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Abstract

In this paper, we introduce the concept of learning to sense, which aims to emulate a com-

plex characteristic of human reasoning: the ability to monitor and understand a set of inter-

dependent events for decision-making processes. Event datasets are composed of textual

data and spatio-temporal features that determine where and when a given phenomenon

occurred. In learning to sense, related events are mapped closely to each other in a seman-

tic vector space, thereby identifying that they contain similar contextual meaning. However,

learning a semantic vector space that satisfies both textual similarities and spatio-temporal

constraints is a crucial challenge for event analysis and sensing. This paper investigates a

Semantic Variational Autoencoder (SVAE) to fine-tune pre-trained embeddings according

to both textual and spatio-temporal events of the class of interest. Experiments involving

more than one hundred sensors show that our SVAE outperforms a competitive one-class

classification baseline. Moreover, our proposal provides desirable learning requirements to

sense scenarios, such as visualization of the sensor decision function and heat maps with

the sensor’s geographic impact.

Introduction

News portals and social networks publish and disseminate information on the web about vari-

ous events, such as politics, epidemics, urban violence, finance, climate, natural disasters,

among others. Due to the wide variety of useful real-world applications from event analysis,

different initiatives aim to identify and store thousands of events daily, such as GDELT (A

Global Database of Society: https://www.gdeltproject.org/) and ICEWS (Integrated Crisis

Early Warning System: https://dataverse.harvard.edu/dataverse/icews). Furthermore,

researchers and data scientists exploit such repositories to support social studies by building

indicators from events in different domains [1]. For example, Google Flu Trends [2] is a real-

time influenza surveillance system based on aggregated events from web search activities [3].

Radinsky et al. [4, 5] analyzed news events to predict Cuba’s first cholera epidemic in decades
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and early Arab Spring riots. Yaqub et al. [6] analyzed events extracted from social networks as

an alternative to analyzing US elections.

Although event analysis is a multidisciplinary research topic, a common factor among the

studies is interpreting web events as a digital social sensor that maps phenomena in our physi-

cal world [7, 8]. The pioneering studies for event analysis using machine learning methods are

known as Topic Detection and Tracking (TDT) [9, 10] and Event Detection (ED) [11, 12]. A

very common definition in these studies is that events are phenomena that occur at a certain

time and place, which can currently be extracted from the textual data of the news and social

networks [9, 12]. In practice, this definition indicates that neither textual excerpt is an event,

but only those we can associate temporal and geographic information to an action reported in

the text. In general, events are pre-processed to extract components indicating what happened,

when it happened, and where it happened, i.e., events have semantic information associated

with spatio-temporal features [13].

Existing methods in both TDT and ED areas rely on text classification to filter and catego-

rize events. However, we argue that event analysis has its own requirements that differentiate

it from traditional text classification strategies. For instance, when a human explores events

for decision making, he/she implicitly interprets actions represented in the events consider-

ing spatio-temporal constraints. Thus, a modern event analysis process should emulate a

complex human reasoning: the ability to observe and interpret related events from the past,

in locations of interest, to support decision-making processes or make predictions. We call

this task learning to sense to differentiate it from traditional text classification methods used

in TDT and ED areas, i.e., when we want to perform event analysis to build indicators (sen-

sors) that consider events related both by their content and by their spatio-temporal features.

In fact, a machine learning method focused on learning to sense must deal with the following

challenges:

• Lack of semantics: identifying related events is one of the main challenges of event analysis.

Interdependent events may not explicitly have features in common. For example, an event

describing the prolonged rainfall shortages in a given region may be related to another event

describing a rise in future prices for a given agricultural product. Such events may be related

if an agricultural product is produced in that region. Classical models for text representation,

such as bag-of-words, fail in event analysis due to their limitation in texts’ semantic repre-

sentation. A promising alternative is leveraging neural language models to represent event

textual data with a higher level of semantics [14, 15]. However, investigating the proper use

of such models for learning to sense is an underexplored challenge.

• Sensor maps: although event analysis tasks mainly involve predictive classification models,

these tasks still depend on exploratory and descriptive analysis. Users are generally interested

in the same functionality expected in a classic sensor [12, 16, 17], i.e., a sensor map that visu-

ally indicates which events belong to the interest class. However, classification methods usu-

ally represent events in higher dimensions, which makes the direct visualization of sensor

maps unfeasible. An alternative is to use dimensionality reduction techniques in the event

data, such as t-SNE and PCA. Still, these techniques require the reconstruction of the projec-

tions for each new instance [18, 19]. Thus, integrating the generation of 2D sensor maps

within the event classifier is a desirable property for event sensing.

• Spatio-temporal features: geographical and temporal information is associated with events,

in addition to textual information. However, existing methods use time and location infor-

mation only as an event filter [12, 15]. We argue that an adequate event representation for

learning to sense should preserve both spatio-temporal and textual features in a low
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dimensional latent space since geographical relationships and trends are important factors

in determining whether events are related.

Recently, some studies for event analysis have been proposed to overcome the above draw-

backs. Event2Vec [14] explores representation learning from graphs generated by the events’

textual information. TED (Temporal Event-Driven) was proposed by [20] to learn temporal

embeddings and compare textual information between events over time. Newsmap [21] com-

bines named entity extraction and text classification for the geographical focus of event news

stories. Although prior studies are promising for event analysis tasks, their application is lim-

ited to some event information component (temporal or geographical). Learning to sense

tasks requires a representation model that considers both textual, temporal, and geographical

information. Thus, we raise the following question: how learn a low-dimensional representa-

tion (2D sensor maps) for events while preserving semantic similarity and spatio-temporal

data?

This paper introduces a method for learning to sense that addresses the challenges dis-

cussed above. We present a Semantic Variational Autoencoder (SVAE) method for learning to

sense tasks. First, our method explores the state-of-the-art BERT (Bidirectional Encoder Rep-

resentations from Transformers) neural language model [22, 23] to learn general-purpose

semantic and spatio-temporal features from the events. Second, given a set of events (class of

interest) for training a sensor, we use event semantic features as input to a Variational Autoen-

coder. In this case, we want to map the BERT semantic space into a two-dimensional sensor

map, where events of the interest class are allocated close to each other to form high-density

regions. Moreover, our SVAE preserves the semantic and spatio-temporal features that are

implicit in the training set by using the bottleneck layer of the Variational Autoencoder as

final event features, which facilitates the sensor learning using one-class classification methods.

Unlike the existing methods that require a prior definition of the geographic or temporal

information, our SVAE can implicitly embed this information into the event representation

model when it is important to identify new events of the interest class.

We carried out a thorough experimental evaluation involving 183 collections of real-world

events extracted from the GDELT project. In addition, we compared our proposal with a com-

petitive baseline using Embedding-based One-Class SVM from BERT event embeddings. The

experimental results reveal that using the proposed SVAE leads to learning sensors with higher

F1 values in 177 of 183 event collections, even using a low-dimensional event representation

model. Also, our model naturally enables exploratory and visual analysis of events from 2D

sensor maps.

Preliminaries

One-class learning

Let the domain of instances be X , Y be the domain of labels, and let a training sample xi; yiÞ
m
i¼1

,

in which xi 2 R
n

is the feature vector of the i-th example, and yi is a label associated with the

example xi. The goal of one-class learning (OCL) is to learn a function f : X ! Y, in a way

that f(x) predicts the label y correctly on future data, and y 2 {+ 1, −1}, i.e., if the new example

belongs to the positive (interest) class, or not [24]. However, different from a binary learning

problem, the training examples’ labels belong only to the positive class, i.e., yi = +1, 81� i�m.

During decades, one-class learning was performed considering basically generative, bound-

ary, or reconstruction methods, such as One-Class Support Vector Machines, Parzen Density

Estimation, and proximity-based methods such as k-Means or k-Nearest Neighbors [24–26].

Usually, those methods require substantial feature engineering to be effective in several tasks,
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mainly those involving text data [27, 28]. On the other hand, deep learning techniques allow

obtaining relevant features automatically [18, 29]. Also, the quality of the representations

learned by deep learning techniques or the direct application to perform classification can sur-

pass the results of other approaches [18, 27].

Deep one-class learning

Due to the advances in deep learning, the proposals and use of deep learning-based approaches

to perform one-class classifications increased notably in the last years [29–32]. We refer to

those approaches as deep one-class learning (DOCL). The use of DOCL can be observed in dif-

ferent areas such as natural language processing [33, 34], computer vision [31], and recom-

mendation systems [30], to cite a few.

DOCL can be used directly to perform predictions [35, 36] or to learn in an unsupervised

way a low-dimensional representation, or a latent space, which will feed other one-class

learning algorithms [31, 33]. The DOCL is mostly implemented through autoencoder archi-

tecture, which is composed of two steps: encoder and decoder. The encoder and decoder can

be viewed as two functions: z = f(x) and r = g(z), in which f(x) maps the original example x to

a low-dimensional space (encoding), and g(z) performs the reconstruction of x by mapping z
to the original space (decoding) [37]. The basic structure of an autoencoder is presented in

Fig 1.

Given a training set X ¼ fxijxi 2 R
ng, with 1� i�m, n as the number of dimensions in

the original space, and assuming that encoder and decoder functions are implemented by neu-

ral networks, the mapping steps of an autoencoder can be formally defined by:

autoencoder ¼

( z ¼ f ðWe;Be; xÞ

r ¼ gðWh;Bh; zÞ
ð1Þ

in which We and Be are respectively the weights and biases of the encoding neural network,

and Wh and Bh are weights and biases of the decoding neural network.

The neural network parameters are learning in a way to optimize the following function

[37]:

JðYÞ ¼
1

n

Xn

i¼1

jjxi � r1jj
2

2 ð2Þ

in which Θ = (We, Be;Wh, Bh). Thus, the goal of an autoencoder is to produce an output similar

to the input. Since the hidden layers usually consist of some neurons much lower than the

input (e.g., bottleneck layer), the reconstructions are only possible if the hidden layers’ weights

capture the most representative features of the input data [32]. Also, the low dimension repre-

sentation learned by autoencoders can be less computational expensive and presents a higher

quality for several tasks in comparison with other traditional approaches such as Principal

Fig 1. Basic structure of an autoencoder.

https://doi.org/10.1371/journal.pone.0260701.g001
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Component Analysis (PCA), Isometric Feature Mapping (Isomap), Locally Linear Embedding

(LLE), or Stochastic Neighbor Embedding (SNE) [18].

A classic autoencoder is a feedforward fully-connected neural network with o layers, in

which the i-th and (o − i)-th layers have the same number of neurons [36]. However, due to

the advanced neural network architectures and their useful characteristics for some domain

applications, different neural network architectures have been used in an autoencoder’s encod-

ing and decoding steps. In literature, we can observe that convolutional, recurrent, and varia-

tional autoencoders are commonly used for text data [18, 33, 34, 38–40].

Variational autoencoder for text

A Variational Autoencoder (VAE) is also based on the regularization function of an autoenco-

der (Eq 1). Still, the goal is to estimate the probability density function of the training data

[39]. Thus, VAEs are a generative model. VAEs are used in different data types, such as images

and sounds, but attracted attention to text data since generative models are used in several

NLP tasks [38].

One of the main characteristics of VAE is that instead of forwarding the latent values

inferred by the encoder to the decoder directly, VAEs use them to calculate the parameters of a

distribution model, e.g., mean and a standard deviation in case of a normal distribution. Also,

the input to the decoder is a sample generated through the inferred parameters of the distribu-

tion. Thus, VAEs can generate new instances of the data [41].

Given a variable x and assuming that a continuous latent variable z generates x, a VAE

assumes a probability function:

pðzjxÞ ¼
pðxjzÞpðzÞ

pðxÞ
ð3Þ

in which,

pðxÞ ¼
Z

pðxjzÞpðzÞdz ð4Þ

Since integrals are intractable, VAE aims to optimize the marginal log-likelihood p(x) =
R
pΘ(z)p(x|z)dz that can be written as [38]:

logpYðxÞ ¼ KLðqFðzjxÞjjpFðzjxÞÞ þ LðY;F; xÞ ð5Þ

where

LðY;F; xÞ ¼ � KLðqFðzjxÞjjpFðzÞÞ þ EqFðzjxÞ
log pYðxjzÞ

and KL is Kullback–Leibler divergence, qF(z|x) is the variational approximation to the poste-

rior p(z|x) (or the distribution of the encoded variable given the decoded one), p(z) is the

prior knowledge, e.g., a multivariate Gaussian N ðz; 0; 1Þ, EqFðzjxÞ
is an approximation of z

through a reparameterization trick and differentiate through the sampling stage, and pΘ is

the distribution of the decoded variable given the encoded one. In [38] is presented the

impact of different priors p(z) in language and document modeling. While [38] uses VAEs

directly in the token sequence extracted from the texts, our approach refines the textual

embedding representation from a previous semantic space obtained by a BERT neural lan-

guage model, thereby taking advantage of the pre-training and existing general-purpose

knowledge of the BERT model.
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Learning to sense from events

The proposed learning to sense method is based on two steps. In the first step, we represent

the event dataset using a general-purpose neural language model to capture semantic relation-

ships from the textual event information via contextual word embeddings (event modeling).

We use contextual word embeddings trained in large news datasets to preserve both general

topics and expressions related to locations (city and country names) and temporal expressions.

For example, such embeddings can capture relationships between cities and state capitals and

words related to time periods (e.g., Christmas and December). In the second step, we use a

Variational Autoencoder to extract non-linear features from semantic embeddings and gener-

ate a low-dimensional sensor map from a set of training events. Our sensor map is a 2D event

space that preserves the original embeddings’ local structures, such as semantic similarities

and spatio-temporal relations. In our proposal, we defined a Semantic Variational Autoenco-

der (SVAE) using a VAE to extract a low-dimensional event representation from BERT lan-

guage models, guided by the reconstruction (via encoder-decoder structure) of the events of

the interest class. Unlike dimensionality reduction techniques (e.g., t-SNE and PCA), a trained

SVAE can generate representations of new events, i.e., the encoder step is used as a predictive

function to allocate the new events to a sensor map region. Any one-class classifier can be used

for the sensing step from the sensor map. In our proposal, we use the One-Class SVM. An

overview of the proposed method is presented in Fig 2. In the next sections, we present details

of each step.

Event modeling

We present the event modeling task as the probability of the event ei to be related to a set of

events {e1, e2, . . ., ei−1}. The concept of related events can be interpreted as events of the same

class, i.e., we aim to identify the occurrence of events about a certain phenomenon of interest.

In general, this task has been formulated in the context of neural networks through the condi-

tional probability of Eq 6, where θ represents model parameters and hi = f(hi−1, ei, θ) represents

a hidden state vector that aims to sequentially encode known events, e.g., using temporal infor-

mation from events.

pðeijfe1; e2; :::; ei� 1gÞ ¼ pðeijhi� 1; yÞ ð6Þ

A simple strategy to address this modeling is to consider that events are composed of a

sequence of words, and a concatenation of all word sequences forms the dataset. We can

obtain an approximation of Eq 6 via the traditional n-grams model, i.e., computing conditional

probabilities tables for each word given a subset of preceding words. In fact, this is a classic

count-based language model strategy and has well-known limitations, such as the curse of

dimensionality and difficulty in dealing with large sequences of n-grams. Neural language

models have been explored recently to overcome such limitations, especially with the use of

LSTM for learning long-term dependencies between word sequences of events.

We explore leveraging pre-trained neural language models for event modeling. In particu-

lar, we use the state-of-the-art BERT (Bidirectional Encoder Representations from Transform-

ers) for the encoded representation of events (event embedding space). BERT is a contextual

neural language model, where the representation of a word is a function of the entire text in

which it occurs. The model is pre-trained in a large textual corpus so that contextual represen-

tations can encode general semantic relations that are useful for event analysis, such as geo-

graphical relations between words (e.g., countries and capitals), temporal relations (e.g., dates

and expressions), people’s names, and their relations with organizations and governments, as

well as other types of named entities. Furthermore, BERT is trained in the task of predicting
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the next sentence, which is very useful for identifying relationships between texts from two

events.

In the context of event modeling, given the word sequence of the event e = (w1, w2, . . ., wT),

BERT model first generates a corrupted ê version of the event, where approximately 15% of

the words are randomly selected to be replaced by a special token called [MASK]. Thus, the

objective function is to reconstruct the masked tokens �e from ê, according to Eq 7,

max
y

log pð�ejê; yÞ �
XT

t¼1

mtlog
expðhyðêÞ

>

t ~wtÞ
P

w0expðhyðêÞ
>

t
~w0 Þ

 !

ð7Þ

where ~w indicates the embedding of w; the hyðêÞt is a sequence of T hidden state vectors

according to parameters θ from the neural network model (e.g. Transformers); and mt = 1

indicates when wt is masked.

In [22] are provided pre-trained general-purpose BERT models. We use a fine-tuned ver-

sion of the BERT model for the task of similarity sentences from a multilingual news corpus,

as discussed in [23]. In this case, the task consists of adjusting the sentence embeddings to

maximize the cosine similarity of sentence pairs. Therefore, each sentence shares several event

components, such as general tokens, geographic information, and time expressions.

Variational autoencoder

The general purpose embeddings obtained in the previous step are processed in this step, Vari-

ational Autoencoder, considering a set of events of the interest class. Two assumptions are

considered during Variational Autoencoder training for learning to sense: (1) events must be

mapped to a two-dimensional space that represents a sensor map; and (2) the distance of the

events on the sensor map must reflect the textual similarity, as well as the temporal and geo-

graphical information of the class of interest. Each assumption is described in detail below.

Assumption 1 An event sensor is a two-dimensional map where events of interest are posi-
tioned close to each other to generate high-density regions. In contrast, events of non-interest are
positioned far from these regions.

Fig 2. An overview of the proposed learning to sense method.

https://doi.org/10.1371/journal.pone.0260701.g002
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We use two-dimensional maps to represent the event sensors for two reasons. First, we

maintain an analogy with human experts’ classic sensor maps for analytical intelligence tasks

and decision support systems. Second, event analysis lacks explainable models during decision-

making processes, and two-dimensional maps allow the visualization of decision functions that

indicate how close new events have been allocated to the class of interest and explore other

nearby events. Obviously, according to the application requirements, we can easily increase the

event sensors’ dimensional space. However, two-dimensional maps were effective in the experi-

ments carried out in this work and satisfying the properties of visualization and explainability.

We propose a Semantic Variational Autoencoder (SVAE). We chose VAE because it is a

powerful method for non-linear feature extraction (or dimensionality reduction). Also, VAEs

generalize an AE by not only learning a representation but also learning how to generate new

instances of the data. This generative characteristic is obtained through the imposition of a

specific structure on the hidden layer: the activation in the hidden units should be drawn from

the standard Gaussian with zero mean and unit variance [38]. By the end, it is noteworthy that

these characteristics make VAEs stand out in tasks related to textual data such as language

modeling [38, 39, 42], document modeling [38, 43], imputing missing words [39], semisuper-

vised classification [44, 45], text representation for clustering [33], text representation for clas-

sification and conditional sentence generation [42].

Our SVAE is semantic mainly because we use fine-tuned contextual BERT embeddings of

events as input data. The proposed VAE method has an encoder q�ðzj~eÞ to map event embed-

dings~e in a two-dimensional vector space z = [z(x), z(y)]
>, and a decoder pyð~ejzÞ that uses latent

variables z to reconstruct the original embedding. Parameters ϕ and θ are learned from the

neural network for encoding and decoding, respectively.

� Eq�ðzj~eÞ
ðlog pyð~ejzÞÞ þ KLðq�ðzj~eÞkpðzÞÞ ð8Þ

Eq 8 is the loss minimization function of the VAE, where the first term consists of a loss

reconstruction, and the second term consists of the Kullback-Leibler (KL) divergence between

the learned two-dimensional space z and a prior distribution p(z). Note that KL measures the

difference between two probability distributions. In our VAE, pðzÞ ¼ N ðz; 0; IÞ with mean of

zero, where I is the identity matrix; and q�ðzj~eÞ ¼ N ðz; uz;
P

zÞ is the normal distribution

with mean of uz ¼ ½uzðxÞ
; uzðyÞ
�
>

and the covariance matrix ∑z for the latent variables sampling.

We train the SVAE from a set of interest events E = {e1, e2, . . ., en}, and we use the trained

encoder to generate the relation ð~e; zÞ between the event BERT embedding~e and its respective

coordinates z = (z(x), z(y)) on the sensor map. The compression strategy of the SVAE encoder

tends to extract features to map events of the class of interest in the same region in two-dimen-

sional space, thereby generating regions of high-density. On the other hand, events with differ-

ent features (BERT embeddings) concerning the class of interest tend to be mapped in more

distant regions.

Assumption 2 Distances dsensor(ei, ej) on the two-dimensional map maintain proportionality
between textual content proximity dtext(ei, ej) and spatio-temporal proximity dgeotime(ei, ej)
between events, i.e., dsensor(ei, ej)/ dtext(ei, ej)/ dgeotime(ei, ej).

Distances between events on the sensor map must preserve local structures of the event

embeddings space. In other words, we want to maintain a level of proportionality between spa-

tial relationships in the sensor map with the semantic relationships identified in the neural lan-

guage model. In fact, the proportionality relationship dsensor(ei, ej)/ dtext(ei, ej) between sensor

map and BERT embeddings, respectively, is obtained straightforwardly from the VAE train-

ing. Here, we discuss the proportionality relationships with spatio-temporal features of the

events.
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We argue that there are two main strategies to preserve spatio-temporal features of events

in the sensor map. The first strategy is to incorporate spatio-temporal constraints during VAE

training, in which the minimization function would be penalized when violating such con-

straints. However, we adopted a second strategy because it is simpler and more intuitive,

which assumes that pre-trained neural language models already consider spatio-temporal fea-

tures in their contextual word embeddings. This assumption is strengthened when we analyze

recent studies that explore pre-trained neural language models for NER tasks [22]. Also, sup-

pose the class of interest contains events associated with certain locations and events over cer-

tain time periods. In that case, VAE will preserve these features during your training due to the

bottleneck strategy of the encoder-decoder structure.

One-class sensing

Now, consider the set of interest events E = {e1, e2, . . ., en} represented on the sensor (two-

dimensional) map feature space, i.e., E(z) = {z1, z2, . . ., zn}. Our goal is to find a decision func-

tion capable of encompassing such events in the sensor map, but also capable of identifying

possible outliers in the training set. We use the One-Class Support Vector Machine formula-

tion proposed by [46] to learn such a decision function.

A naive strategy to solve one-class sensing is to find the hypersphere of minimum volume

enclosing the event features vectors, according to Eq 9,

mðcÞ ¼ arg min
m2H

max
1�i�n
kuðziÞ � mk

2

ð9Þ

where H is the feature space associated with an SVM kernel function φ, and μ(c) is the center of

the hypersphere in which the largest distance between events φ(z) to μ(c) is minimal. The main

drawback of this solution is that outlier events can arbitrarily increase the hypersphere’s vol-

ume, and any new events can be classified as belonging to the class of interest.

To minimize the effect of outlier events, we can add a regularizer to make the hypersphere

more flexible and accept a certain margin violation level. In this case, each φ(zi) feature vector

is associated with a εi parameter that measures the external distance between φ(zi) and the

hypersphere surface. We also use a parameter ν 2 (0, 1] to define the hypersphere volume’s

softness level, where the closer to 1, the greater the softness level.

min
m;φ;r

r2 þ
1

n

Xn

i¼1

εi

n
ð10Þ

subject to

kφðziÞ� mk
2
� r2 þ εi 8i ¼ 1; :::; n ð11Þ

Eq 10 formalizes this solution’s minimization function, where we now want to minimize

both the hypersphere squared radius r and the number of margin violations. The parameter ν
configures this trade-off, allowing generalizing the one-class sensing by enclosing most events

in the dense regions of the sensor map and allowing to ignore possible outlier events, as illus-

trated in the sensor map decision function in Fig 2.

Experimental evaluation

Event collections

We used 183 event collections from the GDELT project database, which monitors real-time

events worldwide. Each event collection represents a topic chosen by the International Press
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Telecommunications Council (IPTC) taxonomy. First, we generate a CSV file for all topics

from IPTC (1203 topics). Thus, we built the event collection by checking if the event contained

the topic in its title. We collected the events with more than 4000 events, generating a total of

183 collections. We defined 6000 events as the maximum limit for each collection.

We determine an event class as a set of events related to a topic, i.e., an event collection.

Then, we use the google cloud big query (https://cloud.google.com/bigquery) to access the

GDELT tables that contained the events to collect them. Because of limits with access, we use

the gdelt-bq.gdeltv2.gkg_partitioned table that is partitioned by time. For instance, if a topic is

agriculture, we made the query represented by Algorithm 1 that collect events related to agri-

culture in September 2019. If this query does not return 6000 events, we use the next month

until complete the collection.

Algorithm 1. Query to collect events related to the agriculture theme in September 2019.
SELECT
Min(GKGRECORDID) Id,
Min(DATE(_PARTITIONTIME)) Date,
REGEXP_EXTRACT(Extras, ‘<PAGE_TITLE> (.�) </PAGE_TITLE>’) Title

FROM
‘gdelt–bq.gdeltv2.gkg_partitioned’

WHERE
EXTRACT(MONTH FROM DATE(_PARTITIONTIME)) = 9 and
EXTRACT(YEAR FROM DATE(_PARTITIONTIME)) = 2019 and
REGEXP_CONTAINS(Extras, ‘.�TITLE.�’) and
REGEXP_CONTAINS(REGEXP_EXTRACT(Extras, ‘<PAGE_TITLE> (.�) </PAGE_-

TITLE>’), ‘agriculture’)
GROUP BY Title
ORDER BY Date ASC
LIMIT 6000

The 183 event datasets are:

• Restaurant—Opera—Employee—Logistics—Imports—Flood—Tariff

• Metal—Ethics—War—Investments—School—Revolution—Society—People

• Marathon—Adults—Theft—University—Gender—Assault—Traffic—Retail

• Massacre—Water—Rivers—Lifestyle—Welfare—Media—Impeachment—Illness

• Fraud—Teachers—Pope—Fashion—Fire—Terrorism—Environment—Currency

• Social media—Boxing—Architecture—Birthday—Theatre—Fiction—Drought

• Mosque—Police—Disaster—Sailing—Tobacco—Transfer—Education—Cancer

• Diet—Pension -Cinema—Advertising—Pandemic—Retirement—Radio—Judge

• Animal—Coal—Surveillance—Ceremony—Management—Loans—Suicide

• Arson—Trend—Immigration—Labour—Automotive—Festival—Prison—Epidemic

• Petrol—Language—Party—Prices—Parliament—Bullying—Poverty—Economy

• Crime—Vaccines—Health—Recession—Employment—Music—College—Wildfire

• Abortion—Halloween—Bribery—Securities—Software—LGBTQ—Government

• Mining—Transport—Discrimination—Divorce—Toy—Agriculture—Defence -

• Christmas—Family—Culture—Racism—Surgery—Privacy—Adoption—Medicine
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• Rugby—Unemployment—Parks—Voting—Bar—Constitution—Unions—Design

• Insurance—Anniversary—Sport—Game—Homicide—Bankruptcy—Inflation

• Volleyball—Hurricane—Regulations—Plant—Earthquake—Painting—Consumers

• Mortgage—Tourism—Election—Witness—Farms—Earnings—Hunting—Holiday

• Medicaid—Beverage—Shareholder—Grocery—Musical—Fishing—Wedding

• Court—Children—Series—Justice—Therapy—Medicare—Stocks—Students

• Television—Politics—Arrest—Charity—Newspaper—Democracy—Golf

• Investigation—Exports—Banking—Weather—Dance—Celebrity Hospital

• Kidnapping—Marriage—Church—Law—Easter—Nature—Cafe—Bonds—Drama

Experimental setup

Our work used the pre-trained neural language model proposed in [23] for event modeling via

contextual word embeddings. In this model, each event text is represented in a vector of 512

features.

We carried out tests in ten event collections to choose the parameters of our SVAE, such as

the number of layers and neurons in architecture ({512, 256, 128, 64, 2, 64, 128, 256, 512},

{512, 256, 64, 2, 64, 256, 512} and {512, 64, 2, 64, 512}), epochs ({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25,

50, 100}), learning rate ({0.001, 0.01}), optimization algorithm ({Adam, RMSprop}), activation

function ({tanh, relu, linear, sigmoid}) and batch size ({32, 64}). First, we separate the events

into a train set (only events of interest) and a test set (events of interest and non-interest). Sec-

ond, we visually analyzed how the test examples were behaving when represented by SVAE.

Therefore, we chose the parameters in which SVAE generated better representations (test

events of interest closer to train events and non-interest events further away from train events).

We present the chosen parameters below.

Fig 3 shows our SVAE architecture used in the experimental evaluation. The values above

each layer of Variational Autoencoder are the number of neurons used in each layer. The

Fig 3. Variational autoencoder architecture.

https://doi.org/10.1371/journal.pone.0260701.g003
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encoder has two dense layers, one with 512, one with 64, respectively. The bottleneck has size

2. The decoder also has two dense layers, the first with 64, and the second with 512. In the

SVAE training step, we used the maximum number of epochs = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, the

learning rate = 0, 001, optimization algorithm = Adam, activation functions = {relu, sigmoid}

and batch_size = 64.

We used the One-Class SVM (OCSVM) algorithm to perform the sensor learning from the

sensor map learned by the SVAE. We choose the RBF kernel, with generally outperforms con-

sidering other kernels such as the linear, polynomial or sigmoid [47], and use the ν parameter

equals 0.01 � q, q 2 [1‥9] and 0.05 � q, q 2 [2‥19]. As a baseline for comparison, we used

OCSVM directly from contextual word embeddings. We call this strategy Embedding-based

OCSVM (EOC-SVM), and it represents a competitive baseline since it already considers the

semantic and spatio-temporal features from the neural language model. It is noteworthy that

the EOC-SVM input is the same as the SVAE input. Our SVAE proposal, on the other hand,

generates a two-dimensional sensor map from the embeddings that aims to extract non-linear

features and preserve the semantic and spatio-temporal features of the interest events. Thus,

we train the OCSVM from the events of the sensor map.

We used 1/3 of the collection with the oldest dates for the training stage and the other 2/3

in the test stage for each event collection. For evaluation purposes, we randomly add events

from other collections to build the test set of size equal to the class of interest test events. We

use the same random events to construct the test set for EOC-SVM and SVAE. Furthermore,

we generate the results through an average of 10 runs. Each run has a seed to collect random

events from other collections. The classification performances were analyzed using the metrics

of precision, recall, and F1-Score [24]. The equations of F1-Score, Precision (P) and Recall (R)

are given respectively by:

F1 ¼
2 � P � R
P þ R

; ð12Þ

P ¼
TP

TP þ FP
; ð13Þ

R ¼
TP

TPþ FN
; ð14Þ

in which TP (True Positives) refers to the number of correctly classified events of the interest

class; FP (False Positives) refers to the number of wrongly classified events as belonging to the

interest class; and FN (False Negatives) refers to the number of wrongly classified events as

belonging to the non-interest class.

A repository (https://github.com/GoloMarcos/SVAE-plos-one) with the source code of the

algorithms, the textual representations, and the most detailed results are provided for repro-

ducibility purposes.

Results and discussion

Fig 4 presents a general comparison between the proposed SVAE and the EOC-SVM through

a precision/recall graph. Each point on the graph represents an event collection. The orange

points correspond to the classification performance on event collections obtained by

EOC-SVM, and the blue points are obtained by our SVAE. We note that SVAE and EOC-SVM

methods obtained similar precision values. However, SVAE presented higher recall values in

comparison with EOC-SVM. Thus, when considering the F1-Score, which is the harmonic
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average between precision and recall, SVAE will have higher F1-Score values in comparison

with EOC-SVM.

Table 1 presents the results of the F1-Score obtained by SVAE and EOC-SVM. Due to space

constraints, we present a comparison with 172 event collections. The left part shows the 86

event collections in which the proposed SVAE obtains the greatest F1-Score differences com-

pared to EOC-SVM. The right part is analogous but shows the 86 event collections in which

the EOC-SVM obtains its best results compared to SVAE. Also, we underline the collection

that presents statistically significant differences in an ANOVA test. We observed that

EOC-SVM obtains higher F1-Score values than SVAE only in six event collections. Conse-

quently, SVAE has better performance in 96.7% of event collections. Moreover, when SVAE

presents better results than EOC-SVM, the differences are much higher than when EOC-SVM

presents better results than SVAE.

We also used the non-parametric Wilcoxon statistical test [48] to compare SVAE, and

EOC-SVM methods considering the F1 values. Our SVAE outperforms EOC-SVM with a 95%

confidence level.

Besides the better classification performance of SVAE, our method also has the advantage

of generating two-dimensional sensor maps that preserve semantic and spatio-temporal fea-

tures. Fig 5 illustrates a sensor map about Brazilian Covid-19 events, particularly events that

describe government actions on the pandemic. Note that the events belonging to the class of

interest are allocated close to forming a high-density region. Then, OCSVM can obtain a better

decision function to sense new events. We show a heatmap formed by the latitudes and longi-

tudes coordinates extracted from the interest events to illustrate that sensors exploratory analy-

sis can easily incorporate into the learning to sense tasks using our proposed SVAE. Note that

our SVAE can be used as a predictive model. Furthermore, new collected events can be allo-

cated incrementally on the sensor map and classified as belonging to the class of interest

according to the learned decision function.

In order to show how much our proposal preserves geographic information, we carried out

two experiments. In the first, we compared the correlation between the latitude and longitude

information of events and the BERT‘s embeddings. We built a separate dataset with 1000

events about Coronavirus, using the same procedure as the 183 datasets collected for the

experimental evaluation. In addition, we also collected the latitudes and longitudes of the

events (spatial information). First, we construct the distance matrix MGEO between pairs of

events considering geographic information of latitude and longitude by using the Haversine

Fig 4. General comparison of precision and recall between the proposed SVAE (blue) and the EOC-SVM baseline

(orange) over the 183 event collections.

https://doi.org/10.1371/journal.pone.0260701.g004
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Table 1. F1-Score values for 172 event collections to compare SVAE and EOC-SVM sensor learning methods.

Top 86 collections with best results for SVAE Top 86 collections with best results for EOC-SVM

Event Collection SVAE EOC-SVM Difference Event Collection SVAE EOC-SVM Difference

Society 0.8840 0.7916 0.0924 Bribery 0.8497 0.8694 -0.0197

Shareholder 0.9609 0.8790 0.0819 War 0.8533 0.8706 -0.0173

Boxing 0.9694 0.8938 0.0756 Arson 0.9140 0.9241 -0.0101

Wildfire 0.9755 0.9048 0.0707 Earnings 0.9314 0.9387 -0.0073

Management 0.9676 0.9011 0.0665 Tariff 0.8887 0.8897 -0.0010

Rugby 0.9865 0.9253 0.0612 Newspaper 0.9379 0.9387 -0.0008

People 0.8459 0.7865 0.0594 Kidnapping 0.8948 0.8933 0.0015

Golf 0.9815 0.9258 0.0557 Arrest 0.9125 0.9109 0.0016

Metal 0.9785 0.9229 0.0556 Theft 0.9242 0.9216 0.0026

Assault 0.9113 0.8592 0.0521 Grocery 0.9481 0.9437 0.0044

Design 0.9704 0.9223 0.0481 Election 0.9629 0.9582 0.0047

Series 0.9322 0.8865 0.0457 Fraud 0.9366 0.9315 0.0051

Marathon 0.9686 0.9233 0.0453 Impeachment 0.9569 0.9491 0.0078

Language 0.9776 0.9338 0.0438 Charity 0.9385 0.9293 0.0092

Retirement 0.9777 0.9339 0.0438 Traffic 0.9331 0.9238 0.0093

Bonds 0.9352 0.8918 0.0434 Recession 0.9483 0.9388 0.0095

Nature 0.9188 0.8756 0.0432 Cinema 0.9615 0.9512 0.0103

Adults 0.9679 0.9248 0.0431 Bullying 0.9542 0.9436 0.0106

Parks 0.9771 0.9344 0.0427 Diet 0.9681 0.9565 0.0116

Television 0.9677 0.9250 0.0427 Coal 0.9746 0.9620 0.0126

Parliament 0.9640 0.9214 0.0426 Crime 0.9220 0.9093 0.0127

Software 0.9845 0.9422 0.0423 Birthday 0.9715 0.9587 0.0128

Regulations 0.9614 0.9193 0.0421 Retail 0.9231 0.9099 0.0132

Witness 0.8804 0.8384 0.0420 Judge 0.9449 0.9311 0.0138

Revolution 0.9680 0.9261 0.0419 Investigation 0.9193 0.9052 0.0141

Lifestyle 0.9376 0.8958 0.0418 Law 0.8996 0.8852 0.0144

Investments 0.9797 0.9380 0.0417 Social-media 0.9550 0.9393 0.0157

Opera 0.9612 0.9196 0.0416 Hospital 0.9661 0.9501 0.0160

Ethics 0.9754 0.9338 0.0416 Drama 0.9554 0.9389 0.0165

Music 0.9726 0.9310 0.0416 Cancer 0.9933 0.9764 0.0169

Imports 0.9830 0.9421 0.0409 Pension 0.9658 0.9482 0.0176

Water 0.9656 0.9249 0.0407 Marriage 0.9634 0.9458 0.0176

Flood 0.9374 0.8968 0.0406 Medicaid 0.9774 0.9595 0.0179

Hunting 0.9505 0.9108 0.0397 Sport 0.9547 0.9367 0.0180

Toy 0.9855 0.9460 0.0395 Mosque 0.9761 0.9579 0.0182

Agriculture 0.9810 0.9415 0.0395 Church 0.9762 0.9576 0.0186

Party 0.9369 0.8975 0.0394 Homicide 0.9791 0.9603 0.0188

Health 0.9495 0.9103 0.0392 Currency 0.9630 0.9436 0.0194

Automotive 0.9855 0.9466 0.0389 Prison 0.9688 0.9492 0.0196

LGBTQ 0.9928 0.9540 0.0388 Divorce 0.9752 0.9553 0.0199

Transport 0.9764 0.9387 0.0377 Drought 0.9543 0.9341 0.0202

Transfer 0.9494 0.9118 0.0376 Democracy 0.9819 0.9616 0.0203

Architecture 0.9875 0.9504 0.0371 Pope 0.9815 0.9611 0.0204

Stocks 0.9643 0.9277 0.0366 Celebrity 0.9573 0.9367 0.0206

Anniversary 0.9421 0.9056 0.0365 Epidemic 0.9393 0.9187 0.0206

University 0.9632 0.9267 0.0365 Inflation 0.9763 0.9556 0.0207

Employee 0.9380 0.9015 0.0365 Defence 0.9338 0.9131 0.0207

(Continued)
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distance. Second, we constructed the distance matrix MBERT considering the representations

generated by BERT, by using Euclidean distance. We then calculate the Spearman Rank corre-

lation [49] corr(MGEO, MBERT) between 60 observations (event pairs) drawn randomly from

each matrix. We defined 60 observations as this is the highest pre-calculated value to apply a

Spearman Rank Correlation statistical significance test available in [50].

Table 1. (Continued)

Top 86 collections with best results for SVAE Top 86 collections with best results for EOC-SVM

Event Collection SVAE EOC-SVM Difference Event Collection SVAE EOC-SVM Difference

Fishing 0.9822 0.9457 0.0365 Hurricane 0.9687 0.9479 0.0208

Exports 0.9826 0.9462 0.0364 Loans 0.9752 0.9543 0.0209

Fiction 0.9607 0.9244 0.0363 Voting 0.9715 0.9506 0.0209

Illness 0.9515 0.9152 0.0363 Students 0.9598 0.9387 0.0211

Privacy 0.9893 0.9531 0.0362 Vaccines 0.9863 0.9652 0.0211

Employment 0.9533 0.9173 0.0360 Court 0.9226 0.9015 0.0211

Environment 0.9597 0.9241 0.0356 Pandemic 0.9273 0.9058 0.0215

Therapy 0.9736 0.9381 0.0355 Earthquake 0.9875 0.9659 0.0216

Animal 0.9828 0.9475 0.0353 Dance 0.9779 0.9558 0.0221

Children 0.9680 0.9329 0.0351 Bankruptcy 0.9364 0.9137 0.0227

Volleyball 0.9872 0.9523 0.0349 Tobacco 0.9847 0.9619 0.0228

Medicare 0.9700 0.9356 0.0344 Suicide 0.9754 0.9524 0.0230

Beverage 0.9872 0.9531 0.0341 Constitution 0.9633 0.9403 0.0230

Justice 0.9507 0.9168 0.0339 Disaster 0.9238 0.9005 0.0233

Fire 0.9697 0.9358 0.0339 Halloween 0.9913 0.9678 0.0235

Prices 0.9594 0.9258 0.0336 Teachers 0.9843 0.9607 0.0236

Easter 0.9810 0.9476 0.0334 Police 0.9649 0.9411 0.0238

Racism 0.9902 0.9570 0.0332 Media 0.9158 0.8919 0.0239

Tourism 0.9777 0.9446 0.0331 Petrol 0.9651 0.9412 0.0239

Trend 0.9216 0.8890 0.0326 Politics 0.9517 0.9269 0.0248

Farms 0.9734 0.9409 0.0325 Surgery 0.9787 0.9539 0.0248

Adoption 0.8417 0.8094 0.0323 Theatre 0.9776 0.9526 0.0250

Family 0.9572 0.9249 0.0323 Labour 0.9582 0.9330 0.0252

Abortion 0.9920 0.9598 0.0322 Welfare 0.9096 0.8832 0.0264

Terrorism 0.9791 0.9470 0.0321 Unemployment 0.9843 0.9577 0.0266

Culture 0.9476 0.9155 0.0321 School 0.9542 0.9276 0.0266

Gender 0.9776 0.9458 0.0318 College 0.9454 0.9188 0.0266

Plant 0.928 0.8964 0.0316 Holiday 0.9381 0.9112 0.0269

Rivers 0.9815 0.9499 0.0316 Poverty 0.9763 0.9493 0.0270

Game 0.9472 0.9157 0.0315 Economy 0.9648 0.9374 0.0274

Advertising 0.9667 0.9352 0.0315 Radio 0.9736 0.9461 0.0275

Sailing 0.9538 0.9224 0.0314 Wedding 0.9759 0.9483 0.0276

Education 0.9636 0.9323 0.0313 Fashion 0.9655 0.9379 0.0276

Securities 0.9762 0.9451 0.0311 Painting 0.9829 0.9552 0.0277

Logistics 0.9705 0.9397 0.0308 Consumers 0.9621 0.9343 0.0278

Ceremony 0.9333 0.9027 0.0306 Mortgage 0.9787 0.9508 0.0279

Insurance 0.9834 0.9529 0.0305 Government 0.9318 0.9033 0.0285

Bar 0.9553 0.9250 0.0303 Immigration 0.9900 0.9613 0.0287

Cafe 0.9852 0.9549 0.0303 Restaurant 0.9821 0.9533 0.0288

https://doi.org/10.1371/journal.pone.0260701.t001

PLOS ONE Learning to sense from events via semantic variational autoencoder

PLOS ONE | https://doi.org/10.1371/journal.pone.0260701 December 23, 2021 15 / 20

https://doi.org/10.1371/journal.pone.0260701.t001
https://doi.org/10.1371/journal.pone.0260701


Fig 6 shows the histogram with correlation values between BERT and original event geo-

graphical features in a simulation involving 5000 runs. The x-axis indicates the Spearman

correlation value, and the y-axis indicates the frequency at which a correlation range was

obtained. The red line indicates a threshold of statistical significance for the spearman correla-

tion involving a sample size of 60 observations. From this threshold onwards, the correlations

are significant with a 90% confidence level. We found that BERT is able to significantly capture

geographic information in approximately 22% of runs.

Fig 5. Sensor map about Brazilian Covid-19 events. Base map and data from OpenStreetMap and OpenStreetMap

Foundation.

https://doi.org/10.1371/journal.pone.0260701.g005

Fig 6. Histogram of frequency of Spearman correlation values between pairs of events considering MGEO and

MBERT.

https://doi.org/10.1371/journal.pone.0260701.g006

PLOS ONE Learning to sense from events via semantic variational autoencoder

PLOS ONE | https://doi.org/10.1371/journal.pone.0260701 December 23, 2021 16 / 20

https://doi.org/10.1371/journal.pone.0260701.g005
https://doi.org/10.1371/journal.pone.0260701.g006
https://doi.org/10.1371/journal.pone.0260701


In the second experiment, we carried out the same process, however, we compared the

correlation between the latitude and longitude information of events and the embeddings

obtained by the SVAE (corr(MGEO, MSVAE)). Fig 7 shows the histogram with correlation values

between SVAE and original event geographical features in a simulation involving 5000 runs.

We found that SVAE is able to significantly preserves geographic information in approxi-

mately 20% of runs. We argue that this result is promising since: (i) coding from 512 dimen-

sions to 2, the SVAE preserves the spatio-temporal information in 91% (20% of 22%); and (ii)

the two simple features obtained by SVAE for sensor maps must preserve both textual content

and geographic information. Furthermore, we train SVAE only with information from lan-

guage models, in which geographic information can be implicitly presented in natural lan-

guage such as the experiment presented previously.

Concluding remarks

In this paper, we introduce the learning to sense tasks, in which one-class classification meth-

ods for texts are used to identify events of interest. We discussed the limitations of using exist-

ing methods for learning to sense, such as the lack of semantics and conceptual differences of

these models for classical sensing tasks. In practice, learning to sense tries to emulate human

reasoning to monitor and interpret events of interest for decision-making processes.

We propose a method called SVAE (Semantic Variational Autoencoder) to learn two-

dimensional sensor maps capable of extracting non-linear features and preserving properties

extracted from neural language models, in which events are represented via embeddings. Also,

our SVAE tends to preserve existing spatio-temporal features of the events. Our experimental

evaluation indicated that the proposed SVAE outperforms a robust one-class classification

method based on BERT embeddings. Moreover, our SVAE has desirable characteristics for

event analysis, such as visualization of the classifiers’ function decision and facilitating the

visualization of the geographic impact of the events of interest through heat maps.

Directions for future work involve training specific neural language models for large collec-

tions of events to highlight spatio-temporal features in contextual word embeddings and a

study about the impact of the bottleneck sizes in the learning to sense performance. Deep

Fig 7. Histogram of frequency of Spearman correlation values between pairs of events MGEO and MSVAE.

https://doi.org/10.1371/journal.pone.0260701.g007
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autoencoders are also promising, particularly combining convolutional neural networks and

variational autoencoders to obtain better sensor maps. Finally, future work involves the crea-

tion of a multimodal version of SVAE to explore the combination of BERT embeddings and

geolocations (latitude and longitude).
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Project administration: Marcos Paulo Silva Gôlo, Ricardo Marcondes Marcacini.
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