
RESEARCH ARTICLE

Understanding an evolving pandemic: An

analysis of the clinical time delay distributions

of COVID-19 in the United Kingdom

Thomas WardID
1,2*, Alexander Johnsen3

1 Public Health England, London, United Kingdom, 2 Joint Biosecurity Centre, London, United Kingdom,

3 Department of Health and Social Care, London, United Kingdom

* tom.ward@dhsc.gov.uk

Abstract

Understanding and monitoring the epidemiological time delay dynamics of SARS-CoV-2

infection provides insights that are key to discerning changes in the phenotype of the virus,

the demographics impacted, the efficacy of treatment, and the ability of the health service to

manage large volumes of patients. This paper analyses how the pandemic has evolved in

the United Kingdom through the temporal changes to the epidemiological time delay distri-

butions for clinical outcomes. Using the most complete clinical data presently available, we

have analysed, through a doubly interval censored Bayesian modelling approach, the time

from infection to a clinical outcome. Across the pandemic, for the periods that were defined

as epidemiologically distinct, the modelled mean ranges from 8.0 to 9.7 days for infection to

hospitalisation, 10.3 to 15.0 days for hospitalisation to death, and 17.4 to 24.7 days for infec-

tion to death. The time delay from infection to hospitalisation has increased since the first

wave of the pandemic. A marked decrease was observed in the time from hospitalisation to

death and infection to death at times of high incidence when hospitals and ICUs were under

the most pressure. There is a clear relationship between age groups that is indicative of the

youngest and oldest demographics having the shortest time delay distributions before a clin-

ical outcome. A statistically significant difference was found between genders for the time

delay from infection to hospitalisation, which was not found for hospitalisation to death. The

results by age group indicate that younger demographics that require clinical intervention for

SARS-CoV-2 infection are more likely to require earlier hospitalisation that leads to a shorter

time to death, which is suggestive of the largely more vulnerable nature of these individuals

that succumb to infection. The distinction found between genders for exposure to hospitali-

sation is revealing of gender healthcare seeking behaviours.

Introduction

The COVID-19 pandemic has had an unprecedented impact on the global population. In the

United Kingdom, as of 24 February 2021, 4194785 cases have been observed [1] causing 440

369 hospitalisations and 140062 deaths, which has placed extraordinary pressure on the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0257978 October 20, 2021 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ward T, Johnsen A (2021) Understanding

an evolving pandemic: An analysis of the clinical

time delay distributions of COVID-19 in the United

Kingdom. PLoS ONE 16(10): e0257978. https://

doi.org/10.1371/journal.pone.0257978

Editor: Prasenjit Mitra, Post Graduate Institute of

Medical Education and Research, INDIA

Received: April 24, 2021

Accepted: September 14, 2021

Published: October 20, 2021

Copyright: © 2021 Ward, Johnsen. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data is government

owned but can be made available upon application

to Public Health England if it will be processed and

stored in line with government guidelines. Public

Health England, Department of Health and Social

Care are the data controllers for the SARI and

SARS-CoV-2 death’s linelist. Therefore, the

datasets, although anonymised, require approval

for suitability prior to release. Data requests can be

made to the Office for Data Release (https://www.

gov.uk/government/publications/accessing-public-

health-england-data/about-the-phe-odr-and-

accessing-data) and contacting odr@phe.gov.uk.

https://orcid.org/0000-0001-8801-747X
https://doi.org/10.1371/journal.pone.0257978
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257978&domain=pdf&date_stamp=2021-10-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257978&domain=pdf&date_stamp=2021-10-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257978&domain=pdf&date_stamp=2021-10-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257978&domain=pdf&date_stamp=2021-10-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257978&domain=pdf&date_stamp=2021-10-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0257978&domain=pdf&date_stamp=2021-10-20
https://doi.org/10.1371/journal.pone.0257978
https://doi.org/10.1371/journal.pone.0257978
http://creativecommons.org/licenses/by/4.0/
https://www.gov.uk/government/publications/accessing-public-health-england-data/about-the-phe-odr-and-accessing-data
https://www.gov.uk/government/publications/accessing-public-health-england-data/about-the-phe-odr-and-accessing-data
https://www.gov.uk/government/publications/accessing-public-health-england-data/about-the-phe-odr-and-accessing-data
https://www.gov.uk/government/publications/accessing-public-health-england-data/about-the-phe-odr-and-accessing-data
mailto:odr@phe.gov.uk


healthcare system. The changing landscape of COVID-19 prevalence due to non-pharmaceuti-

cal interventions (NPIs) has led to a variable aetiological clinical impact. Moreover, since the

onset of the pandemic, the virus has had varying temporal consequences for different demo-

graphics, affecting the time delay parameters, which was particularly pronounced with the

March 2020 outbreak in care homes [2]. Understanding these temporal time delay dynamics

of infection is key for the calculation of the infection hospitalisation rate (IHR) and infection

fatality rate (IFR). This in turn has implications for the accurate modelling of the pandemic

and formulation of effective public health policy. For instance, the changes to the time delay

dynamics are central to estimating the incubation and illness period, which is essential for

defining accurate quarantine periods for those that have been infected or exposed by a contact.

Tracking the phenotypic changes in the virus is now becoming more relevant due to the extent

of antigenic drift observed in SARS-CoV-2 [3] and worrying mutations [4] that may have an

impact upon vaccine effectiveness.

There is limited contemporary research that looks at infection to clinical outcomes and

nothing we have found for this study that addresses the temporal changes or looks in detail at

the distinctions between gender or by age. Much of the literature that seeks to estimate the

time delay dynamics [5] has been focused on the outbreak in Wuhan, China seen in 2019 and

at the start of 2020. From this period Linton et al. (2020) [6] calculated the mean time from

infection to hospitalisation: 9.7 days (95% CI: 5.4, 17.0), hospitalisation to death: 13.0 days

(95% CI: 8.7, 20.9), and infection to death: 20.2 days (95% CI: 15.1, 29.5). However, these esti-

mates are predominantly from small samples and, due to the pandemic nature of this outbreak,

are dependent upon the demographic structure, the quality of the healthcare system, and the

epidemiological context in which they were collected.

The time between infection and a clinical outcome for infectious diseases is not precisely

observed and therefore is often ‘coarsely’ recorded, that is, we observe a subset of the sample

space in which the true but unobservable data actually lie [7]. Therefore, modelling of this type

of data needs to adjust for its imprecise nature or it is likely that the estimates will not accu-

rately capture the maximum likelihood or the tails of the distribution, which can be important

to inform key elements of public health policy. McAloon et al. [5] found, in a meta-analysis of

studies published on the incubation period of COVID-19, that this has been overlooked in

much of the current literature. In this study, we employed a doubly interval censored model-

ling approach [8] that seeks to capture all the available information of the clinical time delay

distribution.

The time delay from infection to a clinical outcome has changed in response to the evolu-

tion of intrinsic and extrinsic factors across the geography of the United Kingdom. Using the

most complete clinical data presently available, we have calculated, across distinct epidemio-

logical periods in the pandemic, the difference in the time delay distributions for hospitalisa-

tions and deaths. These periods were defined by identifying temporally unique periods that

were found to be strongly associated with changes in the prevalence of SARS-CoV-2. We have

further modelled the difference between age groups and by gender to understand and analyse

distinctions between demographic groups.

Methods

Epidemiological data

Two Public Health England datasets were used in this study: the mortality line list and the

Severe Acute Respiratory Infection Watch (SARI) line list [9]. The data used ranges from 1

January 2020 to 20 January 2021. The key dates used to develop the models were of symptom

onset, hospitalisation, and mortality in order to measure three quantities of interest: the time
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from infection to hospitalisation, the time from hospitalisation to death, and the time from

infection to death.

Data preparation

The two datasets used in this study were merged and split in order to measure the three quanti-

ties of interest. Subsequently, rows with missing values and duplicates were dropped. As the

datasets were anonymised, it was assumed that if two lines had the same local authority area,

sex, age, start date and end date, then they referred to the same person. Additionally, the data

was filtered to remove erroneous negative time-delay periods and extreme outliers prior to

model fitting. The data were then split into distinct epidemiological periods: the first wave

(January to May), the summer (June to August), the second wave (September to November),

and the third wave (December to January). The periods were defined by clear distributional

changes in the time delays that had an evident seasonality with distinct peaks in prevalence

and hospital admissions:

• 1st Period: The first period was characterised by a sharp increase of SARS-CoV-2 incidence

that peaked at 280000 [10], which across the period led to daily hospital admissions having a

median of 1466 [1] and this precipitated the first national lockdown.

• 2nd Period: The second period saw a loosening of NPIs with the median for daily hospital

admissions dropping to 162 [1] and incidence estimates peaking at 10700 [10].

• 3rd Period: The third period was characterised by the introduction of tiers that determined

the extent of the NPIs that were required locally. It saw an increase in the median for daily

hospital admissions to 1025 [1] and a peak incidence estimate of 66800 [10].

• 4th Period: The middle of the fourth period saw the start of a national lockdown with the

highest median for daily hospital admissions of 2529 and incidence estimates peaking at

157000 [10].

In addition, in order to assess the dependence of time delay on gender and age, we split the

combined data by ten-year age bands and gender using the data from January 2020 to Novem-

ber 2020. These dates were selected so that the full distribution of hospitalisations and deaths

had been observed. We did not have reliable data on infection to symptom onset so this was

informed by a literature estimate [5]. We then calculated for these periods two categories

based on the date that the data was collected.

Category A:

(a) infection to hospitalisation by date of symptom onset

(b) hospitalisation to death by date of hospitalisation

(c) infection to death by date of symptom onset

Category B:

(a) infection to hospitalisation by date of hospitalisation

(b) hospitalisation to death by date of death

(c) infection to death by date of death

For each time interval we then fit the Lognormal, Gamma and Weibull distributions to a

doubly interval censored likelihood function that was run through Monte Carlo sampling.
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This was used to address the inherently ‘coarse’ [8] nature of this data, in part due to how it

was recorded.

Time delay distribution modelling

t
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We define two events, A and B, and the times at which these events occur, α and β, with α
< β. However, α and β are not known precisely: α 2 [α−, α+], β 2 [β−, β+]. In addition, let O be

an unobserved event that occurs a time t0 prior to A. The probability density function govern-

ing the time from O to A is p(t0). Let the time between events O and B be T, a continuous ran-

dom variable with probability density function f(t;θ) dependent on parameters θ. We express

the joint probability of all three events as p(O, A, B) = p(B|O, A) � p(O|A) � p(A) = f(β − α + t0;

θ) � p(t0) � p(α). In the absence of information informing p(α), let it be a uniform distribution.

In other words,

pðaÞ ¼

1

aþ � a�
a� � a � aþ

0 otherwise

8
><

>:

Then, we can express the likelihood of θ and an observed data point Xi,ðai
�
; ai
þ
; b

i
�
; b

i
þ
Þ, as

Lðθ;XiÞ ¼

Z ai
þ

ai�

Z bi
þ

bi�

Z 1

0

f ðbi
� ai þ t0; θÞpðt0Þ dt0 db

i dai: ð1Þ

For multiple data points X = {Xi}, the likelihood is

Lðθ;XÞ ¼
Y

i
Lðθ;XiÞ ð2Þ

and a Hamiltonian Markov chain Monte Carlo method is used within Stan [11] to find the dis-

tributions of θ, given the observed data.

Within the context of this paper, the events O, A and B refer to the quantities in Table 1.

We use the literature [5] to inform the time between O and A as p(t0) * Lognormal (1.63,

0.50). In the specific case that the time we want to measure is in fact A to B rather than O to B,

we can let p(t0) = δ(t0) where δ here refers to a half delta function defined on t0 2 R
þ

0
.

In order to account for the right truncation present within the most recent portion of the

dataset, we use a modified probability density function fRT that accounts for this [6]

fRT b � aþ t0; θð Þ ¼
f ðb � aþ t0; θÞ

R maxðbiþÞ� a
0

rexpð� ruÞ
1 � expð� ruÞ

F max bi
þ

� �
� a � u; θ

� �
du

ð3Þ

where Fðt; θÞ ¼
R t

0
f ðt; θÞ dt is the cumulative probability function of f and r is the exponential

growth rate of type A events. In this paper there are two categories of type A event: symptom

onset and admission to hospital. In order to calculate the growth rate, a negative binomial was
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fitted to modelled incidence [12] for symptom onset, and publicly available admissions data

[1] for hospitalisations.

Models and assessing performance

For each set of data points, the probability density function f is taken to follow the Lognormal,

Gamma and Weibull distributions as these are commonly used for survival data. Their proba-

bility density functions, defined for x� 0, are as follows

Lognormal : f x; a; bð Þ ¼
1

x
ffiffiffiffiffiffiffiffiffiffi
2pb

2
p exp �

ðln x � aÞ2

2b
2

� �

Gamma : f x; a;bð Þ ¼
1

GðaÞb
a xa� 1 exp �

x
b

� �

Weibull : f x; a;bð Þ ¼ ab
� axa� 1 exp �

x
b

� �a� �

:

We calculated the leave-one-out cross-validation (LOO) using Pareto-smoothed impor-

tance sampling (PSIS) and the widely applicable information criterion (WAIC) [13] scores for

each model to compare the accuracy of the fitted Bayesian models. The WAIC score is asymp-

totically equivalent to LOO and can be thought of as an approximation [14]. Therefore, LOO

scores were used in conjunction with Pareto k diagnostics and the R-hat convergence diagnos-

tics to assess the best model fit. Most desirable is the lowest LOO score alongside a Pareto

score where k� 0.7 and an R̂ � 1:05 [13].

Results

We present two sets of results in this paper: (i) the evolution of the times to clinical outcome over

the course of the pandemic, and (ii) the variation in those times by sex and age group. The times

to clinical outcome that are measured are infection to hospitalisation, hospitalisation to death,

and infection to death. The modelled estimates that were of primary interest were informed by

category A (see section on data preparation) rather than by category B because these estimates are

not influenced by historical infections in the defined periods. We report category B results (Tables

A1-A3 in the S1 Appendix) as they may have utility for epidemiological modelling and when

assessing external factors, such as the impact of healthcare pressure, because it captures those indi-

viduals that died or were hospitalised in that period. The choice of which date category to use

impacts the whole time delay distribution. The right tail of the distribution using category B data

may capture some individuals infected in an earlier period whereas, using category A to inform

estimates may capture some hospitalisations and deaths from a later period. We were not aware

of any selection bias for individuals that were included in the datasets used for modelling

although, ascertainment bias for cases would be more evident in the earlier periods when testing

capacity was more limited. The sample of individuals that have symptom onset included in the

death data line list pertains to reporting practices of certain testing laboratories. In the SARI data-

set highly detailed data is collected for a subset of NHS Trusts, which includes symptom onset.

Table 1. Events O, A and B for the three time delay quantities.

O A B

INFECTION TO HOSPITALISATION Infection Symptom onset Hospitalisation

HOSPITALISATION TO DEATH N/A Hospitalisation Death

INFECTION TO DEATH Infection Symptom onset Death

https://doi.org/10.1371/journal.pone.0257978.t001
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Tables 2 and 4 show that the Lognormal is a better fit for the infection to hospitalisation and infec-

tion to death distributions whereas, Table 3 illustrates that Weibull is a better fit for the hospitali-

sation to death distribution.

Table 2. Results for the time from infection to hospitalisation, segmented by symptom onset date.

Period N Model Mean SD α β LOOIC %(k�0.7)

01Jan2020

to

31May2020

4328 Lognormal 8.01 (7.89, 8.14) 4.16 (4.03, 4.30) 1.96 (1.95, 1.98) 0.49 (0.48, 0.50) 24022 98

Gamma 8.13 (8.02, 8.25) 3.97 (3.88, 4.07) 4.19 (4.01, 4.38) 0.52 (0.49, 0.54) 24309 98

Weibull 8.21 (8.08, 8.33) 4.26 (4.17, 4.34) 2.02 (1.97, 2.06) 9.26 (9.12, 9.41) 24726 96

01Jun2020

to

31Aug2020

135 Lognormal 9.21 (8.34, 10.15) 6.22 (5.18, 7.45) 2.03 (1.93, 2.13) 0.61 (0.55, 0.68) 826 99

Gamma 10.07 (9.07, 11.17) 7.04 (6.14, 8.07) 2.07 (1.68, 2.51) 0.21 (0.16, 0.25) 875 100

Weibull 10.20 (8.99, 11.48) 8.44 (7.36, 9.72) 1.22 (1.10, 1.34) 10.87 (9.51, 12.30) 896 99

01Sep2020

to

30Nov2020

1052 Lognormal 9.70 (9.44, 9.97) 4.44 (4.16, 4.73) 2.18 (2.15, 2.20) 0.44 (0.41, 0.46) 6096 95

Gamma 9.75 (9.49, 10.01) 4.29 (4.08, 4.52) 5.17 (4.70, 5.67) 0.53 (0.48, 0.58) 6134 98

Weibull 9.78 (9.51, 10.05) 4.55 (4.37, 4.74) 2.28 (2.17, 2.39) 11.04 (10.74, 11.34) 6214 94

01Dec2020

to

20Jan2021

489 Lognormal 8.91 (8.59, 9.27) 3.90 (3.56, 4.28) 2.10 (2.06, 2.14) 0.42 (0.39, 0.45) 2742 93

Gamma 8.97 (8.63, 9.32) 3.75 (3.47, 4.05) 5.75 (4.93, 6.64) 0.64 (0.55, 0.74) 2748 98

Weibull 9.02 (8.66, 9.39) 3.86 (3.63, 4.11) 2.51 (2.32, 2.70) 10.17 (9.77, 10.56) 2773 89

Lognormal� 9.72 (9.31, 10.15) 4.04 (3.57, 4.57) 2.19 (2.15, 2.24) 0.40 (0.36, 0.44) 4847 88

Gamma� † † † † † †

Weibull� 9.75 (9.36, 10.14) 3.93 (3.66, 4.22) 2.68 (2.46, 2.91) 10.96 (10.54, 11.41) 4890 91

For the last time period from 1 December 2020 to 20 January 2021, the right truncated model was run as well. 90% credible intervals are quoted

�Model run with right truncation using r = 0.0173.

†Model did not converge ðR̂ > 1:05Þ.

https://doi.org/10.1371/journal.pone.0257978.t002

Table 3. Results for the time from hospitalisation to death, segmented by hospitalisation date.

Period N Model Mean SD α β LOOIC %(k�0.7)

01Jan2020

to

31May2020

28611 Lognormal 11.12 (10.98, 11.25) 14.63 (14.31, 14.94) 1.91 (1.90, 1.92) 1.00 (0.99, 1.01) 192080 96

Gamma 10.29 (10.20, 10.38) 9.51 (9.41, 9.61) 1.17 (1.15, 1.19) 0.11 (0.11, 0.12) 190324 100

Weibull 10.28 (10.19, 10.38) 9.36 (9.25, 9.47) 1.10 (1.09, 1.11) 10.66 (10.56, 10.76) 190288 100

01Jun2020

to

31Aug2020

1700 Lognormal 15.89 (15.02, 16.80) 23.46 (21.30, 25.91) 2.19 (2.14, 2.23) 1.07 (1.04, 1.11) 12609 97

Gamma 14.62 (14.06, 15.20) 14.31 (13.64, 15.02) 1.04 (0.99, 1.10) 0.07 (0.07, 0.08) 12527 100

Weibull 14.63 (14.08, 15.21) 14.43 (13.76, 15.14) 1.01 (0.98, 1.05) 14.72 (14.10, 15.33) 12528 100

01Sep2020

to

30Nov2020

16641 Lognormal 16.43 (16.19, 16.67) 19.52 (19.02, 20.04) 2.36 (2.35, 2.37) 0.94 (0.93, 0.95) 124441 97

Gamma 14.99 (14.84, 15.15) 12.35 (12.18, 12.52) 1.47 (1.45, 1.50) 0.10 (0.10, 0.10) 122198 100

Weibull 14.96 (14.81, 15.11) 11.62 (11.46, 11.78) 1.30 (1.28, 1.31) 16.19 (16.02, 16.36) 121915 100

01Dec2020

to

20Jan2021

16903 Lognormal 10.08 (9.94, 10.21) 11.30 (11.03, 11.58) 1.90 (1.89, 1.91) 0.90 (0.89, 0.91) 110011 95

Gamma 9.33 (9.24, 9.43) 7.64 (7.54, 7.75) 1.49 (1.46, 1.52) 0.16 (0.16, 0.16) 108147 100

Weibull 9.31 (9.21, 9.40) 7.17 (7.08, 7.27) 1.31 (1.29, 1.32) 10.09 (9.98, 10.19) 107815 100

1000? Lognormal� 26.44 (20.80, 34.06) 51.50 (35.00, 75.27) 2.49 (2.36, 2.65) 1.24 (1.15, 1.34) 10656 96

Gamma� † † † † † †

Weibull� 12.41 (11.49, 13.54) 10.20 (9.11, 11.55) 1.23 (1.16, 1.30) 13.26 (12.32, 14.37) 10605 100

For the last time period from 1 December 2020 to 20 January 2021, the right truncated model was run as well. 90% credible intervals are quoted.

�Model run with right truncation using r = 0.0278.
?Due to computational constraints, we used a randomly selected subsample of 1000 people for the right truncated model.

†Model did not converge ðR̂ > 1:05Þ.

https://doi.org/10.1371/journal.pone.0257978.t003
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Variation in time over the pandemic

Tables 2–4 show the distributions of these times for the four distinct periods described in the

Methods section. There is a consistent age structure for the hospitalisations and deaths, which

is highly skewed towards the older demographics, irrespective of the temporal period. Note-

worthy is the result that the mean time from infection to hospitalisation has remained the

most constant of the three time delay quantities. This contrasts with noticeable increases

observed in the time from hospitalisation to death and infection to death over the summer and

early autumn months of 2020 when prevalence was lower, with declines observed in the most

recent period.

Variation in time by sex and age

Additionally, modelled results by sex and age can be seen in Tables 5–7. Fig 1 illustrates that

men had a longer time delay distribution than women for infection to hospitalisation; how-

ever, there was no statistically significant difference in the time from hospitalisation to death

between the sexes. For the variation by age, the mean time from infection to hospitalisation

and death increases from those in their twenties to peak in patients in their forties, followed by

a steady reduction with increasing patient age until 80–89. The variation observed within the

time from hospitalisation to death was more modest; nevertheless, middle-aged patients dis-

played the longest times as observed in infection to death. Results for people under the age of

20 were discarded because there were too few patients for a meaningful measurement of their

epidemiological characteristics. Males have a greater time from infection to hospitalisation,

which was statistically significant, with a p-value of 5.0 × 10−15 using a Mann-Whitney-Wil-

coxon. This same distinction between males and females is not found for the time delay in hos-

pitalisation to death with a p-value of 0.93.

Table 4. Results for the time from infection to death, segmented by symptom onset date.

Period N Model Mean SD α β LOOIC %(k�0.7)

01Jan2020

to

31May2020

5378 Lognormal 19.61 (19.34, 19.89) 11.82 (11.51, 12.16) 2.82 (2.81, 2.83) 0.56 (0.55, 0.57) 39680 100

Gamma 19.88 (19.62, 20.15) 11.35 (11.11, 11.60) 3.07 (2.96, 3.17) 0.15 (0.15, 0.16) 40340 100

Weibull 20.02 (19.73, 20.32) 12.61 (12.39, 12.84) 1.63 (1.60, 1.65) 22.36 (22.03, 22.71) 41071 100

01Jun2020

to

31Aug2020

170 Lognormal 24.69 (22.58, 27.05) 17.42 (14.82, 20.68) 3.00 (2.91, 3.09) 0.63 (0.58, 0.70) 1368 100

Gamma 25.29 (23.33, 27.45) 16.59 (14.70, 18.63) 2.35 (1.95, 2.77) 0.09 (0.08, 0.11) 1393 100

Weibull 25.56 (23.32, 27.99) 18.14 (16.32, 20.19) 1.43 (1.30, 1.57) 28.12 (25.52, 30.91) 1411 100

01Sep2020

to

30Nov2020

1335 Lognormal 23.00 (22.45, 23.55) 12.04 (11.42, 12.68) 3.01 (2.99, 3.04) 0.49 (0.47, 0.51) 10081 100

Gamma 22.95 (22.45, 23.47) 11.22 (10.79, 11.67) 4.19 (3.91, 4.47) 0.18 (0.17, 0.20) 10103 100

Weibull 23.02 (22.50, 23.56) 11.56 (11.20, 11.94) 2.09 (2.02, 2.16) 25.99 (25.40, 26.60) 10193 99

01Dec2020

to

20Jan2021

650 Lognormal 17.40 (16.94, 17.88) 6.81 (6.35, 7.29) 2.79 (2.76, 2.81) 0.38 (0.36, 0.40) 4330 98

Gamma 17.39 (16.94, 17.85) 6.58 (6.19, 7.01) 7.01 (6.23, 7.81) 0.40 (0.36, 0.45) 4333 100

Weibull 17.43 (16.96, 17.89) 6.72 (6.41, 7.05) 2.81 (2.65, 2.97) 19.57 (19.06, 20.07) 4362 93

Lognormal� 22.68 (21.97, 23.35) 6.05 (5.82, 6.25) 3.09 (3.06, 3.12) 0.26 (0.26, 0.27) 6516 86

Gamma� † † † † † †

Weibull� 21.81 (21.11, 22.54) 6.85 (6.49, 7.28) 3.53 (3.33, 3.69) 24.23 (23.45, 25.04) 6766 94

For the last time period from 1 December 2020 to 20 January 2021, the right truncated model was run as well. 90% credible intervals are quoted.

�Model run with right truncation using r = 0.0173.

†Model did not converge ðR̂ > 1:05Þ.

https://doi.org/10.1371/journal.pone.0257978.t004
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Discussion

The impact of SARS-CoV-2 between subgroups of the population and across periods defined

by distinct temporal epidemiological trends is significant in furthering understanding of the

virus and how we might expect it to change over time. Understanding the clinical time delays

and the impetus that drive the changes in these distributions will help to untangle extrinsic

pressure from any further phenotypic changes we encounter in the virus. This will help to

inform more impactful policy decisions on the containment and the suppression of transmis-

sion and allow for a clearer understanding of variants of concern.

As seen in Fig 2, there was found to be statistically significant variation between the defined

periods. This is particularly apparent in Table 4 where we observe that during the first wave of

SARS-CoV-2 the mean time from infection to death is 19.6±0.2 days (95% interval: 5.6, 50.0)

and that in the summer period that followed, this rises to 24.7±1.4 days (95% interval: 5.8,

69.8). There has been a substantial change in testing volume and strategy over the timeline of

Table 5. Results for the time from infection to hospitalisation by sex and age.

Sex/Age N Model Mean SD α β LOOIC %(k�0.7)

Male 3587 Lognormal 8.62 (8.48, 8.77) 4.49 (4.33, 4.66) 2.03 (2.02, 2.05) 0.49 (0.48, 0.50) 20429 98

Gamma 8.73 (8.59, 8.87) 4.31 (4.19, 4.43) 4.11 (3.91, 4.31) 0.47 (0.45, 0.49) 20660 99

Weibull 8.75 (8.59, 8.89) 4.81 (4.71, 4.92) 1.89 (1.85, 1.93) 9.85 (9.68, 10.02) 21115 98

Female 1926 Lognormal 7.90 (7.72, 8.08) 4.01 (3.83, 4.21) 1.95 (1.93, 1.98) 0.48 (0.46, 0.50) 10602 97

Gamma 8.04 (7.87, 8.21) 3.91 (3.77, 4.06) 4.24 (3.96, 4.53) 0.53 (0.49, 0.56) 10759 98

Weibull 8.08 (7.89, 8.27) 4.37 (4.25, 4.50) 1.93 (1.87, 1.98) 9.11 (8.90, 9.33) 11018 94

20–29 21 Lognormal 7.61 (6.26, 9.00) 2.81 (1.77, 4.28) 1.96 (1.74, 2.15) 0.36 (0.22, 0.52) 111 52

Gamma 7.97 (6.58, 9.52) 3.01 (1.91, 4.51) 8.53 (3.27, 18.11) 1.07 (0.41, 2.20) 111 81

Weibull 8.13 (6.70, 9.56) 2.74 (1.80, 3.89) 3.52 (2.07, 5.55) 9.03 (7.54, 10.52) 112 81

30–39 57 Lognormal 8.83 (7.71, 10.02) 4.79 (3.69, 6.19) 2.04 (1.90, 2.18) 0.51 (0.41, 0.61) 335 98

Gamma 9.12 (7.97, 10.34) 4.70 (3.76, 5.85) 3.92 (2.56, 5.63) 0.43 (0.28, 0.62) 337 96

Weibull 9.24 (8.09, 10.45) 4.80 (4.01, 5.82) 2.04 (1.65, 2.48) 10.41 (9.09, 11.79) 341 98

40–49 202 Lognormal 10.07 (9.36, 10.80) 5.58 (4.81, 6.48) 2.17 (2.10, 2.25) 0.52 (0.46, 0.57) 1228 99

Gamma 10.17 (9.51, 10.86) 5.21 (4.65, 5.84) 3.85 (3.11, 4.70) 0.38 (0.31, 0.46) 1234 100

Weibull 10.23 (9.53, 10.95) 5.28 (4.80, 5.84) 2.04 (1.82, 2.26) 11.54 (10.75, 12.36) 1244 99

50–59 597 Lognormal 9.85 (9.48, 10.22) 4.77 (4.37, 5.21) 2.18 (2.14, 2.22) 0.46 (0.43, 0.49) 3522 97

Gamma 9.87 (9.52, 10.23) 4.50 (4.20, 4.81) 4.83 (4.24, 5.47) 0.49 (0.43, 0.56) 3527 99

Weibull 9.92 (9.56, 10.72) 4.57 (4.32, 4.83) 2.31 (2.16, 2.46) 11.19 (10.80, 11.60) 3552 95

60–69 1149 Lognormal 9.72 (9.47, 9.99) 4.77 (4.49, 5.08) 2.17 (2.14, 2.19) 0.46 (0.44, 0.49) 6755 97

Gamma 9.77 (9.50, 10.03) 4.59 (4.37, 4.81) 4.55 (4.15, 4.97) 0.47 (0.42, 0.51) 6799 99

Weibull 9.75 (9.49, 10.03) 5.05 (4.87, 5.23) 2.02 (1.95, 2.10) 11.01 (10.70, 11.33) 6926 97

70–79 1396 Lognormal 8.59 (8.36, 8.83) 4.52 (4.27, 4.79) 2.03 (2.00, 2.06) 0.49 (0.47, 0.52) 7956 98

Gamma 8.72 (8.51, 8.94) 4.39 (4.21, 4.58) 3.95 (3.66, 4.26) 0.45 (0.42, 0.49) 8073 99

Weibull 8.74 (8.48, 8.99) 5.03 (4.86, 5.20) 1.80 (1.74, 1.86) 9.82 (9.53, 10.11) 8287 98

80–89 1499 Lognormal 6.90 (6.72, 7.07) 3.19 (3.03, 3.36) 1.83 (1.81, 1.86) 0.44 (0.42, 0.46) 7729 94

Gamma 7.06 (6.89, 7.23) 3.17 (3.04, 3.31) 4.96 (4.57, 5.34) 0.70 (0.65, 0.76) 7866 93

Weibull 7.14 (6.95, 7.33) 3.59 (3.47, 3.72) 2.09 (2.01, 2.17) 8.06 (7.84, 8.28) 8081 86

90+ 517 Lognormal 6.48 (6.21, 6.75) 2.98 (2.74, 3.24) 1.77 (1.73, 1.82) 0.44 (0.41, 0.47) 2605 93

Gamma 6.70 (6.42, 6.98) 3.13 (2.92, 3.36) 4.61 (4.05, 5.19) 0.69 (0.61, 0.78) 2692 93

Weibull 6.75 (6.43, 7.09) 4.00 (3.79, 4.22) 1.74 (1.65, 1.83) 7.58 (7.21, 7.97) 2837 95

The data were filtered for symptom onset dates between January 2020 to November 2020. 90% credible intervals are quoted.

https://doi.org/10.1371/journal.pone.0257978.t005
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the pandemic impacting the complete capture of COVID-19 deaths and hospitalisations,

which will be particularly significant for the January to March 2020 period. This may have had

the impact of selection bias at the start of the pandemic albeit the impact of this is thought to

be small due to prioritisation of testing for individuals that required clinical care. The summer

period is very striking in Fig 2 by the long right tail for all three categories, which could be

indicative of a change in patient clinical management as intensive care clinicians found that

sustaining patients that were considered extremely critical for longer could result in a higher

survival rate [15]. Moreover, the survival rate for patients will have been positively impacted

by the endorsement in the UK of dexamethasone [16] use on the 13 November 2020 [17], the

more widespread use of individualised lung protective ventilator strategies [18], and the sup-

port for proning [19] by the Intensive Care Society [20] in April 2020. High prevalence of

SARS-CoV-2 has palpably impacted the healthcare system’s ability to manage the volume of

patients [21], which has been a conspicuous impetus behind temporal fluctuations in the clini-

cal time delay distributions, as seen in Fig 3. However, in periods of higher prevalence we may

Table 6. Results for the time from hospitalisation to death by sex and age.

Sex/Age N Model Mean SD α β LOOIC %(k�0.7)

Male 28631 Lognormal 13.22 (13.07, 13.38) 17.07 (16.70, 17.44) 2.09 (2.08, 2.10) 0.99 (0.98, 1.00) 201970 97

Gamma 12.16 (12.05, 12.26) 10.88 (10.77, 11.00) 1.25 (1.23, 1.26) 0.10 (0.10, 0.10) 199641 100

Weibull 12.15 (12.05, 12.25) 10.60 (10.48, 10.72) 1.15 (1.14, 1.16) 12.76 (12.65, 12.87) 199552 100

Female 18319 Lognormal 13.26 (13.05, 13.47) 18.26 (17.76, 18.79) 2.05 (2.04, 2.07) 1.03 (1.02, 1.04) 129323 96

Gamma 12.04 (11.91, 12.17) 11.20 (11.05, 11.36) 1.16 (1.14, 1.18) 0.10 (0.09, 0.10) 127640 100

Weibull 12.03 (11.90, 12.16) 10.90 (10.74, 11.06) 1.11 (1.09, 1.12) 12.48 (12.34, 12.63) 127576 100

20–29 67 Lognormal 10.44 (8.31, 13.15) 14.43 (9.66, 21.34) 1.81 (1.59, 2.02) 1.02 (0.88, 1.18) 462 93

Gamma 10.39 (8.52, 12.61) 10.44 (8.13, 13.51) 1.02 (0.72, 1.34) 0.10 (0.07, 0.14) 450 100

Weibull 10.51 (8.65, 12.71) 10.02 (7.74, 13.22) 1.07 (0.88, 1.26) 10.69 (8.62, 12.96) 450 100

30–39 235 Lognormal 13.56 (12.04, 15.33) 16.97 (13.74, 21.04) 2.14 (2.03, 2.24) 0.97 (0.89, 1.05) 1685 97

Gamma 12.99 (11.76, 14.28) 11.54 (10.25, 13.00) 1.27 (1.09, 1.47) 0.10 (0.08, 0.12) 1671 100

Weibull 13.01 (11.86, 14.30) 11.33 (10.06, 12.82) 1.15 (1.05, 1.26) 13.67 (12.37, 15.08) 1671 100

40–49 800 Lognormal 14.56 (13.52, 15.69) 19.80 (17.34, 22.59) 2.16 (2.09, 2.22) 1.02 (0.98, 1.07) 5821 96

Gamma 13.13 (12.44, 13.85) 11.98 (11.21, 12.80) 1.20 (1.11, 1.30) 0.09 (0.08, 0.10) 5712 100

Weibull 13.13 (12.49, 13.79) 11.47 (10.75, 12.24) 1.15 (1.09, 1.21) 13.79 (13.07, 14.51) 5705 100

50–59 2619 Lognormal 14.47 (13.91, 15.04) 18.26 (17.04, 19.56) 2.20 (2.16, 2.23) 0.98 (0.95, 1.00) 18962 96

Gamma 13.24 (12.88, 13.61) 11.54 (11.14, 11.95) 1.32 (1.26, 1.38) 0.10 (0.09, 0.10) 18677 100

Weibull 13.22 (12.87, 13.58) 11.07 (10.68, 11.47) 1.20 (1.17, 1.23) 14.05 (13.65, 14.44) 18656 100

60–69 5813 Lognormal 13.93 (13.58, 14.28) 17.51 (16.75, 18.31) 2.16 (2.14, 2.18) 0.97 (0.96, 0.99) 41618 96

Gamma 12.75 (12.52, 13.00) 11.12 (10.86, 11.39) 1.32 (1.28, 1.36) 0.10 (0.10, 0.11) 41019 100

Weibull 12.74 (12.51, 12.98) 10.70 (10.45, 10.96) 1.20 (1.17, 1.22) 13.53 (13.27, 13.80) 40977 100

70–79 12299 Lognormal 12.85 (12.63, 13.09) 16.55 (16.03, 17.11) 2.06 (2.05, 2.08) 0.99 (0.98, 1.00) 86074 96

Gamma 11.85 (11.69, 12.01) 10.62 (10.44, 10.81) 1.24 (1.22, 1.27) 0.11 (0.10, 0.11) 85139 100

Weibull 11.84 (11.69, 12.00) 10.37 (10.19, 10.55) 1.14 (1.13, 1.16) 12.43 (12.27, 12.60) 85109 100

80–89 17711 Lognormal 12.92 (12.72, 13.12) 17.48 (17.01, 17.96) 2.04 (2.03, 2.05) 1.02 (1.01, 1.03) 124108 96

Gamma 11.84 (11.71, 11.98) 10.98 (10.83, 11.14) 1.16 (1.14, 1.18) 0.10 (0.10, 0.10) 122803 100

Weibull 11.84 (11.71, 11.97) 10.77 (10.62, 10.92) 1.10 (1.09, 1.11) 12.27 (12.13, 12.42) 122771 100

90+ 7249 Lognormal 13.39 (13.06, 13.73) 18.38 (17.58, 19.23) 2.06 (2.04, 2.08) 1.03 (1.01, 1.05) 51343 96

Gamma 12.13 (11.91, 12.35) 11.22 (10.98, 11.49) 1.17 (1.14, 1.20) 0.10 (0.09, 0.10) 50604 100

Weibull 12.12 (11.90, 12.33) 10.88 (10.63, 11.14) 1.12 (1.10, 1.13) 12.61 (12.37, 12.84) 50571 100

The data were filtered for hospitalisation dates between January 2020 to November 2020. 90% credible intervals are quoted.

https://doi.org/10.1371/journal.pone.0257978.t006
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also see a compositional shift towards more severe patients being admitted, which could be

seen as an adaptive response to increasing pressure on the healthcare system; nonetheless, this

should not have an impact upon the time delay distributions for mortalities. This can be fur-

ther seen in Table 3 where during the first period hospitalisation to death was 10.3±0.1 days

(95% interval: 0.4, 34.9), while an increase was seen in the low prevalence summer to 14.6±0.3

days (95% interval: 0.4, 53.3). This association between an increase in prevalence and a

decrease in the time delay to a clinical outcome can be seen across the pandemic in Fig 2. It is

perhaps the best early indicator that a healthcare system is under stress and that intervention

may be required to allow hospitals to decompress [22]. Table 4 also illustrates that this trend

has continued until the most recent period with a mean of 17.4±0.3 (95% interval: 7.7, 33.9)

and 22.7±0.4 (95% interval: 13.1, 36.6) for the right truncated model. The results from Fig 2

and Fig A4 in S1 Appendix illustrate that the definitional change of a COVID-19 mortality to

be within 28 days of the first laboratory-confirmed positive test [23] does not capture the full

distribution of deaths. Analysis of all deaths with confirmed diagnoses of COVID-19 early in

Table 7. Results for the time from infection to death by sex and age.

Sex/Age N Model Mean SD α β LOOIC %(k�0.7)

Male 4329 Lognormal 20.81 (20.51, 21.12) 12.09 (11.74, 12.48) 2.89 (2.88, 2.90) 0.54 (0.53, 0.55) 32285 100

Gamma 20.95 (20.66, 21.24) 11.46 (11.20, 11.72) 3.35 (3.22, 3.47) 0.16 (0.15, 0.17) 32662 100

Weibull 21.06 (20.74, 21.39) 12.53 (12.29, 12.78) 1.73 (1.70, 1.76) 23.63 (23.26, 24.01) 33200 99

Female 2552 Lognormal 19.72 (19.31, 20.14) 12.26 (11.76, 12.79) 2.82 (2.80, 2.84) 0.57 (0.56, 0.59) 18941 100

Gamma 20.01 (19.62, 20.41) 11.72 (11.37, 12.08) 2.92 (2.78, 3.06) 0.15 (0.14, 0.15) 19264 100

Weibull 20.16 (19.72, 20.60) 12.95 (12.64, 13.27) 1.59 (1.56, 1.63) 22.48 (21.96, 22.99) 19595 100

20–29 22 Lognormal 18.07 (15.23, 21.03) 7.67 (5.32, 11.07) 2.80 (2.63, 2.96) 0.40 (0.30, 0.54) 156 100

Gamma 18.43 (15.57, 21.38) 7.76 (5.63, 10.57) 6.18 (3.25, 10.43) 0.34 (0.17, 0.56) 155 100

Weibull 18.60 (15.71, 21.48) 7.70 (5.96, 10.09) 2.67, (1.89, 3.53) 20.89 (17.70, 24.03) 156 100

30–39 62 Lognormal 23.70 (20.48, 27.48) 16.74 (12.89, 21.92) 2.96 (2.81, 3.10) 0.63 (0.54, 0.74) 501 100

Gamma 24.45 (21.35, 27.85) 16.12 (13.36, 19.44) 2.35 (1.73, 3.10) 0.10 (0.07, 0.13) 509 100

Weibull 24.79 (21.46, 28.45) 17.42 (14.74, 20.80) 1.45 (1.25, 1.68) 27.29 (23.44, 31.54) 515 100

40–49 225 Lognormal 26.50 (24.72, 28.41) 16.63 (14.54, 19.00) 3.11 (3.04, 3.18) 0.58 (0.53, 0.63) 1812 100

Gamma 26.47 (24.81, 28.15) 15.07 (13.65, 16.62) 3.11 (2.64, 3.63) 0.12 (0.10, 0.14) 1820 100

Weibull 26.64 (24.89, 28.42) 15.46 (14.24, 16.87) 1.79 (1.63, 1.94) 29.93 (27.91, 31.96) 1834 100

50–59 642 Lognormal 24.13 (23.28, 25.05) 13.25 (12.28, 14.32) 3.05 (3.02, 3.09) 0.51 (0.49, 0.54) 4946 100

Gamma 24.12 (23.33, 24.96) 12.37 (11.68, 13.09) 3.81 (3.45, 4.19) 0.16 (0.14, 0.17) 4968 100

Weibull 24.21 (23.36, 25.10) 13.01 (12.42, 13.67) 1.94 (1.84, 2.04) 27.30 (26.32, 28.30) 5025 99

60–69 1262 Lognormal 23.71 (23.10, 24.35) 13.35 (12.63, 14.13) 3.03 (3.00, 3.05) 0.52 (0.51, 0.54) 9707 100

Gamma 23.73 (23.13, 24.35) 12.49 (11.97, 13.03) 3.62 (3.37, 3.87) 0.15 (0.14, 0.16) 9768 100

Weibull 23.82 (23.18, 24.46) 13.36 (12.91, 13.85) 1.85 (1.79, 1.91) 26.82 (26.07, 27.55) 9898 100

70–79 1693 Lognormal 19.97 (19.52, 20.44) 10.92 (10.40, 11.45) 2.86 (2.84, 2.89) 0.51 (0.49, 0.53) 12385 100

Gamma 20.13 (19.70, 20.57) 10.53 (10.16, 10.92) 3.66 (3.43, 3.88) 0.18 (0.17, 0.19) 12537 100

Weibull 20.21 (19.74, 20.70) 11.72 (11.37, 12.08) 1.78 (1.73, 1.84) 22.72 (22.18, 23.27) 12780 99

80–89 2021 Lognormal 17.61 (17.23, 17.99) 10.29 (9.84, 10.78) 2.72 (2.70, 2.74) 0.54 (0.53, 0.56) 14418 100

Gamma 17.95 (17.57, 18.34) 10.16 (9.82, 10.52) 3.12 (2.96, 3.29) 0.17 (0.16, 0.18) 14733 100

Weibull 18.10 (17.66, 18.54) 11.58 (11.24, 11.92) 1.60 (1.56, 1.64) 20.18 (19.68, 20.69) 15056 100

90+ 865 Lognormal 18.12 (17.50, 18.77) 11.50 (10.74, 12.32) 2.73 (2.69, 2.76) 0.58 (0.56, 0.61) 6296 100

Gamma 18.65 (18.01, 19.30) 11.44 (10.84, 12.05) 2.66 (2.46, 2.88) 0.14 (0.13, 0.16) 6466 100

Weibull 18.85 (18.13, 19.59) 13.03 (12.46, 13.67) 1.47 (1.41, 1.53) 20.83 (20.00, 21.66) 6596 100

The data were filtered for symptom onset dates between January 2020 to November 2020. 90% credible intervals are quoted.

https://doi.org/10.1371/journal.pone.0257978.t007
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the pandemic by Public Health England [24] found that 88% of deaths were within 28 days

and 96% were within 60 days of positive COVID-19 test, with 54% of those excluded by the 28

day limit found to have COVID-19 on their death certificate. Moreover, as the results in this

study indicate, the mean time to death is longer during times of low prevalence, which leads

this categorisation to be more unsuitable. We did not observe a significant impact in the clini-

cal time delay distributions from the growth in the B.1.1.7 variant in December 2020. The

changes observed would have been otherwise expected from an increase in overall prevalence.

For the study period, it was too early to observe the effects from vaccination campaigns and

the concerning B.1.351, B.1.617, and B.1.617.2 variants had a prevalence that would be too low

to impact overall time delay trends. Further research should be conducted to understand how

vaccination and novel variants affect time delay dynamics.

Fig 1. Bar charts of the times to clinical outcome by age and sex, with standard errors. The data were filtered for dates between January 2020 to

November 2020 and N on each bar represents the number of patients within each group.

https://doi.org/10.1371/journal.pone.0257978.g001

Fig 2. Violin plots of the best fit modelled distributions of times to clinical outcome over the course of the pandemic for category A. The quartiles

for each distribution are shown as dashed lines and the solid line corresponds to the mean. In this chart, the data are segmented in time by the former of

the two events: symptom onset date for both infection to hospitalisation and infection to death, and hospitalisation date for hospitalisation to death. For

the last time period (1 December 2020 to 20 January 2021), the right truncation equation was used. The mean time from infection to hospitalisation has

remained relatively stable. For both hospitalisation to death and infection to death, the mean time was lowest in the first wave, and there was a marked

increase over the summer months.

https://doi.org/10.1371/journal.pone.0257978.g002
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Corroborating previous literature [5, 6] we find the time from infection to death for SARS--

CoV-2 is similar to SARS [25] although a shorter period to peak infectivity is now clear for

SARS-CoV-2 [26]. We find that the decrease seen in time from illness onset to hospital admis-

sion observed during the SARS outbreak of 2003, thought to be reflective of contact tracing,

has not been observed in the SARS-CoV-2 outbreak in the UK. Table 2 illustrates how the

time from infection to hospitalisation slightly increased from 8.0±0.1 days (95% interval: 2.7,

18.5) in the first wave to 9.7±0.3 days (95% interval: 4.1, 19.6) at the end of the second wave.

The time from infection to hospitalisation between genders shows a statistically significant

difference with males showing a longer modelled mean time of 8.6±0.1 days (95% interval: 2.9,

20.0) relative to 7.9±0.1 days (95% interval: 2.8, 18.0) for females. This difference is not found

between genders for the time delay distribution of hospitalisation to death. This is likely related

to the well documented epidemiological phenomenon that males have a tendency towards

delayed medical help seeking [27]. Galasso et al. (2020) illustrated across eight countries that

males are overall likely to be less compliant with NPIs and treat the dangers of COVID-19 with

less gravity. The greater fatality rate of males from COVID-19 [28] is a combination of biologi-

cal, psychosocial, and behavioural causal factors; nonetheless, this delay in seeking out medical

attention may be a contributory factor to increasing their overall IFR.

Fig 3. Line graph of the relationship between healthcare pressure, as measured by daily hospital admissions, and the mean modelled clinical time

delays.

https://doi.org/10.1371/journal.pone.0257978.g003
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We can observe the differences between age groups in Fig 1. It illustrates that the 40–49 age

group have the longest time from infection to death with a mean of 26.5±1.1 days (95% inter-

val: 7.3, 69.3) while the shortest period was found for the 80–89 age group with 17.6±0.2 days

(95% interval: 5.3, 44.0). The distribution of the time delays to a clinical outcome seen in Fig 1

illustrates that the youngest and oldest age groups have the shortest time delays, which is

revealing of the predominantly more vulnerable nature of the younger adults in 20–39 age

bands that require either clinical intervention or have a severe reaction to SARS-CoV-2 infec-

tion that results in a mortality.

Conclusion

We illustrate that evaluating the variation in the time delay temporal changes is key to inform-

ing public health policy and that this should not be regarded as a static metric but rather some-

thing that, thus far, has been inherently a by-product of extrinsic pressure. By monitoring

these changes it will aid in the calibration of quarantine periods, the calculation of fatality

rates, and help in unpacking the extent of transmission. This should be monitored closely in

response to new variants of concern and further work should aim to understand their time

delay dynamics. Moreover, we also recommend further analysis to assess the impact of vacci-

nation campaigns on these trends. The paradigms seen by gender are not unexpected but

should help to inform public policy on how to shape the message around when to seek medical

attention. Finally, we propose that fluctuations in the modelled mean time from hospitalisation

to death can be used as a proxy indicator of healthcare strain and that an intervention is

required that may help to preclude avoidable morbidity and mortality. The main limitation of

this study is that we can only infer from the wider context any causal impact on the clinical

time delay distributions.

Supporting information

S1 Appendix. Category B results and lognormal.stan program listing.
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