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Abstract

Objective

This study assessed the major nutrients and antioxidant properties of Berberis heteropoda

Schrenk fruits collected from the Nanshan Mountain area of Urumqi City, Xinjiang Uygur

Autonomous Region, China.

Methods and materials

We assessed the basic nutrients, including amino acids, minerals, and fatty acids, and

determined the total phenol, flavonoid, and anthocyanin contents of the extracts.

Results

The analytical results revealed the average water (75.22 g/100 g), total fat (0.506 g/100 g),

total protein (2.55 g/100 g), ash (1.31 g/100 g), and carbohydrate (17.72 g/100 g) contents

in fresh B. heteropoda fruit, with total phenol, flavonoid, and anthocyanin contents of B. het-

eropoda fruits at 68.55 mg gallic acid equivalents/g, 108.42 mg quercetin equivalents/g, and

19.83 mg cyanidin-3-glucoside equivalent/g, respectively. Additionally, UPLC-Q-TOF-MSE

analysis of polyphenols in B. heteropoda fruit revealed 32 compounds.

Conclusion

B. heteropoda fruits may have potential nutraceutical value and represent a potential source

of nutrition and antioxidant phytochemicals in the human diet.

Introduction

Berberis heteropoda Schrenk is a shrub of the family Berberidaceae, which is distributed in the

Altai, Tianshan, and Baluke mountains of the Xinjiang Uygur Autonomous Region, China, as

well as in Mongolia and Kazakhstan [1]. The roots, bark, stems, and fruits of B. heteropoda are

traditionally used as an herbal medicine, and the fruits in particular have historically been
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consumed as a tea [2, 3]. In modern times, studies have confirmed that this fruit can be used to

treat dysentery, enteritis, pharyngitis, stomatitis, eczema, and hypertension [4, 5]. Because the

nutritional and antioxidant properties of B. heteropoda fruit are related to its molecular and

secondary metabolite content, there are potential benefits to its consumption.

In addition to proteins, fats, dietary fiber, minerals, and other nutrients, plants also contain

numerous phenolic components that can play an important role in human health [6]. Polyphe-

nols are secondary metabolites produced by plants and often observed in vegetables, fruits,

and forages [7]. Phenolic compounds are effective at preventing oxidation at the cellular and

physiological levels, with their antioxidant capacity determined based on the arrangement of

hydroxyl and carbonyl groups in their structures, as well as the gain and loss of electrons from

hydrogen atoms to reduce free radicals and form stable phenoxy groups [8, 9]. Flavonoids are

major components of plant polyphenols and play important roles in antioxidant effects,

including in reduction reactions as a hydrogen donor for singlet oxygen quenching and metal

chelation. Thus, evaluating the polyphenol, flavonoid, and antioxidant contents of B. hetero-
poda Schrenk fruit and evaluating its medicinal and nutritional value are important.

A previous study focused on the anthocyanin composition of B. heteropoda fruit [3]; how-

ever, the nutritional and phenolic composition of B. heteropoda remains unclear. Therefore, in

the present study, we assessed the major nutrient content and antioxidant properties of B. het-
eropoda and investigated the active components of the plant, as well as how this information

can guide its nutritional use.

Materials and methods

Plant material

A total of 3 kg of ripe B. heteropoda fruit was collected from dozens of shrubs in a ravine in the

Nanshan Mountain area of Urumqi City, Xinjiang Uygur Autonomous Region, China (lati-

tude 89˚2903600E, longitude 43˚2703200N), in September 2019. The specimens were identified

by expert Lude Xin from Xinjiang Medical University, and a voucher specimen

(WR2101079001) was deposited in the Institute of Clinical Nutrition, People’s Hospital of Xin-

jiang Autonomous Region. The fruits were then transported to the laboratory for a pre-cooling

treatment (−20 ˚C) 2 h after harvest. The fruits for study were selected after being combed,

and we ensured that all of the selected fruits were even and full, with uniform size and matu-

rity. Fruits without mechanical damage, rot, or other miscellaneous defects were selected for

further analysis. Subsequently, the stem and seeds were removed, and fruits were placed in

dark storage at −20 ˚C until further use.

Standards and reagents

The reagents 1,1-diphenyl-2-picryl-hydrazl (DPPH) and 2,2-azinobis-(3-ethylbenzthiazoline-6-

sulfonic acid) (ABTS) were purchased from Shanghai Macklin Biochemical Co., Ltd. (Shanghai,

China). Gallic acid and rutin standards were purchased from Chengdu Munster Biotechnology

Co., Ltd. (Chengdu, China). Folin–Ciocalteu’s phenol reagent was purchased from Tianjin Kai-

tong Chemical Reagent Co., Ltd. (Tianjin, China). Anhydrous methanol, anhydrous ethanol,

concentrated hydrochloric acid, sodium nitrite, sodium hydroxide, sodium carbonate, and fer-

rous sulfate were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shenyang, China).

Nutritional composition

Determination of general nutrients. Crude protein content was determined using the

Kjeldahl method according to Chinese National Standard (CNS) GB/T5009.5–2016
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“Determination of protein in food.” Ash content was measured using the muffle furnace burn-

ing method according to CNS GB 5009.4–2016 “Determination of ash in food.” Crude fat was

determined using the Soxhlet extraction method according to CNS GB 5009.6–20163 “Deter-

mination of fat in food.” Moisture was measured using the direct drying method according to

CNS GB5009.3–2016 “Determination of moisture in food.” Carbohydrate content was deter-

mined based on CNS NY/T 2332–2013. The total energy of each sample was calculated as fol-

lows: Total Energy (kJ) = 17 × (g crude protein + g total carbohydrate) + 37 (g crude fat) [10].

Mineral composition. Mineral and element contents were determined according to CNS

GB5009.268–2016 “Determination of multi-elements in food” using inductively-coupled

plasma (ICP)-mass spectrometry [MS; 5110 ICP optical emission spectrometer (OES); Agilent

Technologies, Santa Clara, CA, USA]. Briefly, a 1.0-g slurry sample was digested in 2 mL of

concentrated HNO3 in a microwave oven and then diluted with distilled water to 25 mL. The

solution was filtered before storage, and a blank digest was performed in a similar manner.

The blank solution and the test solution were each injected into the ICP OES to determine the

contents of K, Ca, Na, Mg, Fe, Cu, Zn, and P.

Amino acid analysis. Amino acid contents were measured by an automatic amino acid

analyzer (L-8900; Hitachi, Tokyo, Japan) according to CNS GB 5009.124–2016 “Determina-

tion of amino acid in food.” Continuous flash evaporation at reduced pressure was used to

remove excess acid, and the sample was dissolved in citrate buffer (pH 2.2) [11].

Fatty acids. Fatty acid composition and content was determined by gas chromatography–

MS (7890B/7000D; Agilent Technologies) according to CNS GB 5009.168–2016. Triglyceride

undecarbonate was used as an internal reference, 37 different fatty acid methylester standard

solutions were used as external references. The fatty acid content was quantitatively measured

using chromatographic peaks.

Extraction and quantification of Total Phenol Content (TPC), Total

Flavonoid Content (TFC), and Total Anthocyanin Content (TAC)

Extraction. Sample extraction was performed using a previously reported method [12],

with slight modification. Briefly, 1.0 g of B. heteropoda fruit was added to 30 mL of 70% acidi-

fied ethanol (0.1% HCl, v/v), and the solution was extracted three times under ultrasonic con-

ditions (40 kHz, 100 W) for 30 min at 25 ˚C. The mixture was then centrifuged at 1000 r/min

for 15 min, and the supernatant was collected. The residue was subsequently extracted twice,

all of the collected supernatant was mixed together and concentrated under vacuum, and the

extraction was preserved at −20 ˚C until further analysis. The solvents used for fruit extraction

included methanol, acetone, and ethanol. The final extract was used for the quantification of

TPC, TFC, TAC, and antioxidant activity.

TPC Determination. The TPC was measured using Folin–Ciocalteu’s phenol reagent

with the colorimetric method [13]. Briefly, 0.5 mL of reagent and 1.5 mL of sodium carbonate

solution (10%, w/v) were added to 1 mL of B. heteropoda fruit extract, followed by immediate

addition of 8 mL of distilled water and incubation for 10 min in a water bath at 75 ˚C. The

absorbance was the measured using an ultraviolet–visible (UV–vis) spectrophotometer (New

Century T6; Persee Analytics, Beijing, China) at 760 nm. We generated a standard curve of the

absorbance value of gallic acid solution, and then TPC was determined as milligram of gallic

acid equivalent per gram of fresh fruit mass.

TFC Determination. The TFC was measured using rutin as a reference standard with the

aluminum nitrate method [14]. Briefly, 0.5 mL of B. heteropoda fruit extract was added to 1

mL of sodium nitrite and incubated for 6 min, followed by mixture with 1 mL of 10% alumi-

num nitrate and then incubation for another 6 min. We then added 10 mL of 1.0 M sodium
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hydroxide, adjusted the volume of water to 20 mL, and incubated the solution for 15 min.

UV–vis spectrometry was then used to detect the absorbance at 510 nm and generate a stan-

dard curve. TFC was denoted as milligram of rutin equivalent per gram of weight of fresh fruit

mass.

TAC Determination. The TAC was determined by the pH differential method [15].

Briefly, 2 mL of fruit extract was added to a centrifuge tube for centrifugation at 1000 r/min

for 5 min, after which 0.5 mL of supernatant was added into two 10-mL volumetric flasks: one

with a buffer at pH 1.0 and the other with a buffer at pH 4.5. The absorbance at 517 nm and

700 nm was measured after a 15-min incubation, and data were expressed as milligram of cya-

nidin-3-glycoside equivalents per gram of fresh fruit mass. The TAC was calculated according

to the following formula:

A ¼ ½ðA517 � A700ÞpH 1:0
� ðA517 � A700ÞpH 4:5

�;BHSTACðmg=gÞ ¼ A�MW� DF�
1

ε� L
�
V
M
;

where MW represents the molecular weight of centrinin-3-glycoside [449.2 g/mol; according

to the centrothrin-3-glycoside molar extinction coefficient (26900 L�cm−1�mol−1)], DF repre-

sents diluted multiples, L denotes absorption pool thickness (1 cm), V represents extraction

volume (mL), and M denotes the weight of peel powder.

Measurements of antioxidant capacity

DPPH free radical assay. The DPPH free radical-scavenging assay was performed

according to the method described by Vlase et al. [16]. Briefly, B. heteropoda fruit extract was

dissolved in 70% ethanol at different concentrations and mixed with 2 mL of a freshly prepared

ethanol solution of DPPH free radicals (100 μM). The solution was mixed vigorously and

stored in darkness at room temperature for 30 min, followed by UV–vis spectrometry detec-

tion of the absorbance at 517 nm. The positive control group was measured using vitamin C

(VC). The results were expressed as half maximal inhibitory concentration (IC50), which was

used to indicate the corresponding concentration of the extract when the anti-oxidation free

radical-scavenging capacity was 50%:

DPPH free radical scavenging rate ¼ 1 �
AS � A0

AC

� �

� 100%;

where AC denotes the absorbance value of the control, A0 represents the absorbance value of

the blank, and AS is the absorbance value of the sample.

ABTS free radical assay. The ABTS free radical-scavenging assay was performed accord-

ing to the method described by Lyu et al. [17]. Briefly, 2 mL of 10 mM potassium persulfate

solution and 2 mL of 10 mM ABTS free radical solution were mixed and then stored in the

dark for 12 h. Ethanol was then added to the mixed solution until its UV–vis absorbance value

reached 0.700 ± 0.020 at 736 nm. Subsequently, 2 mL of B. heteropoda fruit extract or ascorbic

acid solution was mixed vigorously with 2 mL of ABTS working solution and stored in the

dark at room temperature for 10 min. The IC50 values of the sample extract were calculated

based on the concentration and capacity designated by the free radical-scavenging curves:

ABTS free radical scavenging rate ¼
AC � AS

AC
� 100%

where AC represents the absorbance value of the control, and AS denotes the absorbance value

of the sample.
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Hydroxyl free radical assay. The hydroxyl free radical assay was performed according to

the method described by Liang et al. [18]. Briefly, 0.5 mL of 7.5 mM ferrous sulfate heptahy-

drate, 0.5 mL of 7.5 mM salicylic acid, 1 mL of B. heteropoda fruit extract, and 0.2 mL of 30%

hydrogen peroxide were mixed and incubated for 30 min in a water bath at 37 ˚C. After cool-

ing, the absorbances of the hydroxyl radical sample, blank, and control groups were deter-

mined at 510 nm on the UV–vis spectrometer, and hydroxyl radical scavenging activity

(HRSA) was determine as follows:

HRSAð%Þ ¼
AS � AC

A0 � AC

� �

� 100%

where AC denotes the absorbance value of the control, A0 represents the absorbance value of

the blank, and AS represents the absorbance value of the sample.

Superoxide anion free radical assay. The superoxide anion free radical assay was per-

formed according to the method described by Liu et al. [15]. Briefly, 4.5 mL of 50 mM Tris–

hydrochloric acid and 1 mL of B. heteropoda fruit extract were mixed and incubated 15 min in

a water bath at 25 ˚C, followed by the addition of 0.4 mL of 5 mM pyrogallic acid and incuba-

tion for 5 min in a water bath at 25 ˚C. Subsequently, 0.1 mL of 8 M hydrochloric acid was

added to terminate the reaction, and the absorbance values of the sample, blank, and control

were measured at 325 nm on the UV–vis spectrometer to determine the following rate:

Superoxide anion scavenging rate ¼
Ac � AS

AS
� 100%

where AC denotes the absorbance value of the control, and AS represents the absorbance value

of the sample.

Chromatography and mass spectrometry

Chromatographic conditions. Chromatographic separations were performed using an

ultra-high performance liquid chromatography (UPLC) 1290 system with a Waters UPLC

BEH C18 column (1.7 μm 2.1 × 100 mm; Agilent Technologies). The flow rate was set to 0.4

mL/min, and the sample-injection volume was set to 5 μL. The mobile phases comprised 0.1%

formic acid in water (A) and 0.1% formic acid in acetonitrile (B). The multi-step linear elution

gradient program was as follows: 0 to 3.5 min, 95% to 85% A; 3.5 to 6 min, 85% to 70% A; 6 to

6.5 min, 70% to 70% A; 6.5 to 12 min, 70% to 30% A; 12 to 12.5 min, 30% to 30% A; 12.5 to 18

min, 30% to 0% A; 18 to 25 min, 0% to 0% A; 25 to 26 min, 0% to 95% A; and 26 to 30 min,

95% A.

MS conditions. We used a Q Exactive Focus mass spectrometer coupled with Xcalibur

software (Thermo Fisher Scientific, Waltham, MA, USA) was employed to obtain MS and MS/

MS data in independent data acquisition mode. During each acquisition cycle, the mass range

was set to a range of 100 to 1500, the top three data points in every cycle were screened, and

the corresponding MS/MS data were further acquired. The following parameters were used:

sheath gas-flow rate, 45 Arb; auxiliary gas-flow rate, 15 Arb; capillary temperature, 400 ˚C, full

MS resolution, 70,000; MS/MS resolution, 17,500; collision energy, 15/30/45 in normalized

collision energy mode; and spray voltage, 4.0 kV (positive) or −3.6 kV (negative).

Statistical analysis

All experimental data were collected in triplicate, and data were expressed as the

mean ± standard deviation. Statistical analyses were performed using GraphPad Prism (v.7.0;

GraphPad Software, La Jolla, CA, USA) and SPSS (v.23.0; IBM Corp. Armonk, NY, USA).
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Results

Nutritional composition of B. heteropoda fruit

Proximate composition of B. heteropoda fruit. The major nutrients of B. heteropoda
fruit are summarized in Table 1 and S1 File. The major components were identified as water,

crude fiber, and total protein, with values of 75.22±1.75 g/100 g, 17.72±0.52 g/100 g, and 2.55

±0.03 g/100 g, respectively Ash content was 1.31±0.04 g/100 g, indicating that the fruit is rich

in minerals. The total sugar and total fat contents were 0.05±0.00 g/100 g and 0.51±0.02 g/100

g, respectively, and the energy content per 100 g of fruit was 363.52 kJ.

Minerals. We detected a total of eight minerals in B. heteropoda fruit (Table 2 and S1

File). We found that K (582.67±8.02 mg/100 g) was the most abundant element [19], with Ca

(78.5±1.62 mg/100 g), P (73.24±1.72 mg/100 g), and Mg (30.61±0.56 mg/100 g) also abundant.

Amino acids. The 16 amino acids identified in B. heteropoda fruit are shown in Table 2

and S1 File. Glutamic acid was the most abundant amino acid, followed by aspartic acid, argi-

nine, lysine, and glycine. The fruit contained six types of essential amino acids (EAAs) to a

value of 0.9 g/100 g fruit weight and accounting for 31.8% of the total amino acids, with the

content of the remaining 10 non-EAAs (NEAAs) at 1.93 g/100 g fruit weight.

Fatty acids. The fatty acid content in B. heteropoda fruit is presented in Table 3 and S1

File. We identified a total of 10 different fatty acids, including saturated and unsaturated varie-

ties. Tetrahexanoic acid (C24:0) was the dominant fatty acid, followed by octadecentrienoic

acid (C18:3) and octadecadienoic acid (C18:2). The unsaturated fatty acid (UFA) content was

slightly higher than that of the saturated fatty acid (SFA) content (51.51% vs. 48.48%).

TPC, TFC, and TAC

The TPC, TFC, and TAC values for B. heteropoda fruit are shown in Fig 1 and S2 File. The

methods used to determine flavonoid and polyphenol contents showed a good linear relation-

ship within the measurement range (r2 = 0.995 and 0.999, respectively), with the following

regression equations used: y = 0.0109x + 0.0157 and y = 0.067x − 0.0173, respectively. The

extraction effect of each solvent (high to low) was methanol > acetone > ethanol for total phe-

nol, total flavonoids, and total anthocyanins. Using methanol as the extraction solvent yielded

TFC, TPC, and TAC values of 108.42 mg/g, 68.55 mg/g, and 19.83 mg/g fresh fruit weight,

respectively. These results suggested that methanol as the extraction solvent obtained higher

total flavonoid and total phenol values.

Antioxidant activity of B. heteropoda fruit extract

The antioxidant activity of the B. heteropoda fruit extracts was evaluated using VC as the con-

trol, with the IC50 values for the DPPH free radical-, ABTS radical-, •OH-, O2•-scavenging

Table 1. Proximate nutritional composition of fresh Berberis heteropoda fruit.

Composition (Unit)

Water (g/100 g) 75.22±1.75

Total fat (g/100 g) 0.506±0.02

Total Protein (g/100 g) 2.55±0.03

Ash (g/100 g) 1.31±0.04

Total sugars (g/100 g) 0.05±0.00

Carbohydrates (g/100 g) 17.72±0.52

Total Energy (kJ) 363.52±7.51

https://doi.org/10.1371/journal.pone.0262622.t001
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Table 2. Nutritional composition (minerals and amino acids) of Berberis heteropoda fruit.

Minerals Composition (mg/100 g FW) Total minerals (%)

Na 1.38±0.03 0.18

K 582.67±8.02 75.73

Ca 78.5±1.62 10.20

Cu 0.27±0.01 0.04

Zn 0.59±0.01 0.08

Fe 2.31±0.05 0.30

Mg 30.61±0.56 3.97

P 73.24±1.72 9.51

Total minerals 769.843

Amino acids Composition (g/100 g FW) Total amino acids (%)

Phenylalanine 0.12±0.01 4.24

Alanine 0.17±0.01 6.01

Methionine 0.015±0.00 0.53

Proline 0.2±0.02 7.07

Glycine 0.21±0.01 7.43

Glutamic acid 0.53±0.01 18.74

Arginine 0.22±0.01 7.78

Lysine 0.21±0.00 7.43

Tyrosine 0.11±0.00 3.89

Leucine 0.18±0.01 6.36

Serine 0.13±0.01 4.60

Threonine 0.13±0.01 4.60

Aspartic acid 0.27±0.01 9.55

Valine 0.15±0.01 5.30

Histidine 0.073±0.00 2.58

Isoleucine 0.11±0.01 3.89

Total amino acids 2.828

FW, fruit weight.

https://doi.org/10.1371/journal.pone.0262622.t002

Table 3. Fatty acid content in Berberis heteropoda fruit.

Fatty acids Formula Composition (g/100 g fatty acid) Proportion (%)

Myristic acid (C14:0) C14H28O2 0.0039 1.41

2-methyl-heptanoic acid (C8:0) C8H16O2 0.0019 0.71

Hexadecanoic acid (C16:0) C16H32O2 0.0285 10.35

Stearyl acid (C18:0) C18H36O2 0.0041 1.50

Octadecenoic acid (C18:1)� C18H32O2 0.0263 9.55

Octadecadienoic acid (C18:2)� C18H32O2 0.0526 19.11

Octadecentrienoic acid (C18:3)� C18H30O2 0.0630 22.86

Arachidic acid (C20:0) C20H40O2 0.0038 1.38

Docosanoic acid (C22:0) CH3(CH2)20COOH 0.0112 4.06

Tetrahexanoic acid (C24:0) CH3(CH2)22COOH 0.0801 29.08

Subtotal 0.2754 100.00

� UFAs

https://doi.org/10.1371/journal.pone.0262622.t003
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abilities at 20.27±0.26 μg/mL, 13.89±0.13 mg/mL, 5.81±0.13 mg/mL, and 0.57±0.02 mg/mL,

respectively (Fig 2 and S2 File). We observed that methanol extract had the best antioxidant

activity, with IC50 values for DPPH radical-, hydroxyl radical-, ABTS radical-, and superoxide

anion radical-scavenging abilities at 20.13 μg/mL, 5.44 mg/mL, 8.79 μg/mL, and 1.35 mg/ mL,

respectively. The IC50 values for methanol extraction were higher than those of VC but lower

than those of ethanol and acetone extraction. The ranking from high to low according to free

radical-scavenging ability was methanol > acetone > ethanol and suggested that B. heteropoda
fruit extracts showed good antioxidant activity based on effective free radical scavenging.

Identification of phenols in B. heteropoda fruit extract using

chromatography and MS

The UPLC-quadrupole time-of-flight (Q-TOF)-MS spectra indicated that the compounds in

the extract of B. heteropoda fruit were primarily identified within 2 min to 10 min and when

the mobile phase was at 15% to 70% ethyl alcohol solution, indicating that the polyphenols of

B. heteropoda fruit belonged to polar compounds (Table 4, S3 File and S1 Fig) [10, 12, 20–38].

Discussion

A previous study on the anthocyanin composition of B. heteropoda fruit considered it as a

potential anthocyanin pigment source [3] and focused on chemical characterization of B. het-
eropoda fruit; however, there has been a comprehensive investigation of the overall nutritional

composition of the fruit. The present study systematically evaluated the major nutrients and

antioxidant properties of B. heteropoda fruits and found them to be rich in various nutrients,

thereby providing evidence for their potential health-related or nutritional use. Moreover, we

identified a total of 32 polyphenols in B. heteropoda fruit extract.

The results revealed that B. heteropoda fruit exhibits nutritional properties suggesting

potential nutraceutical value. The major nutrients of B. heteropoda fruit were comparable to

those of wolfberry (Lycium ruthenicum Murr.), which is a wild plant and widely observed in

Xinjiang [39]. Additionally, the protein content of B. heteropoda fruit was higher than that in

Fig 1. Quantification of TPC (A), TFC (B), and TAC (C) in Berberis heteropoda shrub extract. Comparison of the extraction effect of methanol, acetone,

and ethanol. ��P< 0.05.

https://doi.org/10.1371/journal.pone.0262622.g001
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black mulberry (1.17±0.06%) [19], and the contents of fat and sugar in B. heteropoda fruit were

low, suggesting a low risk for causing obesity and consideration for use as a functional food or

medicine rather than an edible fresh fruit due to its poor taste.

We found that B. heteropoda fruit contains numerous minerals, including Na, K, Ca, Cu,

Zn, Fe, Mg, and P. Previous studies demonstrate that these minerals play important roles in

the physiological function of human tissues, maintaining cellular osmotic pressure, supporting

the pH balance of the body, and regulating specific physiological functions as cofactors [40,

41]. Additionally, we observed that the Na:K ratio in B. heteropoda fruit was 0.002, which

could promote the prevention of hypertension [42]. These findings suggest that B. heteropoda
fruit might be considered helpful for controlling blood pressure.

Fig 2. IC50 values (mg/mL) of different extracts on free radicals. Comparison of IC50 values using methanol, ethanol, acetone, and Vc for extraction and

scavenging of (A) DPPH radical, (B) ABTS radical, (C) hydroxyl radical, and (D) superoxide anion radical. ��P< 0.05.

https://doi.org/10.1371/journal.pone.0262622.g002
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The EAA:NEAA ratio was 0.47, which does not meet the ideal protein condition proposed

by the Food and Agriculture Organization of the United Nations and the World Health Orga-

nization [43]. Therefore, this fruit is not recommended as a high-quality protein food. The per-

centages of glutamic acid, glycine, and aspartic acid were 18.72%, 7.42%, and 9.54%,

respectively, and accounting for>33% of the total amino acids in B. heteropoda fruit. More-

over, the UFA:SFA ratio in B. heteropoda fruit was 1.06, suggesting that it should not be rec-

ommended as a food rich in fatty acids.

Phenolic and flavonoid compounds are as important phytonutrients in plants [44, 45]. Fla-

vonoids are secondary metabolites and abundant [46], and phenols are important plant com-

pounds that mimic the biological effects of vitamin E [47]. A previous study reported that

anthocyanins are rich in many plants and responsible for red, yellow, purple, black, and other

colorful pigments [48]. The basic structural unit of anthocyanins is 2-phenylbenzopyran,

which comprises a C6–C3–C6 backbone [49]. Its unique structure enables it to exert anti-

Table 4. Characterization of phenolic compounds of Berberis heteropoda fruit by UPLC-Q-TOF-MSE.

Compound tR/min Ionization mode Identification Molecular formula MS(m/z) MS2(m/z)

1 1.52 [M-H]− Corilagin C27H22O18 633.0787 261.667; 181.051

2 2.96 [M-H]− Petunidin-3-O-beta-glucopyranoside C22H23O12 477.1030 299.013; 314.043

3 3.67 [M-H]− Cianidanol C15H14O6 289.0719 245.0827

4 4.53 [M-H]− Gossypetin-8-C-glucoside C21H20O13 479.0835 316.0244; 271.216

5 5.03 [M-H]− Syringetin-3-O-glucoside C23H24O13 507.1144 301.067; 345.0604

6 5.50 [M-H]− Myricetin-3-O-galactoside C21H20O13 479.0834 115.0551; 133.014

7 5.80 [M-H]− kaempferol 7-O-glucoside C21H20O11 447.0926 285.0365

8 5.84 [M-H]− Syringetin-3-O-galactoside C23H24O13 507.1143 344.053; 273.032

9 5.85 [M-H]− Flavanomarein C21H22O11 449.1095 287.0572; 150.0037

10 5.89 [M-H]− Luteolin C15H10O6 285.0393 151.0022; 133.0302

11 5.91 [M-H]− Spiraeoside C21H20O12 463.089 301.034; 179.0188

12 6.02 [M-H]− Myricetin C15H10O8 317.0300 137.0248; 151.00568

13 6.14 [M-H]− Luteolin-4’-O-glucoside C21H20O11 447.0927 285.0388

14 6.20 [M-H]− Dihydromyricetin C15H12O8 319.0458 150.999; 107.0111

15 6.73 [M-H]− Morin C15H10O7 301.0356 165.02

16 6.97 [M-H]− Quercetin C15H10O7 301.0357 121.0272; 151.0038; 178.9974

17 7.97 [M-H]− Kaempferol C15H10O6 285.0408

18 8.04 [M-H]− Kaempferide C16H12O6 299.0556 284.0329; 256.036

19 8.19 [M-H]− Isorhamnetin C16H12O7 315.0507 300.029

20 9.56 [M-H]− Galangin C15H10O5 269.0455 225.0558

21 4.52 [M+H]+ Genistein C15H10O5 271.0588 121.028

22 4.75 [M+H]+ Flavokawain B C17H16O4 285.1122 249.1829; 267.141

23 4.85 [M+H]+ Epicatechin C15H14O6 291.0858 123.0446; 139.039

24 5.05 [M+H]+ Herbacetin C15H10O7 303.0478 257.042

25 5.08 [M+H]+ Dihydro-Quer C15H12O7 305.0650 289.631; 290.365

26 5.55 [M+H]+ Flavonol base + 4O, 1MeO C16H12O8 333.0602 58.065; 318.036

27 7.25 [M+H]+ Naringenin-7-O-glucoside C21H22O10 435.1279 153.0385; 273.0744

28 7.29 [M+H]+ Phlorizin C21H24O10 437.1445 107.045; 275.0905

29 7.75 [M+H]+ Hyperoside C21H20O12 465.1028 61.0285; 85.0285

30 8.22 [M+H]+ Aurantio-obtusin beta-D-glucoside C23H24O12 493.1329 331.0826

31 9.92 [M+H]+ Kaempferol 3-glucorhamnoside C27H30O15 595.1650 85.0305; 287.0686

32 9.92 [M+H]+ Vicenin 2 C27H30O15 595.1658 325.071; 317.0645

https://doi.org/10.1371/journal.pone.0262622.t004
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oxidation, anti-inflammation, and antitumor functions [50], as well as those related to the pre-

vention of cardiovascular disease and enhancement of vision [51]. In the present study, we

found that the anthocyanin content of B. heteropoda fruit was higher than that of wolfberry

[39] but lower than that of Passiflora foetida [10]. Moreover, the TPC of B. heteropoda fruit

was lower than barberry (Berberis vulgaris L.), and calafate (Berberis microphylla) fruits and

other native berries, suggesting that the antioxidant activity of B. heteropoda is likely lower

than that of several other Berberis fruits [52, 53]. A possible reason for this could be that the

TPC is significantly related to geographical, climate, and soil conditions. Furthermore, we

found the anthocyanin content in B. heteropoda fruit was inconsistent with that of a previous

study [3], which reported a TAC of 20.37 mg/g fresh weight of B. heteropoda. A possible expla-

nation could be that the samples in the present study were obtained from the Nanshan Moun-

tain area of Urumqi City (latitude 89˚2903600E, longitude 43˚2703200N), whereas those in the

previous study were from Daxigou (latitude 44˚260 N, longitude 80˚460 E).

A previous study reported the free radical-scavenging activity of flavonoids and polyphe-

nols from Stachys affinis [54]. The IC50 value is typically used to evaluate antioxidant activity,

with smaller IC50 values indicating stronger antioxidant capacity. The present results indicated

that B. heteropoda fruit extract showed strong scavenging effects on DPPH•, •OH, O2
−•, and

ABTS+•, suggesting that B. heteropoda fruit could be considered an excellent source of natural

antioxidants.

This study has some limitations. First, we did not address the functional monomers of B.

heteropoda fruits, nor did we assess the structures of specific phenolic compounds and their

antioxidant effects. Furthermore, the mechanism of action for the phenolic compounds needs

further evaluation, and the potential effect of B. heteropoda fruits on general human health

needs further assessment.

Conclusions

This study analyzed the major nutrients, mineral elements, fatty acids, and amino acids in B.

heteropoda fruits and identified a wide array of important nutrient components. We found

that B. heteropoda fruits had high TPC, TFC, and TAC values, as well as potentially excellent

antioxidant properties. These findings suggest that B. heteropoda fruit could potentially be

used as a health-promoting food for resisting oxidative damage; however, further studies are

necessary to assess the biological activities of B. heteropoda fruit.
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