challenge of abnormality detec-

tion is less difficult.

Simulation 2. The abnormal ratio, number of samples, and dimension of the simulation2 set

have the same settings as simulation1. However, each anomaly point presents anomalies in

a few random features only. We assume that the features are independent of each other in

the simulation2, so the covariance matrix S can be expressed as:

S ¼

s2
1

0 � � � 0

0 s2
2
� � � 0

..

. ..
. . .

. ..
.

0 0 � � � s2
6

2

6
6
6
6
6
4

3

7
7
7
7
7
5

2 R6�n ð15Þ

We randomly select 3 features from 6 features, calculate the variance and mean of these 3

features from normal data, and use the variance and mean of abnormal data for the remain-

ing 3 features. After the combination, S and μ are obtained, and a multi-dimensional

Gaussian distribution of abnormal data is constructed. Compared with the first simulation

data set, there are more swing points. Swing points arise when the point is at the edge of the

normal data distribution and abnormal data distribution, presenting a challenge in the

anomaly detection task. Compared with simulation1, the data distribution in simulation2 is

more challenging as a task of abnormal data detection.

Simulation 3. The third simulation dataset uses the configuration of simulation1 with the

same proportion of outliers and number of dimensions. The number of samples in the

training set in this data set is only 730 to test the performance of the outlier algorithm with

a small sample data set.

Simulation 4. The fourth simulation dataset uses the configuration of simulation1 with the

same proportion of outliers. The difference is that the dimension of the fourth data set is

extended to as high as 50, and the data distribution of a few dimensions is quite different

from that of other dimensions. In addition, to simulate the existence of the real data set,

some extreme values are randomly added to the abnormal points of the data set. The chal-

lenge of this data set to the abnormal detection algorithm lies in the high dimensionality of

the data set and the influence of extreme values.

Other datasets

To make the experimental data more convincing, we measure the performance of our pro-

posed method for detecting outliers through a number of publicly available datasets. The Shut-

tle, Satellite, and BreastW datasets are selected from the UCI data set, and the Mulcross data

set is selected from the ODDS data set [41]. Table 1 lists the statistical characteristics of each

Table 1. Statistical characteristics of the other experimental dateset.

Dataset Cardinal number Number of attributes Abnormal points

Shuttle 49097 9 3437

Mulcross 262144 4 26214

Satellite 6435 36 2036

BreastW 683 9 239

https://doi.org/10.1371/journal.pone.0263423.t001
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data set. These datasets contain different cardinal number, number of attributes and anomaly

proportions, which means that they can be used to test the robustness of the algorithms, which

is key to their ability to perform well in complex and changing network environments.

Verification of algorithm validity

We used the AUC and ADR to jointly evaluate the performance of iForest under different con-

tamination parameters. The satellite dataset from the ODDS dataset is used here, and the

abnormal ratio of the training set is 0.32. Fig 2 plots the ROC curve for simultaneous assess-

ment of AUC and ADR and the Avg curve for the sum average of AUC and ADR. Near the true

abnormal ratio(0.32) of the data set, the point of the ROC curve is closest to the upper left cor-

ner, indicating that the point in this area is closest to the optimal critical value. Moreover, the

Avg curve also reaches the highest value at contamination = 0.34, which is near the true anom-

aly ratio. This proves that an accurate abnormal ratio has an important impact on the perfor-

mance of iForest.

To verify the effectiveness of the X-iForest algorithm, we tested EiForest, iForest, LOF,

CBLOF, PCA, HBOS, and KNN on a total of 8 datasets mentioned earlier and compare them

with X-iForest. For the 8 datasets, we use the same training set and test set for all algorithms,

and adjust the abnormal ratio of other algorithms except X-iForest to the true abnormal ratio

to optimize the performance of these algorithms and ensure the objectivity of the experiment.

Table 2 counts the AUC results of all algorithms. The bold font in the table indicates the

best performance in the horizontal experiment. X-iForest performs the best in 6 out of 8 data-

sets. X-iForest maintains a high AUC in each data set, which also means that the algorithm has

high performance and good robustness. Fig 3 shows a histogram of AUC results. Based on the

average AUC value, iForest can maintain high detection accuracy and stability with different

datasets. The improvement of X-iForest on the basis of the iForest enables an 8.1%

Fig 2. The performance of iForest under different contamination parameters in the dataset with a abnormal ratio of 0.32, c represents the

contamination parameter.

https://doi.org/10.1371/journal.pone.0263423.g002
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improvement in the average AUC in the 8 experimental datasets over that of the iForest, which

means that the former has better detection accuracy and better robustness.

The ADR is an important indicator for industrial applications, including network traffic

anomaly detection applications. We compared the ADRs of X-iForest and other algorithms,

and the results are shown in Table 3. X-iForest has the highest ADR in all 8 datasets, which

shows that X-iForest can complete the anomaly detection task well. Fig 4 shows the histogram

of ADR results. The average values indicate that the performance of X-iForest is very stable

and far better than those of the other algorithms. The results from the AUC experiments show

that the EiForest algorithm has a good performance and robustness. However, the ADR experi-

mental results show that EiForest did not achieve high ADR values in the Simulation2 and Sat-

ellite Dataset. The average ADR of X-iForest is 19.5% higher than that of iForest and 10.1% of

EiForest, which means that X-iForest can better complete the anomaly detection task.

Based on the results, X-iForest has the best performance in both simulation datasets and

the real datasets, maintaining high AUC and ADR performance, which shows that X-iForest

can complete anomaly detection tasks well while maintaining high accuracy. The AUC of X-

Table 2. AUC of X-iForest and other algorithms.

Dataset X-iForest EiForest iForest LOF PCA HBOS CBLOF KNN

Simulation 1 1.0 0.99 0.941 0.498 0.958 0.957 0.733 0.99

Simulation 2 0.823 0.8 0.761 0.711 0.701 0.756 0.664 0.719

Simulation 3 0.763 0.672 0.638 0.735 0.621 0.633 0.738 0.874

Simulation 4 1.0 0.971 0.929 0.51 0.954 0.954 0.743 0.978

Shuttle 0.968 0.945 0.895 0.741 0.969 0.973 0.699 0.765

Mulcross 0.98 0.915 0.868 0.57 0.96 0.455 0.752 0.445

Satellite 0.723 0.679 0.638 0.585 0.641 0.646 0.681 0.646

BreastW 0.978 0.968 0.932 0.529 0.764 0.653 0.812 0.94

https://doi.org/10.1371/journal.pone.0263423.t002

Fig 3. The AUC results of the proposed algorithm X-iForest and others algorithms.

https://doi.org/10.1371/journal.pone.0263423.g003
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iForest in Simulation3 with a small sample size is not the highest, and there is no large gap

with other algorithms. We speculate that X-iForest may not be the best choice for the small

sample data set. However, the ADR of Simulation 3 shows that X-iForest still accomplishes the

anomaly detection task well. Although the Satellite dataset is characterised by high-dimen-

sional and massive volume, the relatively concentrated distribution of the data and the close

distribution of outliers and normal values result in many swing points in the data, which

means that it is more difficult to do anomaly detection on this dataset. The X-iforest algorithm

does not achieve high AUC(0.723) and ADR(0.6) on Satellite dataset, but it still performs

much better than other algorithms. Compared to other algorithms, X-iForest shows robustness

to different types of data, especially large-scale high-dimensional data, which also proves that

X-iForest can be well applied to network health analysis and the field of abnormal network

traffic detection.

Table 3. ADR of X-iForest and other algorithms.

Dataset X-iForest EiForest iForest LOF PCA HBOS CBLOF KNN

Simulation 1 1.0 1.0 0.883 0.02 1.0 1.0 0.467 1.0

Simulation 2 0.85 0.783 0.533 0.433 0.417 0.6 0.333 0.45

Simulation 3 0.82 0.385 0.41 0.564 0.359 0.63 0.487 0.769

Simulation 4 1.0 1.0 0.86 0.03 1.0 1.0 0.487 0.957

Shuttle 0.982 0.899 0.796 0.607 0.967 0.976 0.401 0.648

Mulcross 1.0 1.0 0.762 0.229 0.929 0.019 0.504 0.0

Satellite 0.6 0.38 0.514 0.432 0.291 0.304 0.409 0.53

BreastW 0.986 0.958 0.917 0.389 0.528 0.306 0.639 0.903

https://doi.org/10.1371/journal.pone.0263423.t003

Fig 4. The ADR results of the proposed algorithm X-iForest and others algorithms.

https://doi.org/10.1371/journal.pone.0263423.g004
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Conclusion

The complex network environment and the surge of traffic data make the detection of network

traffic anomalies a considerable challenge facing enterprises today. Due to the varying network

environment, the definition and distribution of normal and abnormal data have also varied,

resulting in a lack of sufficient labelled network traffic data for enterprises. In addition to the

explosive growth of traffic data, the current unsupervised anomaly detection algorithms com-

monly used in industrial applications cannot be well implemented in a real complex network

environment. The main research purpose of this paper is to realize the application of unsuper-

vised algorithms in actual dynamic network environments. It is hoped that even when the

abnormal ratio of the training data is unknown, the abnormal traffic data in the network traffic

can still be found quickly and accurately. In this paper, we combine iForest and X-means to

propose the novel algorithm X-iForest. Experiments prove that X-iForest exhibits high accu-

racy and high performance with massive data in complex networks. The experimental results

meet our expectations, and the performance of the X-iForest algorithm is better than that of

the iForest algorithm with a precise abnormal ratio. X-iForest has an average AUC score of

8.1% higher than iForest and an average ADR score of 19.5% higher across the 8 datasets.

Compared with other algorithms, X-iForest also shows excellent accuracy and robustness

without the need to provide precise abnormal ratios. The average AUC score of X-iForest is

15.1% higher than the average score of other algorithms, and the average ADR score of X-iFor-

est reaches 90.4% in the ADR score, while the average ADR score of other algorithms is only

57.6%. This represents a significant advantage of X-iForest and can be well applied to the task

of network traffic anomaly detection.

In the next step, we plan to deploy the X-iForest algorithm on a load balancer based on the

Flink framework, making full use of the distributed stream processing features of the Flink

framework to generate multiple trees in an iForest by placing them on different nodes to speed

up training and detection and further validate the performance of the algorithm in real-world

network scenarios.
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