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Abstract

Metaheuristic optimization algorithms are one of the most effective methods for solving com-

plex engineering problems. However, the performance of a metaheuristic algorithm is

related to its exploration ability and exploitation ability. Therefore, to further improve the Afri-

can vultures optimization algorithm (AVOA), a new metaheuristic algorithm, an improved

African vultures optimization algorithm based on tent chaotic mapping and time-varying

mechanism (TAVOA), is proposed. First, a tent chaotic map is introduced for population ini-

tialization. Second, the individual’s historical optimal position is recorded and applied to indi-

vidual location updating. Third, a time-varying mechanism is designed to balance the

exploration ability and exploitation ability. To verify the effectiveness and efficiency of

TAVOA, TAVOA is tested on 23 basic benchmark functions, 28 CEC 2013 benchmark func-

tions and 3 common real-world engineering design problems, and compared with AVOA

and 5 other state-of-the-art metaheuristic optimization algorithms. According to the results

of the Wilcoxon rank-sum test with 5%, among the 23 basic benchmark functions, the perfor-

mance of TAVOA has significantly better than that of AVOA on 13 functions. Among the 28

CEC 2013 benchmark functions, the performance of TAVOA on 9 functions is significantly

better than AVOA, and on 17 functions is similar to AVOA. Besides, compared with the six

metaheuristic optimization algorithms, TAVOA also shows good performance in real-world

engineering design problems.

1. Introduction

In the industrial field, optimization problems are often encountered. An optimization problem

gives a set of parameters to make the design goal reach the optimal value under certain con-

straints. Therefore, the optimization problem is an NP-hard problem as it balances time and

accuracy [1]. In recent years, due to the continuous development of computer hardware, an

increasing number of industrial fields have no longer been limited by computing performance

but have begun to pursue higher quality-solutions. Therefore, approximation algorithms have
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been increasingly applied to solve various real-world complex optimization problems, such as

path planning [2], path pursuit [3], feature selection [4], and power dispatching [5], and have

achieved good results [6].

The existing approximate algorithm methods are divided into heuristic optimization algo-

rithms and metaheuristic optimization algorithms [7]. The heuristic algorithm needs to give a

feasible solution to the problem to be optimized under the specified time complexity and space

complexity. However, heuristic algorithms are constructed based on experience, and thus they

can only solve specific optimization problems [8]. The result is that a heuristic optimization

algorithm can easily fall into a locally optimal solution and has received less attention [9].

Therefore, the deviation between the feasible solution and the optimal solution obtained by

the heuristic optimization algorithm is often unpredictable. The metaheuristic optimization

algorithm is an improvement of the heuristic optimization algorithm, and it combines a ran-

dom strategy and a local search strategy. Therefore, although a metaheuristic optimization

algorithm cannot guarantee that the feasible solution obtained is the globally optimal solution,

it can address various challenging complex optimization problems without worrying about

falling into a locally optimal solution [10]. Therefore, an increasing number of scholars have

begun to pay attention to and deeply study metaheuristic optimization algorithms.

According to different design inspirations, metaheuristic optimization algorithms are

divided into single solution-based metaheuristic optimization algorithms and population-

based metaheuristic optimization algorithms [11]. Since only one solution of the single solu-

tion-based metaheuristic optimization algorithm participates in the optimization process, the

search for the whole solution space is not thorough enough, which result in the algorithm eas-

ily falling into a locally optimal solution [12]. The population-based metaheuristic algorithm

involves a population in the optimization process. Individuals in the population can not only

explore more solution space but also exchange solution information with one another, and

thus it is easier to eliminate local trapping [13]. In particular, a nature-inspired metaheuristic

optimization algorithm can better balance the exploration and exploitation stage in the optimi-

zation process [14]. Therefore, a nature-inspired metaheuristic optimization algorithm can use

the exploration ability to avoid falling into a locally optimal solution and use the exploitation

ability to make each solution converge toward a better goal [15]. Therefore, nature-inspired

metaheuristic optimization algorithms have been widely proposed in recent years.

According to different inspired behaviors, nature-inspired metaheuristic optimization algo-

rithms can be divided into four categories: evolution-based, swarm intelligence-based, phys-

ics-based and human behavior-related [11]. In 1983, Kirkpatrick et al. introduced the idea of

annealing into optimization problems and proposed a simulated annealing algorithm (SA)

[16]. SA finds a feasible solution by dynamically adjusting the temperature according to the

value of the fitness function. However, SA depends too much on the initial value, and as a

result it will converge too slowly or fall into a locally optimal solution [17]. In 1992, inspired by

natural selection in Darwin’s theory of biological evolution, Holland proposed a genetic algo-

rithm (GA) [18]. GAs encode a feasible solution into a gene fragment representation and then

update the genes through selection, crossover, mutation and other operations. However, the

GA algorithm has a coding and decoding process. In this process, the selection of feasible solu-

tions is limited, which limits the local search ability, resulting in low accuracy in solving con-

tinuous optimization problems [19]. Particle swarm optimization (PSO) is the earliest

metaheuristic algorithm based on swarm intelligence. It was proposed by Kennedy and Eber-

hart and inspired by bird foraging behavior in 1995 [20]. The PSO algorithm is still widely

used in various fields because its effect is good and its principle is easy to understand. How-

ever, for the more complex optimization problems, the solution found by a PSO cannot meet

the current high-precision requirements [21]. At present, the popular-human behavior related
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metaheuristic algorithm is the teaching–learning-based optimization algorithm (TLBO),

which was proposed by Rao et al. in 2012 [22]. TLBO is a global search through learners’ learn-

ing from teachers and mutual learning between learners. However, TLBO easily falls into local

optimization, resulting in premature convergence of the algorithm [23].

However, since 2009, most researchers, such as Yang and Mirjalili have begun to focus on

swarm intelligence-based metaheuristic algorithms, which are easier to understand. In addi-

tion, the swarm intelligence-based metaheuristic algorithm has a better effect and faster con-

vergence than other metaheuristic algorithms. In 2009, cuckoo search (CS) was proposed

through cuckoo breeding behavior and flight behavior [24]. In the same year, the firefly algo-

rithm (FA) was proposed by simulating the behavior of fireflies in attracting other fireflies

[25]. In 2010, the bat algorithm (BA) was proposed by modeling bat foraging behavior [26]. In

2014, the flower pollination algorithm (FPA) was proposed by simulating the self-pollination

behavior and cross-pollination behavior of flowers [27]. In 2014, the grey wolf optimizer

(GWO) was proposed according to the population living habits and predation behavior of

wolves [28]. In 2015, Mirjalili proposed the ant lion optimizer (ALO) by simulating the preda-

tion behavior of ant lions [29]. In the same year, Mirjalili also proposed a moth-flame opti-

mizer (MFO) through moth behavior [30]. In 2016, Mirjalili also proposed the sine cosine

algorithm (SCA) [31], dragonfly algorithm (DA) [32] and whale optimization algorithm

(WOA) [33]. As the latest new nature-inspired metaheuristic algorithm proposed by Mirjalili

and his collaborators in August 2021, the African vultures optimization algorithm (AVOA)

has great research value [7].

Although researchers around the world have proposed a variety of metaheuristic optimiza-

tion algorithms according to biological habits or natural theory, the exploration ability and

exploitation ability of these metaheuristic optimization algorithms are still difficult to balance.

Therefore, researchers propose different improvement methods based on the existing meta-

heuristic optimization algorithms according to the problems to be solved.

Cuong-Le et al. proposed an algorithm called new movement strategy cuckoo search

(NMS-CS) based on CS to improve the performance of CS for solving optimization problems

[34]. To improve the accuracy of the NMS-CS algorithm and avoid the NMS-CS algorithm

falling into local optimization, a new movement strategy is proposed to modify the step size of

cuckoo in position update. In order to further improve the performance of FA in global opti-

mization problems and obtain better results, Nand et al. proposed an improved firefly algo-

rithm called FA-CMAES [35]. In FA-CMAES, a new step parameter is proposed to improve

the exploitation ability of the algorithm, and the covariance matrix adaptation evolution strat-

egy is embedded to improve the diversity of the population. In order to solve the problem of

controller tuning, Li et al. improved the original bat algorithm and named the improved algo-

rithm as CMOBA, which was extended to the multi-objective field [36]. In CMOBA, in order

to speed up the convergence of the algorithm, a candidate evolution strategy is proposed, and

in order to effectively balance the convergence and diversity of the algorithm, a pairwise com-

petition mechanism is designed. In order to solve unconstrained minimization problems and

real-world engineering problems, Ozsoydan and Baykasoglu proposed chaos and intensifica-

tion enhanced flower pollution algorithm [37]. In this algorithm, three chaotic maps are

applied to the population initialization of FPA. In addition, a new step function is designed in

the algorithm to enhance the local search ability and global search ability of FPA. Tang HW

et al. applied an improved GWO which is named RGWO to the multi-robot cooperative target

search problem in the unknown environment [38]. In RGWO, the best learning strategy and

adaptive inertial weight method are applied to enhance the exploitation ability of the algorithm

and maintain the diversity of the population respectively. In addition, in order to prevent

RGWO from falling into local traps, adaptive speed adjustment strategy and escape
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mechanism are used. In order to solve the problem that the original ALO is easy to fall into the

local optimal solution, Dong et al. used the dynamic opposite learning strategy and the

dynamic random walk method based on dynamic random number to improve the ALO [39].

Because of the lack of population diversity and global search ability of the original MFO, Li

et al. applied the flame generation mechanism based on opposition-based learning and differ-

ential evolution algorithm and the local search mechanism based on shuffled frog leaping algo-

rithm to the original MFO and proposed an improved MFO called ODSFMFO [40]. In order

to enhance the performance of SCA in large-scale global optimization problems, Li et al. pro-

posed a dynamic sine cosine algorithm (DSCA) by designing nonlinear curves [41]. Tian et al.

proposed an adventure circuitous strategy, in which an individual will change the flight direc-

tion when it falls into a local optimal solution, and apply it to DA [42]. In order to enhance the

search performance of WOA in solving high-dimensional problems and improve its efficiency,

Zhang and Wen used random opposition learning in the initialization process of WOA to

increase the diversity of the population, so as to improve the global search ability of the algo-

rithm, and designed two strategies of random differential disturbance and switching parameter

tuning to improve the local search ability of the algorithm [43].

Compared with other metaheuristic algorithms, AVOA has a more comprehensive explora-

tion mechanism and exploitation mechanism. The use of a random strategy increases the

exploration ability of the exploitation mechanism and increases the exploitation ability of the

exploration mechanism. This approach can not only ensure that AVOA does not fall into local

optima and has fast convergence but also ensure that AVOA is not too divergent.

However, even though AVOA has considered the balance between exploration ability and

exploitation ability in its design, there are still three shortcomings. First, although exploitation

has added a certain exploitation mechanism to accelerate the convergence speed in the early

exploration process, it will affect the individual’s global search in the solution space. Without a

more comprehensive global search, AVOA will fall into a locally optimal solution in a later

stage. Second, AVOA uses only the best two individual-pieces of information in the population

in the exploration stage but does not use the individual’s own information. This approach

leads to the slow convergence speed of AVOA in the early stage. Therefore, when solving some

problems with low time consumption requirements or high real-time requirements, finding a

feasible solution cannot meet the requirements. Third, in the later exploitation stage of AVOA,

it is considered that the first good solution and the second good solution have the same impact

on other individuals. However, this assumption cannot balance the exploration ability and

considered ability of AVOA, which leads to the lack of exploration ability in the early stage

and the lack of exploitation ability in the later stage.

Therefore, to solve the above three shortcomings of AVOA, this paper proposes an

improved African vulture optimization algorithm based on tent chaotic mapping and time-

varying mechanism (TAVOA). First, to make TAVOA have a more comprehensive global

exploration ability in the early stage, tent chaos is applied to the initialization of the population

of TAVOA. In this way, each individual can be more evenly distributed in each position in the

solution space during initialization to improve the exploration ability of TAVOA. Second, the

individual’s locally optimal solution is recorded in TAVOA for individual location updating in

the exploration stage. In this way, individual historical information can be used to enhance the

local exploitation ability of TAVOA, and a good feasible solution can be obtained in a short

time. In addition, two time-varying coefficients that vary with the number of iterations are

designed. One of the coefficients decreases with the number of iterations, which is used to

measure the impact of the best individual on the current individual. Another coefficient

increases with the number of iterations, which is used to measure the impact of individual his-

torical optimization on the current individual. This approach can balance the exploration
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ability and exploitation ability of the algorithm. Third, two other time-varying coefficients that

vary with the number of iterations are also designed in the exploitation stage of TAVOA. Simi-

larly, one of the coefficients decreases with the number of iterations, which is used to measure

the impact of the best individual on the current individual. Another coefficient increases with

the number of iterations, which is used to measure the impact of the second-best individual on

the current individual. In this way, we can ensure sufficient exploration ability in the early

stage and sufficient exploitation ability in the later stage, in such a way that TAVOA can obtain

better results.

The rest of this paper is organized as follows. In the Section 2, the design principle and

details of the original AVOA are introduced. In the Section 3, three improvements in TAVOA

are described, and the pseudo code and flow chart of TAVOA are given. In Section 4, in order

to verify the efficiency and effectiveness of TAVOA, TAVOA is tested in 23 common bench-

mark functions and 28 CEC 2013 benchmark functions. The experimental results are com-

pared not only with AVOA, but also with other five state-of-the-art metaheuristic

optimization algorithms. Finally, the shortcomings of TAVOA and the future work of this

paper are introduced in Section 5.

2. AVOA

AVOA is a new nature-inspired metaheuristic algorithm proposed by Abdollahzadeh et al. in

2021, and it has been applied in many practical engineering projects [7]. AVOA was proposed

by simulating and modeling the foraging behavior and living habits of African vultures. In

AVOA, the living habits and foraging behavior of African vultures are simulated using the fol-

lowing criteria.

1. There are N vultures in the African vultures population, and the size of N is set by the algo-

rithm user according to the actual situation. The position space of each vulture is D dimen-

sion, and the size of D depends on the dimension of the problem applied. Similarly,

according to the complexity of the problem to be solved, it is necessary to set a maximum

number of iterations T in advance, which indicate the maximum number of actions of the

vulture. Therefore, the position of each vulture i(1�i�N) at different iterations t(1�t�T)

can be expressed as Eq (1).

Xt
i ¼ ½x

t
i1; � � � ; x

t
id; � � � ; x

t
iD� ð1Þ

2. According to the living habits of African vultures, the vultures in the population are divided

into three groups. If the fitness value of the feasible solution is used to measure the quality

position of the vultures, the first group is to find the best feasible solution among all vul-

tures. The second group is that the feasible solution is the second best among all vultures.

In addition to the above two vulture groups, the remaining vultures are divided into the

third group.

3. The vulture’s foraging habit is through the population together. Therefore, different types

of vultures play different roles in the population.

4. Similarly, if it is assumed that the fitness value of the feasible solution in the population can

represent the advantages and disadvantages of vultures, the weakest and hungriest vultures

correspond to the worst vultures at present. In contrast, the strongest and most abundant

vulture corresponds to the best vulture at present. In AOVA, all vultures try to get close to

the best vultures and stay away from the worst vultures.
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Based on the above four codes of conduct, when solving problems, AOVA can be divided

into five stages to simulate various vulture behaviors in the foraging stage.

a. Phase 1: Population Grouping

According to the second rule, after initialization or before starting the next action, the vul-

tures need to be grouped according to their quality. The vulture, that corresponds to the best

solution is placed in the first group, and the vulture that corresponds to the second best solu-

tion is placed in the second group. The remaining vultures are placed in the third group. Since

both the first- and second-best vultures have guiding effects, Eq (2) is designed to select which

vulture should be moved toward in the current iteration.

Rt
i ¼

BestVulturet
1
; pt

i ¼ L1

BestVulturet
2
; pt

i ¼ L2

ð2Þ

(

where BestVulturet
1
¼ ½bt

11
; � � � ; bt

1d; � � � ; b
t
1D�means the best vulture, BestVulturet

2
¼

½bt
21
; � � � ; bt

2d; � � � ; b
t
2D�means the second best vulture, L1 and L2 are two random numbers in

the range [0,1], the sum of the two numbers is 1, pt
i is obtained according to the roulette wheel

strategy, and its calculation formula is shown in Eq (3).

pt
i ¼

f tiPm
i¼1

f ti
ð3Þ

where f ti represents the fitness value of the first group and second group vultures, and m repre-

sents the total number of first group and second group vultures.

In summary, the relationships between vultures are shown in Fig 1.

where α represents the first group of vultures, β indicates the second group of vultures, and

γ indicates the third group of vultures. Then, the target vulture is obtained through relevant

parameters.

b. Phase 2: The Hunger of Vultures

If the vulture is not very hungry, it has enough strength to go farther to find food. In con-

trast, if the vulture feels particularly hungry at present, it does not have enough physical

strength to support its long-distance flight. Therefore, hungry vultures will become particularly

aggressive, and as a result, they will stay close to the vultures with food instead of looking for

food by themselves. Therefore, based on the above behavior, the exploration stage and exploi-

tation stage of vultures can be constructed. The degree of hunger is used as a sign of the

Fig 1. The relationship among the AVOA.

https://doi.org/10.1371/journal.pone.0260725.g001
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transition of vultures from the exploration stage to the exploitation stage. The hunger degree

Ft
i of the ith vulture at the tth iteration can be calculated by Eq (4).

Ft
i ¼ 2� randt

i1 þ 1
� �

� zt � 1 �
t
T

� �

þ gt ð4Þ

where randt
i is a random number in the range of [0,1], zt is a random number in the range of

[−1,1], and gt is calculated by Eq (5).

gt ¼ ht � sink p

2
�

t
T

� �

þ cos
p

2
�

t
T

� �

� 1

� �

ð5Þ

where ht is a random number in the range of [−2,2], and k is a parameter set in advance, which

indicates the probability of the vulture executing the exploitation stage. A larger k indicates

that the final optimization stage is more likely to enter the exploration stage. In contrast, a

smaller k indicates that the final optimization stage is more likely to enter the exploitation

stage.

According to the design principle of the formula, Ft
i will gradually decrease with the

increase in the number of iterations, and the decreasing range will continue to increase. There-

fore, when jFt
i j is greater than 1, vultures carry out the exploration stage and look for new food

in different areas. When jFt
i j is less than 1, vultures go to the exploitation stage to find better

food near the current area.

c. Phase 3: Exploration Stage

In nature, vultures have very good eyesight, and thus, they can efficiently find food and

dying animals. Therefore, when looking for food, vultures first use a period of time to judge

their surrounding environment and then go through a long flight to find the food [44]. In

AVOA, the author designs two exploration behaviors and uses a parameter p1 to decide what

type of behavior the vulture will take this time. This parameter p1 is given with the initialization

of the algorithm, and the range is [0,1].

AVOA determines which exploration method the vulture adopts according to a random

number, which is in the range [0,1] and is greater than or less than p1. The exploration stage of

the vulture can be expressed as in Eq (6).

Xtþ1

i ¼
Rt

i � Dt
i � Ft

i ; p1 � randt
p1

Rt
i � Ft

i þ randt
i2 � ðub � lbÞ � randt

i3 þ lb
� �

; p1 < randt
p1

ð6Þ

(

where Xtþ1
i represents the position of the ith vulture at the t+1th iteration, randt

p1
, randt

i2 and

randt
i3 are random numbers that are uniformly distributed in the range [0,1], Rt

i is obtained

according to Eq (2), Ft is calculated according to Eq (4), ub and lb represent the upper and

lower bounds of the solution of the problem, and Dt
i is calculated by Eq (7) to represent the dis-

tance between the vulture and the current optimal vulture.

Dt
i ¼ jC � Rt

i � Xt
i j ð7Þ

where Xt
i represents the position of the ith vulture at the tth iteration, and C is a random num-

ber that is evenly distributed in the range [0,2].

d. Phase 4: Exploitation Stage (Medium)

To avoid the imbalance between the exploration ability and exploitation ability caused by

too fast of a transition of the algorithm in the medium term, when the value of jFt
i j is between

0.5 and 1, the vulture will enter the medium-term exploitation stage. In the medium-term

exploitation stage, a parameter p2 with a range of [0,1] is still used. This parameter is used to
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determine whether the vulture performs food competition or rotating flight. Therefore, when

entering the medium-term exploitation stage, a random number randt
p2

in the range [0,1] will

be randomly generated before the vultures act. When randt
p2

is greater than or equal to param-

eter p2, the vultures perform food competition. In contrast, when randt
p2

is less than parameter

p2, the rotating flight behavior is performed.

(1) Food Competition

When the value of jFt
i j is between 0.5 and 1, the result is that the vulture is full and energetic.

Therefore, when the vultures gather together at this time, the strong vultures are unwilling to

share their food, while the weak vultures try to gather together and attack the strong vultures

to obtain food. Based on this behavior, the vultures’ position update formula can be expressed

as in Eq (8).

Xtþ1

i ¼ Dt
i � ðF

t
i þ randt

i4Þ � dt
i ð8Þ

where Dt
i is calculated by Eq (7), Ft is calculated by Eq (4), randt

i4 is a random number that is

uniformly distributed in the range [0,1], and Dt
i is calculated by Eq (9).

dt
i ¼ Rt

i � Xt
i ð9Þ

(2) Rotating Flight

When the vulture is full and energetic, the vulture will not only show food competition

behavior but also hover at high altitude. AVOA uses a spiral model to model this behavior.

Therefore, in the rotating flight behavior, the position update formula of the vultures can be

expressed as in Eq (10).

Xtþ1

i ¼ Rt
i � ðS

t
i1 þ St

i2Þ ð10Þ

where St
i1 and St

i2 are calculated by Eq (11) and Eq (12), respectively.

St
i1 ¼ Rt

i �
randt

5
� Xt

i

2p

� �

� cosðXt
i Þ ð11Þ

St
i2 ¼ Rt

i �
randt

6
� Xt

i

2p

� �

� sinðXt
i Þ ð12Þ

where randt
5

and randt
6

are random numbers uniformly distributed in the range [0,1].

e. Phase 5: Exploitation stage (later)

When the value of jFt
i j is less than 0.5, almost all vultures in the population have been full,

but the best two types of vultures have become hungry and weak after long-term exercise. At

this time, vultures will attack food, and many types of vultures will gather in the same food

source. Therefore, in the later exploitation stage, there is also a parameter p3 within the range

[0,1]. This parameter is used to determine whether vultures perform attack behavior or aggre-

gation behavior. Therefore, when entering the later exploitation stage, a random number

randt
p3

in the range [0,1] will be randomly generated before the vultures act. When randt
p3

is

greater than or equal to parameter p3, the vultures exhibit aggregation behavior. In contrast,

when randt
p3

is less than parameter p3, the vulture conducts attack behavior.

(1) Aggregation Behavior

When AVOA is in the late stage, a large number of foods have been digested by vultures. A

large number of vultures will gather where there is food, and competition behavior will occur.
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At this stage, the vultures’ position update formula can be expressed as in Eq (13).

Xtþ1

i ¼
At

i1 þ At
i2

2
ð13Þ

where At
i1 and At

i2 are calculated by Eq (14) and Eq (15), respectively.

At
i1 ¼ BestVulturet

1
�

BestVulturet
1
� Xt

i

BestVulturet
1
� ðXt

i Þ
2
� Ft

i ð14Þ

At
i2 ¼ BestVulturet

2
�

BestVulturet
2
� Xt

i

BestVulturet
2
� ðXt

i Þ
2
� Ft

i ð15Þ

(2) Attack Behavior

Similarly, when AVOA is in the late stage, the vulture will also move toward the best vulture

to try to get the little food left. At this stage, the vultures’ position update formula can be

expressed as in Eq (16).

Xtþ1

i ¼ Rt
i � jd

t
i j � Ft

i � LevyðdimÞ ð16Þ

where dt
i is calculated according to Eq (9), dim represents the dimension of the problem solu-

tion, Levy(�) represents the Lévy flight [32], and its calculation formula is as shown in Eq (17).

Levy dimð Þ ¼ 0:01�
r1 � s

jr2j
1
d

ð17Þ

where r1 and r2 are random numbers that are evenly distributed in the range [0,1], δ is a con-

stant, which is usually set to 1.5, and the calculation formula of σ is shown in Eq (18).

s ¼
G 1þ dð Þ � sin pd

2

� �

G 1þ dð Þ � d� 2
d� 1

2ð Þ

 !1
d

ð18Þ

where Γ(x) = (x−1)!.

3. Proposed algorithm

Different from other metaheuristic optimization algorithms, AVOA has a clearer exploration

mechanism and exploitation mechanism. However, AVOA still has some disadvantages, such

as easily falling into a locally optimal solution and having an imbalance between exploration

ability and exploitation ability. To make AVOA more widely used and have a better effect, this

paper includes three innovations in the proposed TAVOA. First, a tent chaotic map is used to

initialize the population, to realize the diversity of the population and avoid the algorithm fall-

ing into a locally optimal solution. Second, making full use of the historical optimal vulture

information, the algorithm can obtain a better solution in the early stage, and as a result, it can

be applied to more engineering fields. Third, the time-varying mechanism is designed to bal-

ance the exploration and exploitation ability of TAVOA, in such a way that the algorithm can

obtain a better solution.

3.1 Tent chaotic mapping for population initialization

Without exception, similar to other metaheuristic optimization algorithms, AVOA uses ran-

domly generated data in the population initialization. However, this approach is not conducive

to population diversity. The diversity of the population can affect the convergence speed and
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the obtained results of the metaheuristic optimization algorithm and can help the metaheuris-

tic optimization algorithm find the globally optimal solution faster [45]. In addition, because

the exploration mechanism and exploitation mechanism of AVOA are especially clear, it is

necessary to guide the population to move in a better direction as much as possible in the

exploration stage. Otherwise, when the algorithm enters the exploitation stage, it will fall into a

locally optimal solution due to the lack of early exploration. Therefore, when there is no prior

experience to know where the globally optimal solution is in the solution space, the population

needs to cover the whole solution space as much as possible. The population initialization of

AVOA is also generated randomly, which cannot cover the whole solution space as much as

possible. Therefore, AVOA easily falls into local optimization.

Fortunately, chaotic mapping has the characteristics of randomness and ergodicity. These

characteristics can maintain the diversity of the population, make the metaheuristic optimiza-

tion algorithm escape the local trap and improve the global exploration ability of the meta-

heuristic optimization algorithm. Kaur and Arora used 10 chaotic maps for tuning parameters

in whale optimization algorithm in 2018, and a large number of experiments show that tent

chaotic map has the best performance among the 10 chaotic maps commonly used at present

[46]. It is worth noting that the chaotic sequence generated by the tent chaotic map is flatter

and more uniform than that generated by other chaotic maps [47]. In addition, Arora et al.

also applied 10 kinds of chaotic maps to the internal search algorithm in 2020, and experi-

ments show that the tent chaotic map improves the performance of the internal search algo-

rithm the most among these 10 chaotic maps, [48]. Similarly, Zarei and Meybodi also applied

13 chaotic maps to learning automata, and experiments still proved that tent chaotic map per-

formed best among them [49].

Therefore, to solve the above problems, tent chaotic mapping is used to initialize the popu-

lation in TAVOA to make the population cover the whole solution space as much evenly as

possible and improve the performance of the algorithm in the exploration stage. Tent chaotic

mapping can be expressed by Eq (19).

xtþ1 ¼ tent xtð Þ ¼

xt

u
; 0 � x < u

1 � xt

1 � u
; u � x � 1

ð19Þ

8
>><

>>:

According to the existing research, when u = 1/2, the uniformity of tent chaotic mapping is

the best [50]. Therefore, to obtain a more evenly distributed sequence, u = 1/2 is used in this

paper. As a result, Eq (19) can be replaced by Eq (20).

xtþ1 ¼ tentðxtÞ ¼
2xt; 0 � x < 0:5

2ð1 � xtÞ; 0:5 � x � 1
ð20Þ

(

Although tent chaotic mapping has made the distribution as uniform as possible, tent cha-

otic mapping still has some disadvantages. The reason is that the byte length of the computer

is limited; as a result, when x is a value, after a certain number of iterations, the value of x will

fall into a fixed value. There are two situations that make tent chaotic mapping fall into a non-

random cycle. One such situation is when the initial value of x belongs to {0.2,0.4,0.6,0.8}. In

another such case, after calculation, the value of x belongs to {0,0.25,0.5,0.75}.

In conclusion, combined with the limited tent chaotic mapping, the population initializa-

tion details of TAVOA are shown in Algorithm 1, where ε represents a very small random

number, and ub and lb represent the upper and lower bounds of the solution of the problem,

respectively.
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Algorithm 1 Population Initialization.
1: Randomly generate a random number a0 ranging from [0,1];
2: while a02{0.2,0.4,0.6,0.8} do
3: Regenerate random number a0, and the range is between [0,1];
4: end while
5: for each vulture i from 1 to N do

6: ai ¼ tentðai� 1Þ ¼
2ai� 1; 0 � ai� 1 < 0:5

2ð1 � ai� 1Þ; 0:5 � ai� 1 � 1
;

(

7: while ai2{0,0.25,0.5,0.75} do
8: ai = ai+ε;
9: end while
10: X0

i ¼ ai � ðub � lbÞ þ lb;

11: end for

3.2 Individual history optimal solution

It can be found from Eq (7) that in the exploration stage, when p1 is greater than or equal to

the random value randt
p1

, the vulture uses only the information of the current optimal vulture.

Although we should explore the unknown area to a great extent in the exploration stage, it will

cause the algorithm to not converge in the early stage. Therefore, a long period of iterating is

needed to reach the exploitation stage before better results can be obtained. However, this cir-

cumstance does not meet many engineering problems with high real-time requirements. In

addition, if the algorithm is too divergent in the early stage, it will result in insufficient exploi-

tation time in the later stage, which will cause the algorithm to fail to converge and fall into a

locally optimal solution. Therefore, to better apply TAVOA in more engineering fields and

obtain better solutions, TAVOA recorded the historical optimal solution of each vulture in the

exploration stage and used it in the location updating. This approach can not only limit the

divergence of the algorithm in the exploration stage but also use the vulture’s own historical

information to ensure that the updated solution will not be too bad.

Therefore, in the exploration stage, when the random number randt
p1

is less than or equal to

parameter p1, Eq (7) is replaced by Eq (21).

Dt
i ¼ jo

t
1
� C � Rt

i þ o
t
2
� C � Pi � Xt

i j ð21Þ

where Pi is the best position that the ith vulture has reached in history, ot
1

and ot
2

are two val-

ues that change with the number of iterations, and the calculation formulas of these two values

are Eq (22) and Eq (23), respectively.

ot
1
¼ 0:2þ

1

1:8þ e0:015� T
2
� tð Þ

ð22Þ

ot
2
¼ �

1

1:8þ e0:015� T
2
� tð Þ
� 0:8 ð23Þ

where T represents the maximum number of iterations, and t represents the current number

of iterations. When t = 500, the iteration diagrams of ot
1

and ot
2

with the number of iterations

are shown in Figs 2 and 3, respectively.

It is worthwhile to note that in Eq (21), we have added two parameters, ot
1

and ot
2
, to con-

trol the influence degree of the optimal vulture and the historical optimal vulture respectively.

The reason for this design is that the size of |Ft| can still be greater than 1 even in the middle

and late stages of the algorithm. At this time, the vulture will still enter the exploration stage.

However, in the middle and late stages of the algorithm, the optimal vulture cannot affect too
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many current vultures; otherwise, the algorithm will not converge. Therefore, the time-varying

mechanism is used in Eqs (22) and (23). It can be seen from Figs 2 and 3 that the curve is rela-

tively flat in the early and late stages of the algorithm and steep in the middle stage of the algo-

rithm. This outcome occurs because the early and late stages of the algorithm need to be stable,

while the middle stage needs a fast transition.

3.3 Time-varying mechanism

It can be found from Eq (13) that in the exploitation stage, when the algorithm is in the late

stage, AVOA believes that the influence of the first group of vultures and the second group of

vultures on the current vulture is the same in the aggregation behavior. However, this is not

the case. In the middle of the algorithm, the second group of vultures could be needed to

increase the exploration ability and prevent the algorithm from falling into a local optimiza-

tion. However, in the later stage of the algorithm, if the influence of the first group of vultures

and the second group of vultures on the current vultures is the same, the exploration ability

and exploitation ability of the algorithm will be similar, resulting in the inability of the algo-

rithm to converge better. Therefore, to enhance the local exploitation ability in the later stage

of TAVOA, two factors that control the influence of the first group of vultures and the second

group of vultures on the current vulture are introduced. In addition, the time-varying mecha-

nism is applied to these two parameters to further balance the exploration ability and exploita-

tion ability of TAVOA.

Therefore, in the development stage, when the value of jFt
i j is less than 0.5 and randt

p3
is

greater than or equal to parameter p3, the position update formula of the vulture is changed

Fig 2. The iteration diagram of ωt
1.

https://doi.org/10.1371/journal.pone.0260725.g002
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from the original Eq (13) to Eq (24).

Xtþ1

i ¼
ot

3
� At

i1 þ o
t
4
� At

i2

2
ð24Þ

where At
i1 and At

i2 are calculated by Eq (14) and Eq (15), respectively, ot
3

and ot
4

are two values

that change with the number of iterations, and the calculation formulas of these two factors

are Eq (25) and Eq (26), respectively.

ot
3
¼ � 0:2� e� 2� t

Tð Þ
2

� 0:6 ð25Þ

ot
4
¼ 0:4þ 0:2� e� 2� t

Tð Þ
2

ð26Þ

where T represents the maximum number of iterations, and t represents the current number

of iterations. When t = 500, the iteration diagrams of ot
3

and ot
4

with the number of iterations

are shown in Figs 4 and 5, respectively.

It should be noted that if you look at it intuitively, you might feel that Fig 3 is similar to Fig

4, and Fig 2 is similar to Fig 5. However, their differences can be found through comparison.

Figs 4 and 5 are not stable as in Figs 2 and 3, but rather are steep in the later stage. This out-

come occurs because ot
3

and ot
4

are applied in the later exploitation stage, which needs to

quickly convert exploration ability into exploitation ability and maintain sufficient exploitation

ability to a certain extent. In addition, in the numerical range, ot
3

and ot
4

are also different

from ot
1

and ot
2

because ot
1

and ot
2

are the influence of controlling the optimal vulture and the

historical optimal vulture on the current vulture respectively. There could be a large difference

Fig 3. The iteration diagram of ωt
2.

https://doi.org/10.1371/journal.pone.0260725.g003
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Fig 4. The iteration diagram of ωt
3.

https://doi.org/10.1371/journal.pone.0260725.g004

Fig 5. The iteration diagram of ωt
4.

https://doi.org/10.1371/journal.pone.0260725.g005
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between the optimal vulture and the historical optimal vulture, and thus, the values of ot
1

and

ot
2

change more. However, ot
3

and ot
4

are the influences of controlling the first group of vul-

tures and the second group of vultures on the current vulture, respectively. In addition, ot
3

and

ot
4

are two factors in the later exploitation stage of the algorithm. Therefore, the difference

between the first group of vultures and the second group of vultures might not be very large.

Therefore, the values of ot
3

and ot
4

change slightly.

3.4 Algorithm framework

In summary, the implementation flow of TAVOA proposed in this paper is shown in Fig 6.

First, TAVOA does not initialize the population randomly, but is generated according to tent

chaotic mapping. Second, the individual history of each vulture will be recorded, and it will

have different effects on the vulture at different stages according to the weight. Finally, the

time-varying mechanism is applied to the aggregation behavior in the vulture exploitation

stage. In the later stage of TAVOA, it enhances its local exploitation ability, accelerates the

convergence speed and obtains better results. The pseudo code of TAVOA is shown in Algo-

rithm 2.
Algorithm 2 Framework of TAVOA.
1: Initialize the population size N and maximum number of iterations
T;
2: Set all parameters that need to be given in advance;
2: Initialize the position X0

i of each vulture according to Algorithm
1;
3: While (current iteration t<T) do
4: Calculate the fitness value of each vulture;
5: Find the best vulture and the second best vulture;
6: Set the best vulture and the second best vulture to BestVulturet

1
and

BestVulturet
2
;

7: for each vulture i from 1 to N do
8: Set Rt

i based on Eq (2);
9: Calculate the hunger degree Ft

i based on Eq (4);
10: Calculate the ot

1
and ot

2
based on Eqs (22) and (23);

11: Calculate the distance Dt
i based on Eq (21);

12: if jFt
i j � 1 then

13: Update the position of ith vulture Xtþ1
i based on Eq (6);

14: else
15: if jFt

i j � 0:5 then
16: if p2 � randt

p2
then

17: Update the position of ith vulture Xtþ1
i based on Eq

(8);
18: else
19: Update the position of ith vulture Xtþ1

i based on Eq
(10);
20: end if
21: else
22: if p3 � randt

p3
then

23: Calculate the ot
3
and ot

4
based on Eqs (25) and (26);

24: Update the position of ith vulture Xtþ1
i based on Eq

(24);
25: else
26: Update the position of ith vulture Xtþ1

i based on Eq
(16);
27: end if
28: end if
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Fig 6. The flowchart of TAVOA.

https://doi.org/10.1371/journal.pone.0260725.g006
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29: end if
30: end for
31: end while
32: Return the best vulture

4. Experiments and results

To verify the efficiency and effectiveness of TAVOA proposed in this paper, TAVOA is tested

on a total of 51 benchmark functions. In this section, in addition to comparison with the origi-

nal AVOA, five other metaheuristic algorithms are selected for comparison with TAVOA pro-

posed in this paper. The five metaheuristic algorithms are the grasshopper optimization

algorithm (GOA) [51], marine predator algorithm (MPA) [52], particle swarm optimization

(PSO) [20], slap swarm algorithm (SSA) [53] and whale optimization algorithm (WOA) [33].

PSO is chosen for comparison because it is the most classical and widely used metaheuristic

optimization algorithm. The remaining four comparison algorithms were proposed in recent

year and have been cited more times.

In addition, the relevant parameters of all comparison algorithms are shown in Table 1.

The parameter settings of the comparison algorithms refer to the references written by the

algorithms’ proposer. Because TAVOA proposed in this paper is an improved algorithm of

AVOA, the parameter settings of TAVOA are consistent with AVOA for fair comparison.

All algorithms are implemented in MATLAB 2020b and run in the Windows 10 Home Chi-

nese 64-bit. The CPU is an Intel Core i7-10700 with 2.90 GHz and the RAM is 8.00G.

Table 1. The parameters setting of all comparison algorithms.

Algorithm Parameter Value Reference

AVOA L1 0.8 [7]

L2 0.2

k 2.5

p1 0.6

p2 0.4

p3 0.6

GOA cmax 1.0 [51]

cmin 0.00004

f 0.5

l 1.5

MPA P 0.5 [52]

FADs 0.2

PSO ω [0.2,0.9] [20]

c1 2

c2 2

SSA Leader position update probability 0.5 [53]

WOA Convergence constant! a! [2,0] [33]

Spiral factor b 1

TAVOA L1 0.8 -

L2 0.2

k 2.5

p1 0.6

p2 0.4

p3 0.6

https://doi.org/10.1371/journal.pone.0260725.t001
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4.1 Benchmark functions and common parameters

In this paper, a total of 51 benchmark functions are applied to test the performance of the

metaheuristic optimization algorithm. These 51 benchmark functions can be divided into two

sets. One set is 23 basic benchmark functions, which are widely used to test the performance of

the metaheuristic optimization algorithms [51]. The details of the first set of 23 basic bench-

mark functions are shown in Table 2.

However, these 23 basic benchmark functions are relatively simple, and most algorithms

can converge in a relatively short number of iterations. Therefore, these 23 test functions are

mainly used to test the performance of the algorithm in solving general engineering problems.

The other set is the more professional 28 CEC 2013 benchmark functions [54]. These 28

benchmark functions were proposed by Liang JJ et al. in 2013 and have widely and deeply

tested the performance of metaheuristic algorithms. In addition, the 28 CEC 2013 benchmark

functions can better reflect the ultimate performance of the metaheuristic optimization

algorithm.

The first set of basic benchmark functions can be divided into three groups according to

the characteristics of functions. The first is unimodal functions (f1−f7), which is used to test

the performance of the algorithm in solving simple problems. The second group is multi-

modal functions (f8−f13), and the third group is multimodal functions with fixed dimension

((f14−f23). The second and third groups of basic benchmark functions are used to test the

diversity of the metaheuristic optimization algorithms.

The second set of CEC 2013 functions can also be divided into three groups according to

the characteristics of the functions. The first group is unimodal functions (F1−F5), corre-

sponding to the functions in this paper (f24−f28). The second group is multi-modal functions

(F6−F20), corresponding to the functions in this paper (f29−f43). The third group is the com-

position functions (F21−F28), corresponding to the functions in this paper (f44−f51).

In addition, to make the experiment fairer and more persuasive, the following common

parameters are set for all experiments:

1. Number of individuals in the population: Num = 30.

2. Dimension of solution space: Dim = 30.

3. Number of independent runs: RunNum = 30.

The first set of basic benchmark functions more easily converges and achieves stable results.

The second set of CEC 2013 benchmark functions is more complex and difficult to converge.

Therefore, for the two sets of benchmark functions, the maximum number of iterations in this

paper is different.

1. For the first set of 23 basic benchmark functions, the maximum number of iterations:

MaxT1 = 500.

2. For the second set of 28 CEC 2013 benchmark functions, the maximum number of itera-

tions: MaxT2 = 2×105.

In each function, the best value, the worst value, the mean value and the standard deviation

are statistically used for algorithm comparison. In addition, we select the best algorithm

according to the mean value of each algorithm based on the results run 30 independently

times, and express it in boldface. If the mean values are the same, it is considered that the algo-

rithm with a small standard deviation is better. In addition, the Wilcoxon rank-sum test with

5% is used to measure whether there was a significant difference between TAVOA and other

comparison algorithms. In the Wilcoxon rank-sum test results, “+/ = /-” is used to indicate
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that the performance of TAVOA on a function is “better than/similar to/worse than” a com-

parison algorithm. In order to more intuitively show the performance differences between

algorithms, in this paper, in addition to the Wilcoxon rank-sum test results in each benchmark

function between TAVOA and comparison algorithm is listed, the statistical comparison of

the Wilcoxon rank-sum test in each set of benchmark functions is also listed.

However, none of the metaheuristic optimization algorithms can achieve the best results in

all test functions. The main purpose of this paper is to compare TAVOA and AVOA, and ver-

ify how much performance TAVOA proposed in this paper can improve. Therefore, if

TAVOA achieves better results than AVOA in a function, but is not the best of all comparison

algorithms, it is marked with an underline.

4.2 Experimental results comparison on the first set functions

In Table 3, the experimental results of TAVOA and six comparison algorithms in the basic

unimodal reference function are shown.

As seen from Table 3, the mean value and standard deviation of TAVOA are better than the

comparison algorithms on functions f1, f2, f3, f4 and f7. Especially on functions f1 and f7,

TAVOA finds the best solution to these functions. Although AVOA can also find the best

Table 3. Experimental results of basic unimodal benchmark functions (f1−f7).

Function GOA MPA PSO SSA WOA AVOA TAVOA

f1 Best 1.62E+000 3.08E-025 6.98E-004 2.09E-008 1.86E-084 0.00E+000 0.00E+000

Worst 6.90E+001 1.55E-022 7.89E-001 9.80E-007 1.36E-072 3.18E-288 0.00E+000

Mean 3.50E+001 4.11E-023 3.55E-002 2.06E-007 5.05E-074 1.06E-289 0.00E+000

Std 1.90E+001 4.30E-023 1.43E-001 2.19E-007 2.47E-073 6.44E-299 0.00E+000

f2 Best 1.45E+000 7.89E-016 2.86E-003 1.07E-001 9.71E-059 6.29E-190 3.87E-236

Worst 1.19E+002 1.29E-012 2.00E+001 6.08E+000 7.17E-049 3.51E-144 4.66E-209

Mean 2.19E+001 2.23E-013 1.02E+000 1.84E+000 3.02E-050 1.23E-145 1.63E-210

Std 2.62E+001 2.76E-013 4.02E+000 1.59E+000 1.32E-049 6.41E-145 8.50E-210

f3 Best 8.30E+002 3.84E-008 6.71E+002 3.60E+002 2.53E+004 8.32E-293 0.00E+000

Worst 6.87E+003 1.43E-003 6.84E+003 3.30E+003 8.41E+004 1.66E-203 0.00E+000

Mean 3.34E+003 1.63E-004 1.87E+003 1.59E+003 4.58E+004 5.54E-205 0.00E+000

Std 1.62E+003 2.92E-004 1.74E+003 8.29E+003 1.40E+004 3.03E-204 0.00E+000

f4 Best 7.74E+000 4.12E-010 4.64E+000 3.13E+000 3.47E+000 3.00E-171 3.09E-234

Worst 2.20E+001 8.54E-009 1.00E+001 2.10E+001 8.84E+001 2.92E-149 1.96E-201

Mean 1.45E+001 3.11E-009 6.77E+000 1.12E+001 4.60E+001 9.92E-151 6.53E-203

Std 3.56E+000 1.56E-009 1.33E+000 4.14E+000 2.95E+001 5.33E-150 3.57E-202

f5 Best 3.29E+002 2.44E+001 2.82E+001 2.58E+001 2.71E+001 1.14E-006 4.79E-005

Worst 1.65E+004 2.61E+001 9.01E+004 3.31E+003 2.88E+001 2.86E-004 2.05E-002

Mean 3.58E+003 2.54E+001 6.33E+003 4.09E+002 2.81E+001 7.06E-005 3.32E-003

Std 3.39E+003 4.53E-001 2.28E+004 6.58E+002 4.64E-001 6.58E-005 4.50E-003

f6 Best 8.94E+000 2.08E-008 4.62E-004 2.63E-008 6.54E-002 3.98E-008 2.18E-007

Worst 8.48E+001 1.05E-007 1.93E-001 8.17E-007 6.49E-001 1.61E-006 1.06E-005

Mean 3.67E+001 4.33E-008 1.40E-002 1.74E-007 3.34E-001 5.75E-007 3.97E-006

Std 2.03E+001 1.87E-008 3.95E-002 1.90E-007 1.52E-001 3.78E-007 2.94E-006

f7 Best 2.19E-002 5.98E-004 2.42E-002 8.27E-002 3.40E-004 6.96E-006 6.95E-006

Worst 8.10E-002 2.72E-003 7.28E-002 3.40E-001 2.02E-002 9.67E-004 5.96E-004

Mean 4.85E-002 1.47E-003 4.75E-002 1.75E-001 3.87E-003 2.21E-004 1.29E-004

Std 1.67E-002 6.22E-004 1.32E-002 7.18E-002 4.13E-003 2.32E-004 1.32E-004

https://doi.org/10.1371/journal.pone.0260725.t003
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solution on function f1, the performance of AVOA is not as stable as TAVOA. In 30 indepen-

dent experiments, TAVOA can obtain the best solution to function f1 every time, but AVOA

cannot. On function f5, TAVOA achieves only slightly worse results than AVOA. On function

f6, TAVOA achieves worse results than MPA and AVOA. However, overall, TAVOA performs

best among the seven basic unimodal benchmark functions.

To more intuitively analyze the performance of the algorithms and the changes in the solu-

tions obtained by the algorithms during the running of the algorithm, the process of conver-

gence of TAVOA and six comparison functions on 7 basic unimodal benchmark functions is

shown in Fig 7.

As seen from Fig 7, TAVOA and AVOA have better performance on functions f1, f2, f3, f4,

f5 and f6 than the other five comparison algorithms. In addition, by observing the convergence

curves on functions f1, f2, f3, f4 and f7, it can be found that although the convergence trend of

TAVOA is similar to that of AVOA, the results obtained by TAVOA are always better than

those obtained by AVOA at the same number of iterations. Especially in functions f2 and f4,

TAVOA can maintain the original convergence speed and obtain better results when AVOA

slows down and tends to be stable in the later stage. On function f7, it can be seen that

TAVOA achieves better results than AVOA at the beginning. When AVOA falls into local

optimization in the medium term, TAVOA can jump out of local optimization and achieve

better results. In addition, on function f5, although TAVOA does not achieve the same good

result as AVOA at the beginning, TAVOA can jump out of the local trap in a short time, and

the result achieved in the middle is better than AVOA. Similarly, on function f6, TAVOA can

achieve good results at the beginning and maintain the best results in the early and middle

stages. Although it is not as good as MPA and AVOA in the later stage, the difference is not

very large.

Therefore, TAVOA shows good performance in these seven basic unimodal functions.

Because TAVOA can obtain good solutions in the early and middle stages, it can solve prob-

lems with high real-time requirements.

In Table 4, the experimental results of TAVOA and six comparison algorithms in the basic

multi-modal reference function are shown.

As seen from Table 4, the mean value and standard deviation obtained by TAVOA on func-

tion f8 are better than those of the comparison algorithms. In addition, on function f9,

TAVOA, like MPA, WOA and AVOA, achieved the global optimal result of the benchmark

function in each time of 30 independent experiments. On function f11, TAVOA, similar to

MPA and AVOA, achieved the globally optimal result of the benchmark function in each time

of 30 independent experiments. On function f10, although the best value, worst value and

mean value obtained by TAVOA are the same as AVOA, TAVOA is not as stable as AVOA.

On functions f12 and f13, the mean value and standard deviation obtained by TAVOA are not

as good as AVOA, but they are still better than the remaining five comparison algorithms.

In conclusion, although the performance of TAVOA in the six basic multi-modal functions

is not the best, it is not much worse than AVOA.

The process of convergence of TAVOA and six comparison functions on 6 basic multi-

modal benchmark functions is shown in Fig 8.

As seen from Fig 8, on function f8, TAVOA can obtain better results than other algorithms

at the beginning and keep a better result all of the time. On function f10, although TAVOA is

less stable than AVOA in Table 3, it can be seen in Fig 8 that TAVOA can achieve the best

results faster than AVOA. In addition, in functions f9 and f11, TAVOA and AVOA can obtain

the best solution of the function at the beginning. Although MPA and SSA can also obtain the

best solution of the function in functions f9 and f11, the speed of MPa and SSA to obtain the

best solution is slower than TAVOA and AVOA. Moreover, the stability of SSA in function f11
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Fig 7. Convergence process on basic unimodal benchmark functions.

https://doi.org/10.1371/journal.pone.0260725.g007
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is poor, and the best solution of the function cannot be obtained every time. In function f12,

the convergence curve of TAVOA decreases rapidly when TAVOA changes from the explora-

tion stage to the exploitation stage, and better results are found. In function f13, TAVOA per-

forms worse than AVOA but better than the other five comparison algorithms.

In Table 5, the experimental results of TAVOA and six comparison algorithms on the basic

fixed-dimension multi-modal functions are shown.

As seen from Table 5, the best value, the worst value and the mean value of 30 independent

runs obtained by TAVOA on function f16 are consistent with the other six comparison algo-

rithms, but the standard deviation of 30 independent runs is smaller than the other six com-

parison algorithms. Similarly, on functions f18 and f19, the best value, the worst value and the

average value of 30 independent runs obtained by TAVOA are consistent with the remaining

five comparison algorithms except for GOA, but the standard deviation of 30 independent

runs is smaller than these five comparison algorithms. On functions f21, f22 and f23, TAVOA

obtained a better mean value and standard deviation than GOA, PSO, SSA and WOA in 30

independent operations. In addition, on these three functions, the mean value and standard

deviation obtained by TAVOA in 30 independent runs are the same as MPA and AVOA, but

the standard deviation of 30 independent runs is 0. In other words, TAVOA can obtain the

best solution every time on the three functions f21, f22 and f23.

On function f17, TAVOA shows the same performance as MPA, PSO and AVOA. The best

solution to the function can be obtained every time in 30 independent runs. On functions f14,

f15 and f20, although TAVOA does not show the best performance among all algorithms, its

Table 4. Experimental results of basic multi-modal benchmark functions (f8−f13).

Function GOA MPA PSO SSA WOA AVOA TAVOA

f8 Best -8.59E+003 -9.81E+003 -9.63E+003 -8.97E+003 -1.26E+004 -1.26E+004 -1.26E+004

Worst -5.88E+003 -7.98E+003 -7.30E+003 -6.10E+003 -7.47E+003 -8.74E+003 -1.06E+004

Mean -7.39E+003 -8.88E+003 -8.50E+003 -7.29E+003 -1.03E+004 -1.22E+004 -1.24E+004

Std 6.66E+002 4.84E+002 5.73E+002 7.26E+002 1.82E+003 8.45E+002 4.78E+002

f9 Best 5.74E+001 0.00E+000 2.69E+001 1.69E+001 0.00E+000 0.00E+000 0.00E+000

Worst 1.60E+002 0.00E+000 9.39E+001 1.33E+002 0.00E+000 0.00E+000 0.00E+000

Mean 9.77E+001 0.00E+000 5.32E+001 5.64E+001 0.00E+000 0.00E+000 0.00E+000

Std 2.92E+001 0.00E+000 1.32E+001 2.37E+001 0.00E+000 0.00E+000 0.00E+000

f10 Best 3.61E+000 3.49E-013 1.04E-002 5.39E-005 8.88E-016 8.88E-016 8.88E-016

Worst 9.42E+000 3.82E-012 1.78E+000 4.30E+000 1.51E-014 8.88E-016 8.88E-016

Mean 5.46E+000 1.55E-012 5.01E-001 2.48E+000 5.15E-015 8.88E-016 8.88E-016

Std 1.47E+000 8.60E-013 6.50E-001 7.96E-001 3.29E-015 0.00E+000 4.01E-031

f11 Best 1.00E+000 0.00E+000 6.67E-003 8.08E-004 0.00E+000 0.00E+000 0.00E+000

Worst 1.31E+000 0.00E+000 9.69E-002 5.64E-002 2.36E-001 0.00E+000 0.00E+000

Mean 1.15E+000 0.00E+000 3.58E-002 1.68E-002 7.87E-003 0.00E+000 0.00E+000

Std 7.99E-002 0.00E+000 2.41E-002 1.44E-002 4.31E-002 0.00E+000 0.00E+000

f12 Best 4.51E+000 1.10E-009 1.98E-005 1.90E+000 3.92E-003 5.72E-009 2.35E-008

Worst 1.54E+001 1.25E-003 1.45E+000 2.08E+001 1.57E-001 7.99E-008 3.23E-007

Mean 8.98E+000 4.26E-005 1.46E-001 7.69E+000 2.48E-002 2.77E-008 1.49E-007

Std 3.12E+000 2.28E-004 3.04E-001 4.36E+000 3.26E-002 1.61E-008 9.04E-008

f13 Best 5.60E+000 2.80E-008 1.21E-003 5.79E-002 1.75E-001 2.54E-009 1.67E-006

Worst 8.56E+003 9.94E-002 8.18E-001 5.60E+001 1.59E+000 2.84E-007 1.11E-002

Mean 3.20E+002 8.75E-003 1.07E-001 1.57E+001 5.90E-001 4.83E-008 3.89E-004

Std 1.56E+003 2.06E-002 1.79E-001 1.39E+001 3.09E-001 5.56E-008 2.02E-003

https://doi.org/10.1371/journal.pone.0260725.t004
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Fig 8. Convergence process on basic multi-modal benchmark functions.

https://doi.org/10.1371/journal.pone.0260725.g008
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mean value and standard deviation obtained in 30 independent runs are better than AVOA.

This finding still shows that TAVOA proposed in this paper does improve the performance of

AVOA.

In conclusion, TAVOA performs quite well in 10 basic fixed-dimension multi-modal func-

tions and is better than the other 6 algorithms in 7 functions. On the remaining three func-

tions, the performance of TAVOA is also better than that of AVOA.

Table 5. Experimental results of basic fixed-dimension multi-modal benchmark functions (f14−f23).

Function GOA MPA PSO SSA WOA AVOA TAVOA

f14 Best 9.98E-001 9.98E-001 9.98E-001 9.98E-001 9.98E-001 9.98E-001 9.98E-001

Worst 9.98E-001 9.98E-001 9.98E-001 2.98E+000 1.08E+001 2.98E+000 2.98E+000

Mean 9.98E-001 9.98E-001 9.98E-001 1.26E+000 2.76E+000 1.26E+000 1.23E+000

Std 4.12E-016 1.40E-016 7.14E-017 5.97E-001 3.36E+000 6.21E-001 5.79E-001

f15 Best 6.12E-004 3.07E-004 3.08E-004 3.08E-004 3.09E-004 3.08E-004 3.07E-004

Worst 5.70E-002 3.07E-004 2.04E-002 2.04E-002 2.25E-003 1.22E-003 1.22E-003

Mean 1.10E-002 3.04E-004 3.25E-003 1.58E-003 8.18E-004 4.15E-004 3.85E-004

Std 1.26E-002 3.78E-015 6.83E-003 3.56E-003 5.55E-004 1.86E-004 1.75E-004

f16 Best -1.03E+000 -1.03E+000 -1.03E+000 -1.03E+000 -1.03E+000 -1.03E+000 -1.03E+000

Worst -1.03E+000 -1.03E+000 -1.03E+000 -1.03E+000 -1.03E+000 -1.03E+000 -1.03E+000

Mean -1.03E+000 -1.03E+000 -1.03E+000 -1.03E+000 -1.03E+000 -1.03E+000 -1.03E+000

Std 2.78E-013 4.83E—016 6.45E-016 2.90E-014 1.47E-009 6.78E-016 4.40E-016

f17 Best 3.98E-001 3.98E-001 3.98E-001 3.98E-001 3.98E-001 3.98E-001 3.98E-001

Worst 3.98E-001 3.98E-001 3.98E-001 3.98E-001 3.98E-001 3.98E-001 3.98E-001

Mean 3.98E-001 3.98E-001 3.98E-001 3.98E-001 3.98E-001 3.98E-001 3.98E-001

Std 1.88E-013 0.00E+000 0.00E+000 8.74E-015 1.56E-005 0.00E+000 0.00E+000

f18 Best 3.00E+000 3.00E+000 3.00E+000 3.00E+000 3.00E+000 3.00E+000 3.00E+000

Worst 8.40E+001 3.00E+000 3.00E+000 3.00E+000 3.00E+000 3.00E+000 3.00E+000

Mean 5.70E+000 3.00E+000 3.00E+000 3.00E+000 3.00E+000 3.00E+000 3.00E+000

Std 1.48E+001 2.39E-015 2.00E-015 3.44E-013 8.70E-005 5.01E-006 0.00E+000

f19 Best -3.00E-001 -3.00E-001 -3.00E-001 -3.00E-001 -3.00E-001 -3.00E-001 -3.00E-001

Worst -4.29E+005 -3.00E-001 -3.00E-001 -3.00E-001 -3.00E-001 -3.00E-001 -3.00E-001

Mean -1.86E-001 -3.00E-001 -3.00E-001 -3.00E-001 -3.00E-001 -3.00E-001 -3.00E-001

Std 1.25E-001 2.26E-016 2.26E-016 2.26E-016 2.26E-016 2.26E-016 1.13E-016

f20 Best -3.32E+000 -3.32E+000 -3.32E+000 -3.32E+000 -3.32E+000 -3.32E+000 -3.32E+000

Worst -3.18E+000 -3.20E-000 -3.14E+000 -3.18E+000 -3.04E+000 -3.19E+000 -3.20E-000

Mean -3.28E+000 -3.29E-000 -3.26E-000 -3.23E+000 -3.24E+000 -3.23E+000 -3.29E-000

Std 5.96E-002 1.05E-011 7.30E-002 5.71E-002 9.94E-002 5.13E-002 5.11E-002

f21 Best -10.1532 -10.1532 -10.1532 -10.1532 -10.1519 -10.1532 -10.1532

Worst -2.6305 -10.1532 -2.6305 -2.6305 -2.6263 -10.1532 -10.1532

Mean -6.7229 -10.1532 -6.1468 -7.3929 -8.6090 -10.1532 -10.1532

Std 3.39E+000 1.58E-011 3.3614 3.31E+000 2.61E+000 1.92E-013 0.00E+000

f22 Best -10.4028 -10.4028 -10.4028 -10.4028 -10.39919 -10.4028 -10.4028

Worst -1.83759 -10.4028 -2.75193 -2.75193 -1.83753 -10.4028 -10.4028

Mean -5.62438 -10.4028 -8.78367 -8.65105 -7.07105 -10.4028 -10.4028

Std 3.35422 6.28E-011 3.11E+000 3.23E+000 3.23E+000 2.20E-013 0.00E+000

f23 Best -10.536 -10.536 -10.536 -10.536 -10.535 -10.536 -10.536

Worst -1.677 -10.536 -2.422 -2.427 -2.420 -10.536 -10.536

Mean -5.914 -10.536 -7.423 -7.833 -7.393 -10.536 -10.536

Std 3.704 4.64E-011 3.921 3.645 3.47E+000 7.11E-014 0.00E+000

https://doi.org/10.1371/journal.pone.0260725.t005
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The process of convergence of TAVOA and six comparison functions on 10 basic multi-

modal benchmark functions is shown in Fig 9.

As seen from Fig 9, TAVOA and the six comparison functions perform well on the 10 basic

fixed-dimension multi-modal functions, but there is still a certain difference. On functions

f14, f15 and f17, TAVOA obtains the best solution faster than the other comparison algo-

rithms. On function f19, except for GOA, the other six algorithms can obtain the best solution

of the function at the beginning of running. On the six functions of f16, f17, f18, f20, f21 and

f23, TAVOA can obtain the best solution in a very early stage, although it is not the fastest.

Especially on functions f21 and f23, it can be seen from Table 5 that TAVOA has higher accu-

racy and better stability.

In Table 6, the Wilcoxon rank-sum test with 5% on each function of 23 basic benchmark

functions and the statistical results of the Wilcoxon rank-sum test are shown.

It seen from Table 6 that TAVOA outperforms GOA, MPA, PSO, SSA, WOA and AVOA

on 19, 15, 18, 20, 19, 13 basic benchmark functions respectively. Moreover, TAVOA only per-

forms worse than GOA, MPA, PSO, SSA, WOA and AVOA on 1, 4, 1, 1, 0, 5 functions

respectively.

In summary, among the 23 basic benchmark functions, TAVOA performs better than the

other 6 comparison algorithms. Especially on the 10 basic fixed-dimension multi-modal func-

tions, TAVOA shows better performance than the original AVOA. Besides, TAVOA is signifi-

cantly better than AVOA on 8 functions out of the 10 basic fixed-dimension multi-modal

functions. In addition, TAVOA is inferior to AVOA on only five functions in the basic unimo-

dal benchmark function and basic multi-modal benchmark function. Therefore, overall,

TAVOA greatly improves the performance of AVOA.

4.3 Experimental results comparison on the second set functions

To further and more comprehensively test the ability of TAVOA and comparison algorithm to

solve continuous optimization problems, a more professional test benchmark function set

CEC 2013 is used. At the same time, because CEC 2013 is more complex, in addition to the

boldface and underline, the ranking of the algorithm in a test benchmark function and the

average ranking in a certain type of benchmark function are given to more intuitively show

how much the performance improves with TAVOA.

In Table 7, the experimental results of TAVOA and six comparison algorithms on the CEC

2013 unimodal functions are shown.

As seen from Table 7, on function f24, TAVOA, like AVOA, obtains the best solution of the

function every time in 30 independent runs. On function f28, although the best value, worst

value and mean value obtained by TAVOA in 30 independent runs are the same as MPA, SSA,

WOA and AVOA, the standard deviation obtained by TAVOA is smaller. On functions f25

and f26, although the performance of TAVOA is not the best among all comparison algo-

rithms, the mean value and standard deviation of TAVOA are better than those of AVOA in

30 independent runs. On function f27, TAVOA obtains the same best value, worst value and

standard deviation as MPA, SSA, WOA and AVOA in 30 independent operations, but the

standard deviation is large. Therefore, the accuracy of TAVOA on function f27 is not as good

as that of the four comparison algorithms. In addition, according to the average ranking in

Table 7, the average ranking of TAVOA is 2.6, which is worse than 2.2 of MPA and 2.8 of SSA

but better than 3 of AVOA. Therefore, the performance of TAVOA on CEC 2013 unimodal

benchmark functions is better than AVOA. Although the average ranking of TAVOA is lower

than MPA and WOA, TAVOA outperforms MPA and WOA in the performance of functions

f24 and f28. Moreover, both MPA and WOA outperform TAVOA on only one function.
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Fig 9. Convergence process on basic fixed-dimension multi-modal benchmark functions.
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The process of convergence of TAVOA and six comparison functions on 5 CEC 2013

unimodal benchmark functions is shown in Fig 10.

As seen from Fig 10, TAVOA can obtain the best solution of the function in the early stage

on functions f24 and f28. On functions f25 and f26, although TAVOA is inferior to MPA and

SSA in the final performance, it can be found from the convergence curve that the feasible

solution obtained by TAVOA in the early stage is better than MPA and SSA. In other words, if

a problem requires high real-time performance, TAVOA shows better performance than MPA

and SSA. In addition, on functions f25 and f26, although the feasible solution obtained by

TAVOA at the beginning is not as good as AVOA, TAVOA can make full use of exploration

and exploitation abilities in a very short time to find a better feasible solution than AVOA. In

function f27, TAVOA performs worse than AVOA. AVOA can quickly find the best solution

of the function, while TAVOA needs to gradually find the best solution of the function in the

exploitation stage. The reason is that when we designed TAVOA, we balanced its exploration

and exploitation capabilities, in such a way that although TAVOA cannot obtain a good feasi-

ble solution at the beginning, its balanced exploration ability and exploitation ability will exist

through the whole algorithm’s run to improve on the performance of AVOA.

Since there are 15 multi-modal functions of CEC 2013, they are disassembled into two

groups for a more convenient display. In Table 8, the experimental results of TAVOA and six

comparison algorithms on the CEC 2013 multimodal reference function (f29−f36) are shown.

As seen from Table 8, on function f29, although the best value obtained by TAVOA in 30

independent runs is the same as MPA, SSA and AVOA, the obtained worst value, mean value

and standard deviation are better than the other six comparison algorithms. On function f31,

Table 6. The results of the Wilcoxon rank-sum statistical test with 5% among TAVOA and the 6 compared algorithms on the 23 basic benchmark functions.

Type Function GOA MPA PSO SSA WOA AVOA

Unimodal benchmark function f1 1.21E-012+ 1.21E-012+ 1.21E-012+ 1.21E-012+ 1.21E-012+ 2.79E-003+

f2 3.02E-011+ 3.02E-011+ 3.02E-011+ 3.02E-011+ 3.02E-011+ 3.02E-011+

f3 1.21E-012+ 1.21E-012+ 1.21E-012+ 1.21E-012+ 1.21E-012+ 1.21E-012+

f4 3.02E-011+ 3.02E-011+ 3.02E-011+ 3.02E-011+ 3.02E-011+ 3.02E-011+

f5 3.02E-011+ 3.02E-011+ 3.02E-011+ 3.02E-011+ 3.02E-011+ 1.61E-010-

f6 3.02E-011+ 3.02E-011- 3.02E-011+ 1.21E-010- 3.02E-011+ 5.09E-008-

f7 3.02E-011+ 3.02E-011+ 3.02E-011+ 3.02E-011+ 7.39E-011+ 1.15E-001 =

Multi-modal benchmark function f8 1.43E-011+ 1.43E-011+ 1.43E-011+ 1.43E-011+ 1.28E-007+ 2.57E-002+

f9 1.21E-012+ NaN = 1.21E-012+ 1.21E-012+ NaN = NaN =

f10 1.21E-012+ 1.21E-012+ 1.21E-012+ 1.21E-012+ 1.36E-004+ 1.69E-014-

f11 1.21E-012+ NaN = 1.21E-012+ 1.21E-012+ 3.34E-001 = NaN =

f12 3.02E-011+ 1.07E-007+ 3.02E-011+ 3.02E-011+ 3.02E-011+ 1.69E-009-

f13 3.02E-011+ 3.18E-001 = 4.08E-011+ 3.02E-011+ 3.02E-011+ 3.02E-011-

Fixed-dimension multi-modal benchmark function f14 2.67E-007- 8.56E-008- 8.54E-008- 1.29E-007+ 1.88E-008+ 1.26E-007+

f15 1.21E-010+ 3.02E-011- 1.63E-005+ 4.57E-009+ 5.09E-006+ 4.92E-001 =

f16 1.21E-012+ 1.19E-013+ 1.18E-013+ 1.21E-012+ 1.21E-012+ 4.16E-014+

f17 1.21E-012+ NaN = NaN = 1.10E-012+ NaN = NaN =

f18 1.21E-012+ 1.11E-012+ 9.34E-013+ 2.05E-005+ 1.21E-012+ 1.21E-012+

f19 1.10E-012+ 1.69E-014+ 1.69E-014+ 1.69E-014+ 1.69E-014+ 1.69E-014+

f20 5.50E-001 = 2.92E-004- 1.13E-001 = 1.61E-004+ 3.93E-001 = 9.51E-004+

f21 6.41E-001 = 1.21E-012+ 3.46E-001 = 3.47E-001 = 1.21E-012+ 1.20E-012+

f22 1.21E-012+ 1.21E-012+ 3.87E-013+ 1.21E-012+ 1.21E-012+ 1.19E-012+

f23 5.89E-002 = 1.21E-012+ 1.56E-001 = 5.89E-002 = 1.21E-012+ 1.18E-012+

+/ = /- 19/3/1 15/4/4 18/4/1 20/2/1 19/4/0 13/5/5

https://doi.org/10.1371/journal.pone.0260725.t006
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the best value, worst value and mean value obtained by TAVOA and the six comparison algo-

rithms in 30 independent runs are the same, but the standard deviation obtained by TAVOA

is smaller than that of the other six comparison algorithms. On function f33, the best values of

the other six algorithms are the same in 30 independent runs except for PSO. Although the

mean value obtained by TAVOA in 30 independent runs is the same as MPA, SSA and AVOA

on function f33, the standard deviation obtained by TAVOA is the smallest of all comparison

algorithms. Although TAVOA does not perform best in functions f30, f32, f34, f35 and f36,

TAVOA outperforms AVOA. Especially on function f32, TAVOA greatly exceeds AVOA in

ranking. In terms of average ranking, TAVOA has also overtaken AVOA to a great extent.

Although TAVOA lags behind SSA and MPA in the average ranking, it exceeds GOA and

PSO, which are better than AVOA. Therefore, it can be seen that in the first group of multi-

modal functions of CEC 2013, TAVOA not only has good performance but also greatly

improves the performance of AVOA.

The process of convergence of TAVOA and six comparison functions on 8 CEC 2013

multi-modal benchmark functions (f29−f36) is shown in Fig 11.

As seen from Fig 11, on function f33, although TAVOA and AVOA can obtain good feasi-

ble solutions in the shortest time, it can be found that TAVOA has better accuracy and stability

than AVOA in Table 8. On functions f29 and f36, although the feasible solution obtained by

TAVOA is not as good as AVOA in the early and middle stages, TAVOA can jump out of the

Table 7. Experimental results of CEC 2013 unimodal benchmark functions (f24−f28).

Function GOA MPA PSO SSA WOA AVOA TAVOA

f24 Best -1.40E+003 -1.40E+003 -1.40E+003 -1.40E+003 -1.40E+003 -1.40E+003 -1.40E+003

Worst -8.92E+002 -1.40E+003 8.37E+003 -1.40E+003 -1.40E+003 -1.40E+003 -1.40E+003

Mean -1.35E+003 -1.40E+003 1.74E+003 -1.40E+003 -1.40E+003 -1.40E+003 -1.40E+003

Std 1.60E+002 4.67E-012 2.47E+003 9.06E-011 3.49E-006 0.00E+000 0.00E+000

Rank 6 3 7 4 5 1 1

f25 Best 3.31E+005 -4.83E+002 4.69E+003 4.71E+003 1.52E+003 3.11E+004 1.43E+004

Worst 1.98E+007 7.89E+004 2.57E+007 5.99E+004 1.27E+003 6.86E+003 1.10E+005

Mean 3.16E+006 1.71E+004 7.99E+006 3.36E+004 5.64E+003 2.15E+005 5.03E+004

Std 5.26E+006 1.83E+004 7.06E+003 1.67E+004 2.59E+003 1.44E+005 2.51E+004

Rank 6 2 7 3 1 5 4

f26 Best 1.06E+007 6.22E+003 1.63E+008 7.27E+005 2.70E+003 4.47E+006 5.97E+005

Worst 1.72E+010 2.37E+008 1.58E+002 2.27E+008 1.27E+010 2.07E+009 2.70E+009

Mean 2.84E+009 2.13E+007 8.17E+010 3.96E+007 3.48E+009 3.06E+008 2.70E+008

Std 3.91E+009 4.40E+007 2.86E+011 5.07E+007 3.60E+009 4.30E+008 5.01E+008

Rank 5 1 7 2 6 4 3

f27 Best -5.70E+002 -1.10E+003 -1.10E+003 -1.10E+003 -4.85E+002 -1.10E+003 -1.10E+003

Worst 1.45E+004 -1.10E+003 7.84E+004 -1.10E+003 1.06E+004 -1.10E+003 -1.10E+003

Mean 5.46E+003 -1.10E+003 5.97E+003 -1.10E+003 2.63E+003 -1.10E+003 -1.10E+003

Std 4.65E+003 5.95E-007 1.50E+004 6.30E-010 2.29E+003 1.46E-007 3.44E+000

Rank 6 3 7 1 5 2 4

f28 Best -1.00E+003 -1.00E+003 -1.00E+003 -1.00E+003 -1.00E+003 -1.00E+003 -1.00E+003

Worst 1.43E+003 -1.00E+003 7.67E+003 -1.00E+003 -1.00E+003 -1.00E+003 -1.00E+003

Mean -4.66E+002 -1.00E+003 4.53E+002 -1.00E+003 -1.00E+003 -1.00E+003 -1.00E+003

Std 6.69E+002 2.62E-007 1.83E+003 3.04E-005 2.35E-003 7.23E-007 2.14E-007

Rank 6 2 7 4 5 3 1

Average rank 5.8 2.2 7 2.8 4.4 3 2.6

https://doi.org/10.1371/journal.pone.0260725.t007
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Fig 10. Convergence process on CEC 2013 unimodal benchmark functions.

https://doi.org/10.1371/journal.pone.0260725.g010
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local trap and obtain a better feasible solution in the later stage. In combination with Table 8, it

can be found that the standard deviation obtained by TAVOA in 30 independent runs is the

smallest. In other words, the ability of TAVOA to jump out of local traps on functions f29 and

f36 is not accidental. The reason is that TAVOA adds a certain exploration ability in the later

Table 8. Experimental results of CEC 2013 basic multimodal benchmark functions (f29−f36).

Function GOA MPA PSO SSA WOA AVOA TAVOA

f29 Best -8.85E+002 -9.00E+002 -8.45E+002 -9.00E+002 -8.93E+002 -9.00E+002 -9.00E+002

Worst -7.90E+002 -8.15E+002 5.73E+001 -8.74E+002 -7.65E+002 -8.31E+002 -8.71E+002

Mean -8.38E+002 -8.93E+002 -6.51E+002 -8.90E+002 -8.46E+002 -8.87E+002 -8.96E+002

Std 2.72E+001 1.60E+001 2.04E+002 6.70E+000 3.34E+001 1.96E+001 1.17E+001

Rank 6 2 7 3 5 4 1

f30 Best -7.90E+002 -7.80E+002 -7.76E+002 -7.94E+002 -6.95E+002 -7.03E+002 -7.24E+002

Worst -6.90E+002 -7.34E+002 -5.20E+002 -7.37E+002 3.34E+003 -5.54E+002 -5.26E+002

Mean -7.56E+002 -7.57E+002 -6.88E+002 -7.75E+002 -4.89E+002 -6.43E+002 -6.55E+002

Std 2.61E+001 1.11E+001 6.63E+001 1.46E-001 7.26E+002 3.01E+001 4.87E+001

Rank 3 2 4 1 7 6 5

f31 Best -6.79E+002 -6.79E+002 -6.79E+002 -6.79E+002 -6.79E+002 -6.79E+002 -6.79E+002

Worst -6.79E+002 -6.79E+002 -6.79E+002 -6.79E+002 -6.79E+002 -6.79E+002 -6.79E+002

Mean -6.79E+002 -6.79E+002 -6.79E+002 -6.79E+002 -6.79E+002 -6.79E+002 -6.79E+002

Std 4.75E-002 5.75E-002 4.61E-002 4.67E-002 3.86E-002 6.18E-002 4.31E-002

Rank 5 6 3 4 2 7 1

f32 Best -5.87E+002 -5.74E+002 -5.88E+002 -5.88E+002 -5.73E+002 -5.78E+002 -5.73E+002

Worst -5.75E+002 -5.69E+002 -5.67E+002 -5.75E+002 -5.61E+002 -5.64E+002 -5.62E+002

Mean -5.83E+002 -5.70E+002 -5.69E+002 -5.82E+002 -5.66E+002 -5.69E+002 -5.70E+002

Std 3.32E+000 3.58E+000 2.76E+000 3.76E+000 3.25E+000 3.42E+000 2.81E+000

Rank 1 4 5 2 7 6 3

f33 Best -5.00E+002 -5.00E+002 -4.45E+002 -5.00E+002 -5.00E+002 -5.00E+002 -5.00E+002

Worst -1.92E+002 -5.00E+002 1.28E+003 -5.00E+002 -4.98E+002 -4.99E+002 -5.00E+002

Mean -4.23E+002 -5.00E+002 2.07E+001 -5.00E+002 -4.99E+002 -5.00E+002 -5.00E+002

Std 7.53E+001 9.07E-002 4.83E+002 9.53E-002 5.07E-001 2.26E-001 2.03E-002

Rank 6 2 7 3 5 4 1

f34 Best -3.29E+002 -4.00E+002 -3.82E+002 -3.65E+002 -2.61E+002 -3.99E+002 -4.00E+002

Worst -2.38E+002 -4.00E+002 -2.93E+002 -2.64E+002 1.35E+002 -3.87E+002 -3.92E+002

Mean -2.94E+002 -4.00E+022 -3.46E+002 -3.16E+002 -1.63E+001 -3.95E+002 -3.98E+002

Std 2.67E+001 2.42E-011 2.77E+001 2.68E+001 8.40E+001 3.26E+000 2.04E+000

Rank 6 1 4 5 7 3 2

f35 Best -2.55E+002 -4.49E+002 -2.34E+002 -2.55E+002 -8.18E+001 -1.00E+002 -2.07E+001

Worst -1.35E+002 -1.69E+002 -9.61E+001 -1.62E+002 5.13E+002 3.74E+002 2.61E+002

Mean -2.08E+002 -2.10E+002 -1.84E+002 -2.16E+002 2.09E+002 1.51E+002 1.00E+002

Std 3.10E+001 2.04E+001 3.37E+001 2.19E+001 1.24E+002 1.13E+002 8.01E+001

Rank 2 3 4 1 7 6 5

f36 Best -1.10E+002 -1.03E+002 -1.02E+002 -1.26E+002 7.67E+001 5.34E+001 3.70E+001

Worst 4.73E+001 1.92E+001 1.71E+001 -1.63E+001 3.27E+002 2.51E+002 2.67E+002

Mean -3.64E+001 -3.79E+001 -3.78E+001 -4.62E+001 2.13E+002 1.39E+002 1.31E+002

Std 3.86E+001 -3.79E+001 3.04E+001 3.35E+001 6.46E+001 5.41E+001 5.61E+001

Rank 4 2 3 1 7 6 5

Average rank 4.125 2.75 4.625 2.5 5.875 5.25 2.875

https://doi.org/10.1371/journal.pone.0260725.t008
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Fig 11. Convergence process on CEC 2013 multi-modal benchmark functions (f29−f36).

https://doi.org/10.1371/journal.pone.0260725.g011
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stage and assigns different weights to different vultures. TAVOA is not the best on functions

f30, f32 and f34, but TAVOA obtains better feasible solutions than AVOA. Although the feasi-

ble solution obtained by TAVOA on function f34 is not as good as AVOA at the beginning,

TAVOA can surpass AVOA to obtain a better feasible solution in the early stage of the algo-

rithm. On function f35, the feasible solution obtained by TAVOA at the beginning is not as

good as AVOA and falls into local optimization.

However, TAVOA can quickly jump out of the local trap and obtain a better feasible solu-

tion than AVOA. On function f31, similarly, although the feasible solution obtained by

TAVOA is not as good as other comparison algorithms at the beginning, TAVOA can con-

tinue to find better feasible solutions with the running of the algorithm, and TAVOA can still

maintain good exploitation ability in the later stage.

In Table 9, the experimental results of TAVOA and six comparison algorithms on CEC

2013 multi-modal benchmark functions (f37−f43) are shown.

As seen from Table 9, on function f39, although the best value and mean value obtained by

TAVOA in 30 independent runs are the same as GOA and SSA, the standard deviation

obtained by TAVOA is smaller than all comparison algorithms. In particular, from the per-

spective of ranking, TAVOA has greatly improved AVOA from the original seventh to the

first. On the five functions f37, f38, f41, f42 and f43, although the mean value and standard

deviation obtained by TAVOA according to the results of 30 independent runs are not the best

of all algorithms, the mean values obtained by TAVOA on the three functions f37, f38 and f41

are better than AVOA. In addition, on functions f42 and f43, although the mean value

obtained by TAVOA according to the results of 30 independent runs is the same as AVOA,

the standard deviation obtained by TAVOA is smaller than AVOA. Therefore, in the above

five functions, TAVOA shows better performance than AVOA in terms of mean value and sta-

bility. Although the mean value and standard deviation obtained by TAVOA in 30 indepen-

dent runs on function f40 are not as good as AVOA, from the perspective of ranking, TAVOA

is only one place behind AVOA, and the gap is not very large. In conclusion, in the second

group of CEC 2013 multi-modal functions, the overall performance of TAVOA is still better

than that of AVOA. Similarly, TAVOA lags behind MPA and SSA in the average ranking but

exceeds GOA and PSO, which are better than AVOA. Therefore, it can be seen that in the sec-

ond group of CEC 2013 multi-modal functions, TAVOA also greatly improves the perfor-

mance of AVOA.

The process of convergence of TAVOA and six comparison functions on 7 CEC 2013

multi-modal benchmark functions (f37−f43) is shown in Fig 12.

As seen from Fig 12, on the three functions f37, f38, f39 and f41, TAVOA can obtain a better

feasible solution and converge at the beginning. In addition, on the three functions, the feasible

solution obtained by TAVOA is significantly better than AVOA. On the function f42, TAVOA

can also obtain better feasible solutions at the beginning, and TAVOA continues to obtain bet-

ter feasible solutions with the running of the algorithm. Moreover, TAVOA always obtains

better feasible solutions on function f42 than AVOA. However, the feasible solution obtained

by TAVOA is not as good as AVOA on function f40. Although TAVOA continues to obtain

better feasible solutions in the whole stage of algorithm running and even obtains as good fea-

sible solutions as AVOA in the middle of the algorithm, it is still not as good as AVOA in the

later stage. Nevertheless, Fig 12 shows that the gap between AVOA and TAVOA on function

f40 is very small. This finding can also be seen from the function ranking in Table 9. Therefore,

on the second group of CEC 2013 multi-modal functions, TAVOA still shows good perfor-

mance. TAVOA is better than AVOA in both real-time and precision requirements.

In Table 10, the experimental results of TAVOA and six comparison algorithms on CEC

2013 composition benchmark functions (f44−f51) are shown.
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As seen from Table 10, on functions f44 and f45, in 30 independent runs, TAVOA obtains a

better mean value and standard deviation than the other six comparison algorithms. Especially

on the function f45, from the perspective of ranking, TAVOA has greatly improved the rank-

ing of AVOA, from the original sixth place to the first place.

On function f48, TAVOA also performs best. Although in 30 independent runs, the best

value and the worst value obtained by TAVOA are worse than GOA, and the mean value is the

same as GOA, and the standard deviation obtained by TAVOA is smaller than GOA. This

finding shows that the best value obtained by GOA and the worst value obtained by TAVOA

are accidental and that TAVOA is more stable than GOA. Similarly, on function f49, in 30

independent runs, TAVOA obtains the same best value, worst value and mean value as MPA,

Table 9. Experimental results of CEC 2013 basic multimodal benchmark functions (f37−f43).

Function GOA MPA PSO SSA WOA AVOA TAVOA

f37 Best 2.76E+003 -9.87E+001 7.97E+002 2.15E+003 2.39E+003 -2.55E+001 6.40E+001

Worst 4.21E+003 1.48E+002 3.00E+003 4.01E+003 5.34E+003 1.55E+003 1.06E+003

Mean 3.56E+003 -4.20E+001 1.83E+003 3.17E+003 4.05E+003 6.33E+002 4.53E+002

Std 4.63E+002 6.65E+001 5.79E+002 4.60E+002 7.64E+002 4.26E+002 2.81E+002

Rank 4 1 2 3 4 7 5

f38 Best 2.54E+003 1.88E+003 2.47E+003 1.88E+003 3.08E+003 3.49E+003 3.31E+003

Worst 5.02E+003 4.39E+003 5.85E+003 4.76E+003 6.57E+003 5.77E+003 6.04E+003

Mean 3.48E+003 3.37E+003 3.68E+003 3.23E+003 5.18E+003 4.90E+003 4.68E+003

Std 5.97E+002 5.76E+002 7.94E+002 6.67E+002 8.17E+002 6.07E+002 6.58E+002

Rank 3 2 4 1 7 6 5

f39 Best 2.00E+002 2.00E+002 2.01E+002 2.00E+002 2.01E+002 2.00E+002 2.00E+002

Worst 2.01E+002 2.01E+002 2.02E+002 2.01E+002 2.02E+002 2.02E+002 2.02E+002

Mean 2.00E+002 2.01E+002 2.01E+002 2.00E+002 2.01E+002 2.01E+002 2.00E+002

Std 1.70E-001 2.89E-001 3.41E-001 1.55E-001 3.80E-001 4.44E-001 1.23E-001

Rank 3 4 5 2 6 7 1

f40 Best 3.76E+002 3.30E+002 3.37E+002 3.83E+002 6.05E+002 3.35E+002 3.39E+002

Worst 4.40E+002 3.31E+002 6.02E+002 5.31E+002 1.02E+003 3.56E+002 3.93E+002

Mean 4.08E+002 3.31E+002 3.69E+002 4.26E+002 8.40E+002 3.40E+002 3.58E+002

Std 1.66E+001 1.71E-001 6.13E+001 3.43E+001 1.01E+002 4.77E+000 1.27E+001

Rank 5 1 4 6 7 2 3

f41 Best 4.68E+002 4.89E+002 5.05E+002 4.75E+002 7.22E+002 6.82E+002 6.13E+002

Worst 5.55E+002 6.18E+002 6.84E+002 5.89E+002 1.24E+003 1.07E+003 1.02E+003

Mean 5.05E+002 5.39E+002 5.85E+002 5.14E+002 9.13E+002 9.10E+002 8.10E+002

Std 2.06E+001 2.59E+001 3.01E+001 2.33E+001 1.14E+002 1.13E+002 1.07E+002

Rank 2 3 4 1 7 6 5

f42 Best 5.03E+002 5.01E+002 5.02E+002 5.02E+002 5.18E+002 5.02E+002 5.03E+002

Worst 5.16E+002 5.02E+002 1.92E+004 5.08E+002 5.70E+002 5.07E+002 5.07E+002

Mean 5.07E+002 5.01E+002 2.16E+003 5.05E+002 5.44E+002 5.04E+002 5.04E+002

Std 3.98E+000 3.20E-001 4.09E+003 1.35E+000 1.36E+001 1.24E+000 1.00E+000

Rank 5 1 7 4 6 3 2

f43 Best 6.10E+002 6.09E+002 6.09E+002 6.08E+002 6.13E+002 6.12E+002 6.12E+002

Worst 6.15E+002 6.12E+002 6.12E+002 6.12E+002 6.15E+002 6.15E+002 6.15E+002

Mean 6.14E+002 6.10E+002 6.11E+002 6.10E+002 6.14E+002 6.14E+002 6.14E+002

Std 1.88E+000 6.47E-001 8.08E-001 8.27E-001 3.88E-001 9.34E-001 7.10E-001

Rank 7 1 3 2 4 6 5

Average rank 4.1 1.9 4.1 2.7 5.9 5.3 3.7

https://doi.org/10.1371/journal.pone.0260725.t009
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Fig 12. Convergence process on CEC 2013 multi-modal benchmark functions (f37−f43).

https://doi.org/10.1371/journal.pone.0260725.g012

PLOS ONE An improved African vultures optimization algorithm based on tent chaotic mapping and time-varying mechanism

PLOS ONE | https://doi.org/10.1371/journal.pone.0260725 November 30, 2021 35 / 52

https://doi.org/10.1371/journal.pone.0260725.g012
https://doi.org/10.1371/journal.pone.0260725


SSA and AVOA, but the standard deviation obtained by TAVOA is smaller than other com-

parison algorithms. In addition, TAVOA performs better than AVOA in functions f46, f47

and f50, although it is not the best. At the same time, on function f51, the performance of

TAVOA is not as good as AVOA, but it does not differ much. TAVOA still outperforms PSO

and WOA on function f51.

Table 10. Experimental results of CEC 2013 composition benchmark functions (f44−f51).

Function GOA MPA PSO SSA WOA AVOA TAVOA

f44 Best 8.00E+002 8.00E+002 9.00E+002 9.00E+002 9.00E+002 1.00E+003 9.00E+002

Worst 1.14E+003 1.14E+003 1.78E+003 1.14E+003 1.14E+003 1.14E+003 1.14E+003

Mean 1.06E+002 1.05E+003 1.21E+003 1.05E+003 1.07E+003 1.09E+003 9.97E+002

Std 8.54E+001 1.21E+002 2.08E+002 7.95E+001 7.14E+001 7.04E+001 7.66E+001

Rank 4 2 7 3 5 6 1

f45 Best 4.14E+003 8.05E+002 1.74E+003 3.50E+003 4.31E+003 9.57E+002 9.97E+002

Worst 7.45E+003 1.17E+003 4.49E+003 5.20E+003 8.14E+003 1.85E+003 1.84E+003

Mean 5.41E+003 1.06E+003 3.80E+003 4.30E+003 6.03E+003 1.38E+003 1.03E+003

Std 8.35E+002 9.46E+001 7.09E+002 5.04E+002 1.00E+003 2.51E+002 2.41E+002

Rank 6 2 4 5 7 3 1

f46 Best 3.60E+003 3.00E+003 3.68E+003 2.71E+003 5.15E+003 5.49E+003 5.66E+003

Worst 5.62E+003 5.73E+003 6.39E+003 6.64E+003 8.93E+003 8.40E+003 8.40E+003

Mean 4.39E+003 4.40E+003 4.89E+003 4.64E+003 6.93E+003 7.02E+003 6.85E+003

Std 5.02E+002 6.48E+002 6.80E+002 7.92E+002 1.09E+003 7.77E+002 8.62E+002

Rank 1 2 4 3 7 6 5

f47 Best 1.25E+003 1.23E+003 1.25E+003 1.22E+003 1.28E+003 1.27E+003 1.27E+003

Worst 1.28E+003 1.38E+003 1.29E+003 1.28E+003 1.31E+003 1.32E+003 1.31E+003

Mean 1.26E+003 1.36E+003 1.27E+003 1.25E+003 1.30E+003 1.29E+003 1.29E+003

Std 1.00E+003 1.06E+001 1.05E+000 1.20E+003 8.56E+000 1.13E+001 8.59E+000

Rank 2 7 3 1 6 5 4

f48 Best 1.36E+003 1.37E+003 1.36E+003 1.37E+003 1.38E+003 1.38E+003 1.38E+003

Worst 1.39E+003 1.42E+003 1.42E+003 1.39E+003 1.43E+003 1.43E+003 1.41E+003

Mean 1.39E+003 1.41E+003 1.40E+003 1.39E+003 1.41E+003 1.40E+003 1.39E+003

Std 6.72E+000 7.14E+000 1.19E+001 6.37E+000 1.25E+001 1.18E+001 5.45E+000

Rank 3 6 5 2 7 4 1

f49 Best 1.40E+003 1.40E+003 1.40E+003 1.40E+003 1.40E+003 1.40E+003 1.40E+003

Worst 1.57E+003 1.40E+003 1.57E+003 1.40E+003 1.60E+003 1.40E+003 1.40E+003

Mean 1.52E+003 1.40E+003 1.54E+003 1.40E+003 1.48E+003 1.40E+003 1.40E+003

Std 6.22E+001 9.05E-003 3.87E+001 4.91E-003 9.46E+001 1.57E-002 4.40E-003

Rank 6 3 7 2 5 4 1

f50 Best 1.86E+003 2.01E+003 1.96E+003 1.85E+003 2.40E+003 2.20E+003 2.25E+003

Worst 2.15E+003 2.34E+003 2.32E+003 2.25E+003 2.71E+003 2.59E+003 2.63E+003

Mean 2.04E+003 2.18E+003 2.14E+003 2.09E+003 2.56E+003 2.49E+003 2.47E+003

Std 7.46E+001 7.42E+001 6.74E+001 9.97E+001 7.52E+001 9.14E+001 9.86E+001

Rank 1 4 3 2 7 6 5

f51 Best 1.50E+003 1.50E+003 1.70E+003 1.50E+003 2.89E+003 1.50E+003 1.50E+003

Worst 3.01E+003 1.70E+003 3.92E+003 2.78E+003 7.10E+003 6.39E+003 5.87E+003

Mean 1.87E+003 1.67E+003 3.64E+003 1.76E+003 5.17E+003 3.34E+003 3.60E+003

Std 4.58E+002 6.94E+001 5.20E+002 2.79E+002 1.13E+003 1.69E+003 1.62E+003

Rank 3 1 6 2 7 4 5

Average rank 3.25 3.375 4.875 2.5 6.375 4.75 2.875

https://doi.org/10.1371/journal.pone.0260725.t010
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In summary, TAVOA performs quite well in CEC 2013 composition benchmark functions.

It performs best on four functions and performs better than AVOA on three functions. Simi-

larly, TAVOA lags behind SSA in the average ranking, but exceeds GOA and MPA,which are

better than AVOA. Therefore, among the eight combined benchmark functions of CEC 2013,

TAVOA also greatly improves the performance of AVOA.

The process of convergence of TAVOA and six comparison functions on 8 CEC 2013 com-

position benchmark functions (f44−f51) is shown in Fig 13.

As seen from Fig 13, TAVOA can quickly obtain better feasible solutions and converge on

functions f44, f49 and f51. On function f45, by comparing the convergence curves of TAVOA

and AVOA, it can be found that TAVOA obtains a better feasible solution than AVOA at the

beginning. With the continuous run of the algorithm, TAVOA and AVOA continue to obtain

a better feasible solution. However, in the later stage of the algorithm, AVOA falls into the

local optimal solution, and TAVOA can jump out of the local trap and obtain a better feasible

solution than AVOA. On function f46, AVOA converged at the beginning, while TAVOA not

only obtain a better feasible solution than AVOA at the beginning but also did not converge in

the early stage, but continued to find a better feasible solution. Although the feasible solution

obtained in this process has not improved much compared with the beginning, it also proves

that TAVOA still has a certain exploitation ability in the early stage. On the function f47,

AVOA also converged at the beginning, while TAVOA not only obtained a better feasible solu-

tion than AVOA at the beginning, but also used the exploration ability to jump out of the local

trap and obtain a better feasible solution in the early stage. On function f48, TAVOA obtains a

better feasible solution than other comparison algorithms at the beginning. In addition, when

other comparison algorithms gradually stabilize and fall into the local optimal solution,

TAVOA can still use the exploration ability in the medium stage and use the exploitation abil-

ity in the later stage to find a better feasible solution. Similarly, on function f50, although

TAVOA obtained a better feasible solution than AVOA at the beginning and fell into the local

optimization, it can be found from the convergence curve of TAVOA that TAVOA still has

certain exploration ability in the later stage, which can help TAVOA jump out of the local trap

and obtain a better feasible solution.

In summary, on the CEC 2013 composition benchmark functions, we can fully understand

that TAVOA has always guaranteed sufficient exploration ability and exploitation ability dur-

ing the running of the whole algorithm. TAVOA not only has a certain exploitation ability in

the early stage but also has a certain exploration ability in the late stage to ensure that TAVOA

can jump out of the local trap in the late stage while obtaining a better solution in the early

stage.

In Table 11, the Wilcoxon rank-sum test with 5% on each function of 28 CEC 2013 bench-

mark functions and the statistical results of the Wilcoxon rank-sum test are shown.

It seen from Table 11 that TAVOA better than GOA, MPA, PSO, SSA, WOA and AVOA

on 15, 9, 14, 11, 23, 9 CEC 2013 benchmark functions respectively. Moreover, TAVOA per-

forms worse than GOA, MPA, PSO, SSA, WOA and AVOA on 10, 15, 10, 14, 3, 2 functions

respectively.

In general, although the performance of AVOA on 28 CEC 2013 benchmark functions is

not as outstanding as that on 23 basic benchmark functions, we can still see that the perfor-

mance of TAVOA is still better than GOA, PSO, WOA and AVOA. In particular, the perfor-

mance of TAVOA on 9 CEC 2013 functions is significantly better than AVOA, while it is

weaker than AVOA only on 2 CEC 2013 functions. Therefore, TAVOA still improves the per-

formance of AVOA on the CEC 2013 functions.
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Fig 13. Convergence process on CEC 2013 composition benchmark functions.

https://doi.org/10.1371/journal.pone.0260725.g013

PLOS ONE An improved African vultures optimization algorithm based on tent chaotic mapping and time-varying mechanism

PLOS ONE | https://doi.org/10.1371/journal.pone.0260725 November 30, 2021 38 / 52

https://doi.org/10.1371/journal.pone.0260725.g013
https://doi.org/10.1371/journal.pone.0260725


4.4 Real-word engineering applications

In order to further verify the effectiveness and practicability of TAVOA proposed in this

paper, three common mechanical design problems are selected to verify the performance of

TAVOA, and the results will also be compared with AVOA and five other state-of-the-art

metaheuristic algorithms mentioned in the previous section. The three real-world engineering

problems are welded beam design, compression/tension spring design, and pressure vessel

design [55]. However, engineering problems in the real world are often accompanied by natu-

ral constraints. In order to meet these constraints in the process of program implementation,

this paper adopts the method of external penalty approach mechanism. In the external penalty

approach mechanism, if a metaheuristic algorithm violates any constraints, its fitness value

will be subject to high penalties.

In addition, in order to make the experiment fairer and more persuasive, the common

parameters used in all experiments are consistent with the previous section. That is, the experi-

mental results of all algorithms are obtained when the population size is 30 and the number of

independent runs is 30. In addition, because the common real-world engineering problems

Table 11. The results Wilcoxon rank-sum statistical test with 5% among TAVOA and the 6 compared algorithms on the 28 CEC 2013 benchmark functions.

Type Function GOA MPA PSO SSA WOA AVOA

Unimodal benchmark function f24 1.96E-009+ 2.00E-010+ 2.13E-006+ 2.53E-011+ 2.53E-011+ NaN =

f25 8.64E-009+ 2.93E-006- 6.68E-011+ 1.49E-002- 6.68E-011- 7.44E-009+

f26 3.31E-005+ 2.71E-006- 3.77E-010+ 2.63E-004- 1.81E-009+ 6.46E-001 =

f27 8.64E-009+ 6.68E-011- 1.90E-003- 6.68E-011- 6.68E-011+ 6.68E-011-

f28 8.64E-009+ 6.13E-001 = 1.12E-009+ 6.68E-011+ 6.68E-011+ 1.16E-006+

Multi-modal benchmark function f29 1.16E-007+ 4.05E-001 = 6.68E-011+ 2.00E-006+ 1.17E-007+ 6.74E-004+

f30 1.85E-008- 6.68E-011- 1.10E-001 = 6.68E-011- 1.43E-002+ 4.52E-002+

f31 1.56E-002+ 1.59E-001 = 3.31E-001 = 5.07E-002 = 9.44E-002 = 7.15E-001 =

f32 8.64E-009- 7.55E-010+ 6.68E-011+ 6.68E-011- 2.88E-003+ 3.96E-001 =

f33 4.54E-006+ 1.27E-005+ 6.68E-011+ 8.22E-011+ 6.68E-011+ 3.63E-001 =

f34 8.07E-009+ 2.14E-008- 6.38E-011+ 6.38E-011+ 6.38E-011+ 6.73E-005+

f35 8.64E-009- 6.68E-011- 6.68E-011- 6.68E-011- 2.97E-004+ 4.75E-002+

f36 9.82E-009- 6.68E-011- 6.68E-011- 6.68E-011- 1.57E-005+ 5.08E-001 =

f37 8.64E-009- 1.01E-010- 1.12E-010- 6.68E-011- 6.68E-011- 1.37E-001 =

f38 1.41E-006- 8.16E-009- 1.10E-005- 6.78E-009- 1.00E-002+ 1.59E-001 =

f39 6.52E-009+ 1.69E-008+ 7.69E-006+ 3.77E-010+ 2.60E-003+ 1.78E-001 =

f40 2.38E-008+ 6.68E-011- 9.44E-004+ 1.24E-010+ 6.68E-011+ 4.67E-009-

f41 8.64E-009- 7.41E-011- 1.01E-010- 6.68E-011- 1.63E-003+ 1.31E-002+

f42 1.82E-001 = 6.68E-011- 7.02E-005+ 7.26E-001 = 6.68E-011+ 1.83E-001 =

f43 5.09E-003+ 6.66E-011- 1.01E-010- 1.01E-010- 2.87E-004- 1.05E-002+

Composition benchmark function f44 5.95E-001 = 1.48E-002+ 1.45E-001 = 5.47E-003+ 7.26E-003+ 4.37E-001 =

f45 8.64E-009+ 5.61E-010+ 9.11E-011+ 6.68E-011+ 6.68E-011+ 4.32E-001 =

f46 8.64E-009- 8.22E-011- 2.79E-010- 3.41E-010- 8.95E-001 = 3.71E-001 =

f47 1.44E-008- 9.11E-011+ 6.78E-009- 9.11E-011- 1.55E-002+ 6.69E-001 =

f48 9.11E-008+ 5.13E-009+ 1.31E-002+ 3.77E-010+ 8.89E-006+ 5.08E-001 =

f49 1.12E-008+ 7.55E-010+ 6.68E-011+ 1.84E-002+ 6.68E-011+ 8.16E-009+

f50 8.64E-009- 1.87E-010- 8.22E-011- 7.41E-011- 4.77E-004+ 2.59E-001 =

f51 5.73E-002 = 1.84E-001 = 8.27E-002 = 5.50E-002 = 2.33E-004+ 1.63E-001 =

+/ = /- 15/3/10 9/4/15 14/4/10 11/3/14 23/2/3 9/17/2

https://doi.org/10.1371/journal.pone.0260725.t011
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are more similar to the 23 basic benchmark functions, the maximum number of iterations of

all metaheuristic algorithms involved in this paper is 500 for the three real-world engineering

problems in this section.

In this paper, in addition to using the best value, mean value, worst value and stan-

dard deviation of the 30 independent running results of each metaheuristic optimization

algorithm to evaluate the performance of the metaheuristic algorithm, its convergence

process diagram is also used to observe the convergence speed of each metaheuristic

algorithm.

4.4.1 The welded beam design problem. As shown in Fig 14, the main goal to be solved

in the welded beam design problem is how to select the thickness of weld (h), the length of the

attached bar (l), the height of the bar (t), and the thickness of the bar (b) to minimize the cost

of a welded beam [56].

According to the limitations of physical laws, the welded beam design problem also

includes bending stress in beam, buckling load on the bar, shear stress, and the deflection. If

the variables to be optimized are considered as X = [x1, x2, x3, x4] = [h, l, t, b], the problem is

Fig 14. 3D schematic view of the welded beam design problem.

https://doi.org/10.1371/journal.pone.0260725.g014
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described as Eq (27), and its constraints are defined as Eq (28).

f ðXÞ ¼ 1:10471x2

1
x2 þ 0:04811x3x4ð14:0þ x2Þ ð27Þ

g1ðXÞ ¼ tðXÞ � tmax � 0

g2ðXÞ ¼ sðXÞ � smax � 0

g3ðXÞ ¼ dðXÞ � dmax � 0

g4ðXÞ ¼ x1 � x4 � 0

g5ðXÞ ¼ P � PcðXÞ � 0

g6ðXÞ ¼ 0:125 � x1 � 0

g7ðXÞ ¼ 1:10471x2
1
þ 0:04811x3x4ð14:0þ x2Þ � 5 � 0

ð28Þ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

where:

t Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt0Þ
2
þ 2t0t00

x2

2R
þ ðt00Þ

2

r

; t0 ¼
P
ffiffiffi
2
p

x1x2

; t00 ¼
MR
J

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2

4
þ

x1 þ x3

2

� �2
r

J ¼ 2
ffiffiffi
2
p

x1x2

x2
2

12
þ

x1 þ x3

2

� �2
� �� �

Pc Xð Þ ¼
4:013E

ffiffiffiffiffiffi
x2

3
x6

4

36

q

L2
1 �

x3

2L

ffiffiffiffiffiffi
E

4G

r !

s Xð Þ ¼
6PL
x4x2

3

; d Xð Þ ¼
4PL3

Ex2
3
x4

; tmax ¼ 13600psi;smax ¼ 30000psi

P ¼ 6000lb; L ¼ 14in;E ¼ 30� 106psi;G ¼ 12� 106psi; dmax ¼ 0:25in

0:1 � x1; x4 � 2:0; 0:1 � x2; x3 � 10

The best value, the worst value, mean value and standard deviation obtained by TAVOA

and comparison algorithms in the welded beam design problem are shown in Table 12.

As seen from Table 12 that PSO achieves the best results in the welded beam design prob-

lem, but MPA is the most stable. Although TAVOA is not as good as PSO and MPA, it is better

than the other five comparison algorithms. In addition, the performance of TAVOA is better

than that of AVOA in terms of the best value, the worst value and stability.

Table 13 lists the values of each variable when TAVOA and the comparison algorithms

achieve the optimum cost in solving the welded beam design problem.

The convergence curves of TAVOA and comparison algorithms when obtaining the best

value in the welded beam design problem are shown in Fig 15.

As seen from Fig 15, TAVOA converges slightly faster than MPA and PSO. Although

AVOA converges very early, AVOA falls into the locally optimal solution. In addition, GOA

gets a better solution very early, but it still falls into locally trap. Although GOA jumps out of
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the current locally trap at 250 iterations, the solution obtained by GOA is still not as good as

TAVOA.

4.4.2 The compression/tension spring design problem. As shown in Fig 16, the main

goal to be solved in the compression/tension spring design problem is how to select the effec-

tive number of active coils (n), wire diameter (d) and mean coil diameter (D) of the spring to

minimize the mass of the spring [57].

According to the limitations of physical laws, the compression/tension spring design prob-

lem is constrained by shear stress, surge frequency and minimum deflection. If the variables to

be optimized are considered as X = [x1, x2, x3] = [d, D, N], the problem is described as Eq (29),

and its constraints are defined as Eq (30).

f ðXÞ ¼ ðx3 þ 2Þx2x
2

1
ð29Þ

g1ðXÞ ¼ 1 �
x3

2
x3

71785x4
1

� 0

g2ðXÞ ¼
4x2

2
� x1x2

12566ðx2x3
1 � x4

1
Þ
þ

1

5108x2
1

� 1 � 0

g3ðXÞ ¼ 1 �
140:45x1

x2
2
x3

� 0

g4ðXÞ ¼ x1 � x4 � 0

g5ðXÞ ¼
x1 þ x2

1:5
� 1 � 0

ð30Þ

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

were 0.05�x1�2.00, 0.25�x2�1.30, 2.00�x3�15.00.

When TAVOA and the comparison algorithms obtain the best value in the compression/

tension spring design problem, the values of each variable are shown in Table 14.

Table 12. Statistical results of the welded beam design problem.

Algorithm Best Mean Worst SD

GOA 1.697591862 2.751736464 4.603852566 0.913214103

MPA 1.695245232 1.695248373 1.695264079 3.60328E-06

PSO 1.695244929 1.696711264 1.729417061 0.006348954

SSA 1.704307936 1.808793916 2.044134761 0.097684495

WOA 1.805787349 434.8904015 12971.97296 2367.877003

AVOA 1.696468635 1.733036108 1.833292101 0.040227062

TAVOA 1.695663888 1.724550104 1.81576298 0.031850462

https://doi.org/10.1371/journal.pone.0260725.t012

Table 13. Best results of the welded beam design problem.

Algorithms Optimum variables Optimum cost

h l t b
GOA 0.20363 3.2899 9.04 0.20571 1.697591862

MPA 0.20574 3.253 9.0366 0.20573 1.695245232

PSO 0.20573 3.253 9.0366 0.20573 1.695244929

SSA 0.19684 3.4189 9.0366 0.20573 1.704307936

WOA 0.21492 3.6592 8.8156 0.21618 1.805787349

AVOA 0.20446 3.276 9.0366 0.20573 1.696468635

TAVOA 0.20531 3.2606 9.0365 0.20573 1.695663888

https://doi.org/10.1371/journal.pone.0260725.t013
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As seen from Table 14, MPA achieves the best results and is the most stable algorithm in

the compression/tension spring design problem. Although TAVOA is not as good as MPA

and WOA, it is better than the other five comparison algorithms. In addition, TAVOA is better

than AVOA in terms of the best value, the worst value and stability.

Table 15 lists the values of each variable when TAVOA and the comparison algorithms

achieve the minimum mass in solving the compression/tension spring design problem.

The convergence curves of TAVOA and comparison algorithms when obtaining the best

value in the compression/tension spring design problem are shown in Fig 17.

As seen from Fig 17, the optimum value obtained by TAVOA after 100 iterations is better

than AVOA and converges faster than AVOA.

4.4.3 The pressure vessel design problem. As shown in Fig 18, the main goal to be solved

in the pressure vessel design problem is how to select the thickness of the shell (Ts), the thick-

ness of the head (Th), the radius of the inner circle of the vessel (R) and the length of the cylin-

drical without the head (L) to minimize the engineering cost of pressure vessels [58].

According to the limitations of physical laws, the pressure vessel design problem is subject

to four linear and nonlinear constraints. If the variables to be optimized are considered as X =

Fig 15. Convergence process in the welded beam design problem.

https://doi.org/10.1371/journal.pone.0260725.g015
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[x1, x2, x3, x4] = [Ts, Th, R, L], the problem is described as Eq (31), and its constraints are

defined as Eq (32).

f ðXÞ ¼ 0:6224x1x3x4 þ 1:7781x2x
2

3
þ 3:1661x2

1
x4 þ 19:84x2

1
x3 ð31Þ

g1ðXÞ ¼ � x1 þ 0:0193x3 � 0

g2ðXÞ ¼ � x2 þ 0:00954x3 � 0

g3ðXÞ ¼ � px2
3
x4 �

4

3
px3

3
þ 1296000 � 0

g4ðXÞ ¼ x4 � 240 � 0

ð32Þ

8
>>>>>><

>>>>>>:

were 0�x1, x2�99, 10�x3, x4�200.

The best value, the worst value, mean value and standard deviation obtained by TAVOA

and comparison algorithms in the pressure vessel design problem are shown in Table 16.

Fig 16. 3D schematic view of the compression/tension spring design problem.

https://doi.org/10.1371/journal.pone.0260725.g016

Table 14. Statistical results of tension/compression spring problem.

Algorithm Best Mean Worst SD

GOA 0.012729245 16.67580991 464.8859026 84.7439022

MPA 0.012665215 0.012665244 0.012665523 5.92448E-08

PSO 0.012667564 0.013051771 0.015077605 0.000515386

SSA 0.012753639 0.013849355 0.025720296 0.002522712

WOA 0.012665348 0.013600226 0.017774704 0.001208423

AVOA 0.01270936 0.013520448 0.01583301 0.00078102

TAVOA 0.012665538 0.013252806 0.014982031 0.000629048

https://doi.org/10.1371/journal.pone.0260725.t014
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As seen from Table 16 that TAVOA and MPA achieve the best result in the pressure vessel

design problem, but MPA is more stable than TAVOA. In addition, TAVOA is also better

than GOA, PSO, WOA and AVOA from the point of view of mean value, the worst value and

standard deviation.

Table 15. Best results of tension/compression spring problem.

Algorithms Optimum variables Optimum cost

d D N
GOA 0.05 0.317269 14.0485 0.012729245

MPA 0.0516876 0.356682 11.291 0.012665215

PSO 0.0513313 0.348173 11.8081 0.012667564

SSA 0.053674 0.40638 8.8936 0.012753639

WOA 0.0517716 0.358706 11.1733 0.012665348

AVOA 0.053264 0.39581 9.3179 0.01270936

TAVOA 0.0517784 0.358872 11.1637 0.012665538

https://doi.org/10.1371/journal.pone.0260725.t015

Fig 17. Convergence process in the compression/tension spring design problem.

https://doi.org/10.1371/journal.pone.0260725.g017
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Table 17 lists the values of each variable when TAVOA and comparison algorithms achieve

the minimum cost in solving the pressure vessel design problem.

The convergence curves of TAVOA and comparison algorithms when obtaining the best

value in the pressure vessel design problem are shown in Fig 19.

As seen from Fig 19, in the pressure vessel design problem, TAVOA performs better than

the other six comparison algorithms, and the number of iterations required to reach the best

solution is the least.

5. Discussion

On the 23 basic benchmark functions, TAVOA performs best on 15 functions compared with

AVOA and the other five metaheuristic optimization algorithms. In addition, according to the

Wilcoxon rank-sum test, TAVOA is significantly better than AVOA on 13 functions, and the

performance of TAVOA is similar to that of AVOA on 5 functions. Especially in unimodal

Fig 18. 3D schematic view of the pressure vessel design problem.

https://doi.org/10.1371/journal.pone.0260725.g018

Table 16. Statistical results of pressure vessel design problem.

Algorithm Best Mean Worst SD

GOA 4527.338371 5368.644542 6174.355956 428.7217948

MPA 4527.268027 4527.268032 4527.268046 4.98961E-06

PSO 4527.27135 6190.273345 7535.014127 1197.423588

SSA 4529.34725 4709.306356 5576.977989 306.5715404

WOA 4907.711687 6338.905597 8248.637632 1025.990865

AVOA 4527.268077 4972.995243 5579.059526 501.086712

TAVOA 4527.268027 4905.436585 5579.00791 484.7634125

https://doi.org/10.1371/journal.pone.0260725.t016
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functions and fixed-dimension multi-modal benchmark functions, TAVOA is more

prominent.

On the 28 CEC 2013 benchmark functions, TAVOA performs best on 10 functions com-

pared with AVOA and five other metaheuristic optimization algorithms. In addition,

Table 17. Best results of pressure vessel design problem.

Algorithms Optimum variables Optimum cost

Ts Th R L
GOA 0.4318173 0.2404585 40.32047 199.9882 4527.338371

MPA 0.4611333 0.2401184 40.31962 200 4527.268027

PSO 0.4615843 0.2398836 40.31962 199.9999 4527.27135

SSA 0.4627656 0.2414255 40.34684 199.6214 4529.34725

WOA 0.6598208 0.2810879 44.83852 145.4037 4907.711687

AVOA 0.4611357 0.2400599 40.31962 200 4527.268077

TAVOA 0.4611317 0.2401188 40.31962 200 4527.268027

https://doi.org/10.1371/journal.pone.0260725.t017

Fig 19. Convergence process in the pressure vessel design problem.

https://doi.org/10.1371/journal.pone.0260725.g019
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according to the Wilcoxon rank-sum test, TAVOA is significantly better than AVOA on 9

functions, and the performance of TAVOA is similar to that of AVOA on 17 functions.

Although the performance of TAVOA on the 28 CEC 2013 benchmark functions is not as

good as that on the 23 basic benchmark functions, it also greatly improves the performance of

AVOA.

Moreover, it can be seen from the convergence curve that TAVOA can obtain better results

in many functions at the beginning, which is due to the introduction of the tent chaotic map.

When a tent chaotic map is introduced into TAVOA, the population of TAVOA is diversified,

and a good feasible solution can be obtained in the early stage. In addition, in the early and

middle stages, TAVOA can gradually obtain better feasible solutions because of the introduc-

tion of individual history optimal solutions. The introduction of individual history optimal

solutions can help individuals to further exploit near their previous positions to find better fea-

sible solutions. At the same time, we can also find that in the later stage, TAVOA can often

jump out of the local trap and find a better feasible solution, which is due to the introduction

of time-varying mechanism. In the original AVOA, in the exploitation stage, it is considered

that the impact of the first group of vultures and the second group of vultures on the current

vulture is the same, which makes the exploration ability inferior. Due to the introduction of

time-varying mechanism, the exploration ability and exploitation ability of TAVOA can be

balanced in such a way that TAVOA still has a certain exploitation ability in the later stage.

Therefore, TAVOA can jump out of a locally optimal solution and find a better feasible solu-

tion in the later stage.

Moreover, TAVOA still shows good performance in three common real-world engineering

problems. TAVOA ranks third in the welded beam design problem and compression/tension

spring design problem. In the pressure vessel design problem, TAVOA obtains the same best

solution as MPA. It is worth mentioning that in these three real-world engineering problems,

TAVOA shows better performance than AVOA. Therefore, it can be concluded that TAVOA

also greatly improves the performance of AVOA in real-world engineering problems. TAVOA

not only obtains better feasible solutions than AVOA but also converges faster than AVOA.

6. Conclusion and future works

In this paper, an improved African vultures optimization algorithm (TAVOA) based on tent

chaotic mapping and time-varying mechanism is proposed to improve the African vultures

optimization algorithm (AVOA), which makes it possible for TAVOA to be applied to more

fields instead of AVOA and obtain better results.

In view of the shortcomings of AVOA, tent chaotic mapping, individual history optimal

solution and time-varying mechanism are introduced into TAVOA to enhance the diversity of

the TAVOA population, enhance the exploitation ability of TAVOA in the early stage and bal-

ance the exploration ability and exploitation ability of TAVOA to enhance the global search

ability and local search ability of TAVOA. To verify the effectiveness and efficiency of

TAVOA, in addition to AVOA, five state-of-the-art and more studied metaheuristic optimiza-

tion algorithms are used for comparison. Among 51 benchmark functions, TAVOA performs

well in unimodal functions, fixed-dimension multi-modal benchmark functions and composi-

tion functions. In addition, experiments in three common real-world engineering problems

show that TAVOA greatly improves the performance of AVOA. Besides, the effectiveness of

our innovation can also be seen from the experimental convergence curve.

However, TAVOA still has some shortcomings and limitations. First, the selection of tent

chaotic map is based on published papers and experience. The most suitable chaotic map is

not selected by applying all the commonly used chaotic maps to AVOA. Second, in the time-
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varying mechanism, the parameters are obtained according to experience, and the weight fac-

tors are also designed according to experience. Therefore, the influence of the parameters on

the performance of the algorithm is not considered. Third, although TAVOA performs partic-

ularly well on 23 commonly used benchmark functions, the performance of TAVOA is slightly

insufficient on the multi-modal function of the CEC 2013 benchmark function. Therefore, in

future work, the commonly used chaotic maps can be applied to TAVOA, and the most appro-

priate chaotic map can be selected in different application scenarios. In addition, the influence

of the parameters in the time-varying mechanism of the algorithm can be considered, and the

adaptive weight factors can be designed. Finally, more targeted strategies can be designed to

improve the performance of TAVOA in multi-modal functions.
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