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Abstract

From administrative registers of last names in Santiago, Chile, we create a surname affinity

network that encodes socioeconomic data. This network is a multi-relational graph with

nodes representing surnames and edges representing the prevalence of interactions

between surnames by socioeconomic decile. We model the prediction of links as a knowl-

edge base completion problem, and find that sharing neighbors is highly predictive of the for-

mation of new links. Importantly, We distinguish between grounded neighbors and

neighbors in the embedding space, and find that the latter is more predictive of tie formation.

The paper discusses the implications of this finding in explaining the high levels of elite

endogamy in Santiago.

Introduction

In countries where citizens inherit both parents’ last names, surnames are a source to uncover

the population structure of society. In previous research [1], we built a network from surname

pairs that revealed strong patterns of socioeconomic segregation in Santiago, Chile. In this

study, we model the formation of affinity ties between surnames, and find that the formation

of new links is highly predictable.

The method predicts links as a knowledge base completion problem. We evaluate several

state-of-the-art knowledge base completion models and find that TuckER, which is based on a

three-way tensor decomposition, obtains the best results.

The findings bear implications for the literature that examines the mechanisms behind

group segregation. Traditional explanations focus on homophily, the propensity of people to

connect to others of their own kind—the “birds of a feather” mechanism [2]. Advances in net-

work statistical modelling in the last decade have disentangled homophily from other, net-

work-specific mechanisms that help segregate groups [3]. People not only tend to prefer

connecting with their in-groups, they are also prone to close triangles. This is the notion of tri-

adic closure or “friend-of-a-friend” (FOAF) mechanism: A and B are likelier to become friends

if they have C as a common friend [4–7]. FOAF independently exacerbates the separation of

groups, because the friend-of-a-friend is often an in-group.

Our experiments show that triadic closure operates not only on the empirical network. We

compute the embeddings of all nodes, and find that those that share a common neighbor in

the embedding space are very likely to connect. Moreover, proximity in the embedding space

accounts for more than half of the triadic closures, and it is a stronger predictor of link
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formation than proximity in the empirical network. Sharing a similar location in the embed-

ding space can be thought of as being structurally similar.

The substantive implication is that class divisions in Chile do not occur only because people

prefer connecting and marrying others of their own socioeconomic status, but because they

connect to others occupying similar locations in the network of interactions.

Along with the publication of this study, we release the surname affinity network SA19k

(Surname Affinity 19k entities), a knowledge base for the prediction of surname affinity ties in

Santiago, Chile. This is a multi-relational graph, where nodes are surnames and links are affin-

ity relations divided by decile in the socioeconomic distribution.

Materials and methods

Data

We use the data introduced in Bro & Mendoza [1]. This dataset is based on the Chilean elec-

toral registry of 2012, which contains the full name and the address of all individuals eligible to

vote for political authorities in Chile. We only use the data of residents in Santiago, Chile,

totaling 4,652,933 individuals. We also use the Territorial Well-being Index of 2012 [8], which

indexes the mean socioeconomic status of every census administrative unit down to the block

level, totaling 39901 blocks.

Individuals’ socioeconomic status was assigned based on the mean socioeconomic level of

the blocks where they live. Socioeconomic status was transformed into a 0–100 range using the

formula zi ¼
xi � minðxÞ

maxðxÞ � minðxÞ
, where x = (x1, . . ., xn) and zi is the i-th element of the normal-

ized vector. For every person in the list, the final dataset contains the paternal and maternal

surnames, an assigned socioeconomic status, and the block identification.

SA19k: A paternal-maternal surname knowledge base

We build a knowledge base that comprises paternal-maternal surname ties and income distri-

butions based on the data described above. To create the knowledge base, we build an undi-

rected network based on paternal-maternal surname affinities, where each node represents a

surname. To create the edges, we count the number of individuals who share a pair of sur-

names, irrespective of the paternal-maternal or maternal-paternal order. Each pair of nodes

was connected with ten relations, representing the deciles of the income distribution. The

edge’s weight represents the number of individuals in each decile of the income distribution.

This network has 76649 surnames and 1750802 edges.

Following Mateos et al. [9], we remove surname pairs if their weight denoted by nss is less

than a threshold
k � ns1 � ns2

N
, where k> 1 is the security parameter of the method, ns1 is the

number of occurrences of the surname s1, ns2 is the number of occurrences of the surname s2,

and N is the number of individuals in the sample. In a uni-relational graph,
k � ns1 � ns2

N
is k

times the expected number of co-occurrences of both surnames if the surnames are linked at

random. A high value of k generates a sparse network where ties are indicative of affinity.

Mateos et al. [9] report that k must be tuned to balance reliability and sparseness. We test

with k = 10, 20, and 30, finding that k = 20 allows us to obtain a network that does not underre-

present any of the income distribution deciles. In addition, we removed rare surnames with

less than twenty occurrences. Next, we removed surnames that fall in the periphery of the net-

work using a k-core analysis of the network. The nodes that fall below a threshold k = 2 were

removed, preserving the triangles that form the atomic units of relationships that characterize
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the network. The resulting network contains 19041 nodes and 187563 edges, with an average

degree of 19,7. We named this network SA19k (Surname Affinity 19k entities).

Fig 1 shows the distribution of node degrees and socioeconomic distributions by decile.

SA19k’s degree distribution exhibits that a few nodes have many connections while most

nodes have low connectivity. In specific, most nodes have around 5–7 neighbors (Fig 1a) and a

small number of nodes have more. The income decile with the highest presence in SA19k is

the one with the highest income (d10), with almost 29% of the network nodes (Fig 1b). The

lowest decile has a minor presence, and each one of the deciles 2 to 9 have around 8% of the

network nodes. This shows that surnames at the higher end of the socioeconomic distribution

(d9-d10) are more prone to clustering.

Fig 2 visualizes SA19k, with colors red and blue corresponding to the main communities

identified using Louvain’s modularity maximization based community detection algorithm

[10]. Nodes in the red community are more present in deciles 1–7, and nodes in the blue com-

munity belong to deciles 8–10. The network has a high modularity score of 0.802, which

increases along with socioeconomic status.

Surname affinity prediction model

We study SA19k using predictive modeling. SA19k can be seen as a knowledge graph for sur-

name affinity conditioned on income distribution. A predictive model based on SA19k can

reveal unexpected connections between surnames. Our approach to predictive modeling is

based on knowledge graph completion, where a model learns representations of nodes and

edges to predict missing links. Link prediction reveals triplet-based facts, where each triplet

represents a source and target surname, and each edge corresponds to a decile in the income

distribution.

We model SA19k as a knowledge graph as follows. Let V be a set of nodes representing enti-

ties and let R be a set of relations. We define E � V �R� V as the set of edges connecting

pairs of entities in V � V through a specific relation r 2 R. A knowledge graph GðV; E;RÞ is a

set of observed triplets hh, r, ti, such that h; t 2 V � V and r 2 R. The nodes h, t represent

head and tail entities connected through r. We distinguish between head and tail entities when

r is a directed relationship that starts from h and goes to t. GðV; E;RÞ is an undirected knowl-

edge graph if every r 2 R has the same meaning in both directions. In the case of SA19k, we

model relationships in a non-directional way, without distinguishing between heads and tails

and therefore, using maternal and paternal surnames interchangeably.

Knowledge graph completion is the task of using G to predict missing facts. Given r 2 R,

tail prediction addressed the hh, r,?i task, i.e., for a known head entity h and a given relation r,
we infer from G the most likely tail node to which h will connect through r. Analogously, head

prediction is a h?, r, ti, i.e., predicts the most likely head entity h to connect t through r.
Machine learning-based approaches for knowledge graph completion use G to capture

latent features of entities and relations. These features embody the semantic of the original

knowledge graph, vectorizing nodes and relationships. For this purpose, the method learns

latent representations, known as embeddings, defining a scoring function ϕ to estimate the

probability of hh, r, ti of being observed in the empirical network. The scoring function oper-

ates on the embeddings of h, r, and t, represented in vector notation by h, t, r. Then, the

method calculates ϕ(h,r,t), fitting the embeddings to maximize the score of the observed facts,

and also minimizing the score of unobserved facts in G.

During the prediction phase, for a given head entity h and a given relation r, missing links

are inferred determining the entity that gets the highest score according to the scoring
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Fig 1. Node degree and income decile distribution in SA19k. a) Even though many nodes have around 5–7

neighbors, the degree distribution shows the presence of hubs; b) Most of the affinity relationships occur in the highest

income decile, totaling the 29% of the edges of SA19k. On the other hand, affinities in the lowest decile are almost

unexistent. The other income deciles are quite similar, with around 8% of the edges per decile.

https://doi.org/10.1371/journal.pone.0256603.g001
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function:

arg max
e2V

�ðh; r; eÞ:

Similarly, the link prediction task can be defined for head entities, looking for the entity e 2
V that maximizes the scoring function ϕ(e,r,t) for a fixed r and t.

Machine learning-based approaches for knowledge graph completion

To cover the broadest possible range of methods and architectures in the evaluation, we identi-

fied representative methods of different model families, taking care that these methods achieve

state-of-the-art performances in knowledge graph completion and have open-source imple-

mentations that favor the reproducibility of the reported results. We identified three families

of models:

• Tensor decomposition models: These models are based on tensor decomposition techniques

of the KG adjacency matrix, which is modeled as a three-dimensional tensor. The tensor

representation consists of a set of stacked relationship adjacency matrices. These tensors are

decomposed into a combination of low-dimensional vectors used as embeddings for the

entities and relations of the KGs. Since tensor decompositions, in general, do not overfit the

empirical KG, they are expected to have better generalization capabilities than other meth-

ods. We identified three methods of this family that show competitive results in benchmark

data [11] and that have implementations that allow reproducing their results. These methods

Fig 2. A visualization of SA19k. SA19k is highly modular, with modularity score = 0.802. Low-middle, and high-income deciles are grouped into two

modularity-based partitions. The blank nodes do not belong to any of them. Low-middle income distribution deciles (in red color) show less nodes and

hubs than the rest of the network. High income deciles (in blue color) show more nodes and hubs than the rest of the network. The size of each node

represents its degree.

https://doi.org/10.1371/journal.pone.0256603.g002
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are DistMult [12] and ComplEx [13], both belonging to bilinear type models since they rep-

resent the relationship matrix as a bi-dimensional tensor. Another prominent method of this

family is the TuckER [14] method, a non-bilinear method based on Tucker’s tensor decom-

position [15].

• Geometric models: Geometric models interpret relationships as geometric transformations

in the latent space of entity embeddings. These methods adjust the parameters of the node

embeddings and the geometric transformation function that represents the relations. Given

a head embedding, the transformation in the latent space maps it to the tail embedding of

the observed fact. The parameters of the embeddings and relationships are adjusted to mini-

mize the distance in the latent space between the head and tail embeddings connected by

empirical facts. Geometric models need to verify constraints to ensure that the transforma-

tions in latent space are affine. We identified four geometric models representing this family:

TransE [16] and TransH [17], based on translational type transformations; CrossE [18],

based on translations with additional embeddings for KG relationships; and RotatE [19],

which uses rotations (translations in polar coordinates) to represent relationships between

entities in latent space.

• Deep learning models: These models use layered neural network architectures to learn the

embeddings of the KG entities and relationships. The embeddings are learned in conjunc-

tion with the weights and biases of each layer of the network, which makes these models gain

in expressiveness but assume risks of overfitting. We identified three methods from this fam-

ily of models that show competitive results in benchmark data [11]. ConvE [20] uses a con-

volutional network architecture to encode the head entity and relationship embeddings,

which produce an outcome in the network output layer that encompasses the KG’s set of tail

embeddings. The network is trained to maximize the scores of the observed facts, minimiz-

ing a categorical cross-entropy loss function. ConvTransE [21] reuses this architecture so

that the transformation in the latent space between head and tail embeddings corresponds to

translations. Finally, SACN [21] extends ConvTransE by adding a decoder that reconstructs

the observed facts, replacing the loss function with a logit softmax.

Model selection

For model selection, we partitioned SA19k into training, validation, and testing folds. We did

this by sampling triplets at random. Both the validation and testing partitions have 5000 trip-

lets each, leaving the training partition with 177563 triplets. The proportions between train-

ing/validation/testing triplets are typical in knowledge base completion, and very similar to

those used to study predictability in the Wordnet database [20]. In S1 Table, we present the

results of the validation; with TuckER producing the best statistics. The results in S1 Table

show that TuckER obtains the highest precision in the top positions of each list of ranked enti-

ties, both in top-1 and top-3 lists. While its top-10 results are competitive but outperformed by

RotatE, at MRR, TuckER also outperforms its competitors.

Tucker decomposition for link prediction

The best performing method in SA19K, TuckER [14], is a link prediction method based on

Tucker’s tensor decomposition [15]. The representation of the knowledge graph used by this

method corresponds to a tensor (a multidimensional array) produced by the tensor products

of N vector spaces. The order of a tensor corresponds to its number of dimensions, 3 in the
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case of the usual Tucker decomposition. We will denote the input hi, j, ki of a three-way tensor

X by xijk.
We introduce some definitions needed to define the Tucker decomposition properly. An n-

way tensor X I1�...�In is rank-one if it can be expressed by the outer product of N vectors:

X ¼ að1Þ � að2Þ � . . . � aðnÞ, where a(i) represents the i-th vector of a sequence. Note that each

entry of X can be written as xi1 i2...in
¼ að1Þi1 � a

ð2Þ

i2 � . . . � aðnÞin . Three-way tensors are formed by

X ¼ a � b � c, as shown in Fig 3a.

An essential operator of the Tucker decomposition is the N-mode product of a tensor with

a matrix. Although N-mode products can be generalized to higher-order tensors, we focus

only on the N-mode product between a tensor and a matrix since the Tucker decomposition

uses it. The reader can check higher-order N-mode products and other types of tensor decom-

position in [22]. Let X be a tensor in RI1�I2�...�In and U a matrix in RJ�IN . The N-mode product

between X and U along its N mode is denoted by X�NU and has size I1 × . . . × IN−1 × J × IN+1

. . . In. An entry in X�NU is defined by:

ðX�NUÞi1...iN� 1JiNþ1...in
¼
XIN

iN¼1

xi1 i2...in
� ujiN

:

The Tucker decomposition factorizes a tensor X in a core tensor G transformed by the N-

mode tensor product along each of tensor’s modes (dimensions). In the three-way case, where

Fig 3. a) Three-way tensors are produced by the tensor products of 3 vector spaces; b) The Tucker decomposition

factorizes a three-way tensor in a core tensor and three matrices.

https://doi.org/10.1371/journal.pone.0256603.g003
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X in RI�J�K :

X � G�1A�1B�2C ¼
XP

p¼1

XQ

q¼1

XR

r¼1

gpqrap � bq � cr;

where G 2 RP�Q�R
is called the core tensor of the decomposition, and A 2 RI�P

, B 2 RJ�Q
, and

C 2 RK�R
can be considered the main components of each mode of X . G is dimensionally

smaller than X (P< I, Q< J, and R< K) and can be viewed as a compressed version of X , as

we show in Fig 3b. An element-wise Tucker decomposition entry is given by:

xijk �
XP

p¼1

XQ

q¼1

XR

r¼1

qpqr � aip � bjq � ckr; i 2 1 . . . I; j 2 1 . . . J; k 2 1 . . .K:

Balazevic et al. [14] proposes a model for link prediction based on the Tucker tensor

decomposition of the binary tensor representation of the knowledge graph. TuckER assumes

that head and tail embeddings belong to the same vector space. Accordingly, TuckER defines

an entity embedding matrix E 2 Rne�de , with A = C = E. Relations are modeled using a relation

embedding matrix R 2 Rnr�dr , which corresponds to the factor matrix B of the Tucker decom-

position. Then, the tensor representation X of the knowledge graph is decomposed as:

X � G�1E�2R�3E:

The scoring function for triplet facts is defined for each triplet heh, wr, eti using the element-

wise tensor product per node:

�ðeh;wr; etÞ ¼ G�1eh�2wr�3et;

where eh and et are rows in E and wr is a row in R. TuckER applies a logistic sigmoid to the

scoring function obtaining the predicted probability p of a triplet being true.

For training, TuckER adds a reciprocal relation het;w� 1
r ; ehi for every triplet fact heh, wr, eti.

The training step uses a 1: N scoring, i.e., for a given triplet heh, wr, eti, TuckER scores

heh;wri; 8et 2 E and het;w� 1
r i; 8eh 2 E. Model fitting minimizes the Bernoulli log-likelihood

loss function, that for a given triplet is defined by:

L ¼ �
1

ne

Xne

i¼1

yðiÞ log ðpðiÞÞ þ ð1 � yðiÞÞ log ð1 � pðiÞÞ
� �

;

where y is the binary label vector of observed/unobserved facts in the knowledge graph.

Results

Hyper-parameters tuning

The best fit reported in S1 Table was trained using Adam [23], a method for first-order gradi-

ent-based optimization of stochastic objective functions, based on adaptive estimates of lower-

order moments. This method is suitable for problems with sparse gradients. We used batch

learning, with batch size = 128, learning rate = 0.005, and decay rate = 1.0. We choose all

hyper-parameters by search based on validation set performance. The dimensionality of the

relational space was tested with values in {10, 20, 30}. The best result was obtained for dr = 10,

which matches the number of relationships in SA19K. The dimensionality of the entity space

was tested with values in {100, 200, 500, 1000}. The best result was obtained for de = 200.

TuckER considers three dropout factors. The first operates on the input, which corresponds to
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the tensor representation of the entities. A second dropout factor applies to the tensor product

between the tensor representations of the relationships and the Tucker core tensor. Finally, a

third dropout factor is applied when calculating the tensor product between the previous ten-

sor and the tensor representation of the entities. This final product corresponds to the tensor

representations of the pair hs, ri, which is used for the 1:N ranking-based training strategy.

These parameters were evaluated using grid search in {0.2, 0.3, 0.4, 0.5}. The best configuration

corresponds to factors {0.5, 0.2, 0.2}. Balazevic et al. [14] comment that low dropout factors are

required for datasets with a high number of training triplets per relation, avoiding the risk of

over-fitting. Our high input dropout value suggests that the number of training triplets is low

regarding the number of entities available in SA19K. However, the proportion of examples per

relationship is high due to the low number of relations in SA19K, which explains the lowest

values obtained for the second and third dropout factors.

Performance per income decile

Fig 4 shows the relation matrices learned by TuckER for each income decile. Although TuckER

does not force the learning of symmetric relationships, the learned matrices are approximately

symmetric, suggesting a good fit of the model to SA19k. Heatmaps with more red entries indi-

cate that TuckER encodes more information in that relationship than in the rest of the deciles.

Fig 4 shows that TuckER encodes many information in relationships D1 and D5, which are

the ones with the most burned entries in the tensor. On the other hand, D2-D4 show fewer

burned entries in the tensor, suggesting that these relationships are less informative than the

others. SA19K shows that low and middle-income deciles have less diverse relationships

between surnames, with a low incidence of affinity ties in this network segment. The effort

made by TuckER in D1 is related to the low incidence of ties in this layer (see Fig 1(b)). In D5,

this income decile articulates the low-income deciles (D1-D5) with the middle and high-

income deciles (D6-D10), suggesting a transition in SA19K. The relation matrices D6-D9

obtained by TuckER are quite similar to each other, showing homogeneity in this income

range in terms of surname affinity. In D10, TuckER shows more burned entries in the tensor

diagonal, which coincides with the high incidence of affinity ties in this segment of the net-

work (see Fig 1(b)).

For each triplet in the test partition, TuckER evaluates the pair hs, ri with the rest of the net-

work entities, using a 1:N ranking-based strategy. Accordingly, for the 19041 triplets evaluated,

TuckER orders the triplets in descending order according to the softmax layer’s logit. Then,

the ordered list of triplets is evaluated by counting hits@n. A grounded triplet is a hit@n if it is

among the first n results with the model’s highest logit. It should be noted that the problem is

very hard since the objective is to rank grounded triplets in the top positions of a long list of

possible ties. According to the degree distribution in SA19K, on average, each entity has 20

affinity ties. Since the length of each entity list is 19041, the chances of generating a top@n list

of maximum precision at random areP20

i¼1
21� i

19041� i � 0:0010520, a extremely small number.

TuckER, on average, gets hits@1 = 0.214, hits@3 = 0.406, and hits@10 = 0.607, as shown in S1

Table. These results indicate that surname affinity ties are strongly predictable.

Fig 5a shows hits @1, @3, and @10 for each SA19k income decile in the test partition.

While decile 1 is the one with the highest predictability, decile 10 is the least predictable.

Between deciles 2 and 10, all hits @10 reach around 0.6. These results are related to the diver-

sity of surnames in each socioeconomic segment. In [1], we showed that the diversity of sur-

names, quantified according to the alpha coefficient [24], is much greater in high

socioeconomic segments than in low segments. Affinity tie prediction results indicate that the

higher the surname diversity, the more difficult it is to predict the affinity ties. Regarding the
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Fig 4. Heatmaps of the relation matrices learned with TuckER for each income decile. Red and blue colors indicate high

and low-value entries in the relation matrices, respectively. These matrices are computed using k-mode tensor products

between R and the second mode of the core tensor W. Although the model does not force the learning of symmetric

relationships, all the learned relationships are approximately symmetric, indicating a good fit of the model to SA19k.

https://doi.org/10.1371/journal.pone.0256603.g004
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precision of the method, the greatest variations are found in hits@1, where the affinity of sur-

names becomes less predictable as the income decile increases. Fig 5b shows the results disag-

gregated at the rank-lavel, i.e., the absolute number of hits by ranking position. We can see

that the hits decrease as the position rank increases, which indicates that the TuckER logits

help to rank in the top positions the triplets with the highest probability of generating affinity

ties. Most of the hits are in the top five ranking positions.

Fig 5. TuckER manages to rank high many grounding triplets, which allows the model to perform well on hits @1,

@3, and @10; a) While the results in hits@1 show a better performance in the lower deciles, in hits@10, the results

are more even; b) When disaggregating the results in absolute hits per rank position, we see that TuckER does not

have significant differences between deciles, placing the vast majority of hits in the first five positions of each list.

https://doi.org/10.1371/journal.pone.0256603.g005
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Explaining surname affinity predictions

We evaluate the ability of our model to forecast the emergence of new triangles. We consider

three sources of information. The first source consists of the original network, which we call

grounded triplets. If two unconnected nodes have many neighbors in common, a quantifiable

measure known as the shared nearest neighbors fraction (SNN), the model expects them to

connect. SNN measures the fraction of neighbors in common over the union of the neighbor-

hoods of two entities. SNN is a very relevant measure in clustering analysis [25], since it reveals

clues for high-dimensional data clustering of varying density. In social networks, SNN relates

to the friend of a friend mechanism (FOAF), which explains that two strangers have a high

probability of engaging if they have friends in common. To account for this effect, we measure

the SNN between the source and target entity of each new grounded triplet in the same income

decile. The second source of information is the SNN fraction in nearest income deciles. If two

unknown nodes share many neighbors in neighboring income deciles, the model expects them

to connect. We estimate this effect by counting the fraction of SNN in the same, and the two

nearest deciles. The third source of information is the neighborhood in the embedding space.

We measure this effect by counting the fraction of SNN in the embedding space, according to

the k-mode tensor product of the entities of the triplet along with the relation matrix that rep-

resents each income decile. To measure the SNN in the embedding space, we compute a kNN

query using the Euclidean distance with k = 50, for each entity embedding of a grounded pre-

dicted triplet. If the neighbors of two disconnected nodes intersect in the embedding space

(i.e., both entities show a high fraction of SNN), the model expects them to connect.

Fig 6a shows that the SNN fraction varies by source of information. The lowest fraction of

SNN in predicted triplets is obtained from grounded triplets of the same decile. This pattern is

more robust in the lowest income deciles, losing relevance as the socioeconomic level

increases. After adding near income deciles (we use the two closest deciles in the evaluation),

the fraction of SNN increases in all deciles. This pattern shows that this second source of infor-

mation is more informative than the first. Finally, after adding friends using neighbors in the

embedding space, the fraction of SNNs increases. This finding shows that the node embedding

space allows capturing ungrounded shared neighbors, representing valuable information for

all income deciles. The embedding space is the most informative dimension for the affinity

prediction task. In specific, this space is very relevant in income deciles 1, 2, and 7. In fact, in

all income deciles, the grounded predicted triplets share more neighbors in this space than in

the empirical network. This finding suggests that the entity embedding space can encode high-

order information that is different to the one encoded from the neighborhoods of the empiri-

cal network.

Fig 7 shows examples of grounded predictions. All of them are characterized by connecting

two micro-clusters adding an interaction between them. In some cases (Fig 7a and 7d), we

observe an absorption pattern, where the interaction occurs between micro-clusters of very

different sizes. In other cases, the interaction occurs between clusters of similar sizes (Fig 7b

and 7c). In all these cases, the new interaction (marked with a red dotted line) creates a new

path between both clusters, decreasing the resulting graph’s diameter.

Most of the predicted triplets (57% on average across deciles) come from micro-clusters

without direct connections like those shown in Fig 7. TuckER manages to learn proximity rela-

tionships between nodes obtained by working with the tensor factorization of the entire net-

work. This principle allows identifying long-term interaction patterns between unconnected

nodes, which cannot be detected by locality-based methods such as those based on FOAF pat-

terns. Fig 6b shows the fraction of grounded predictions per income decile that corresponds to

high SNN fractions in the same decile and/or in close income deciles, which on average
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represents the 43% of the successfully predicted triplets. Fig 6b shows that more than half of

the predicted triplets are grounded on the entity embedding space. Accordingly, TuckER must

make a significant effort to identify triplets based on proximity-based neighbors inferred from

the entity embedding space, representing more than half of the correctly predicted triplets.

Fig 6. Shared nearest neighbors (SNN) and grounded triplets per income decile. a) The fraction of SNN (average)

varies depending on which source of information we consider. The most informative source is proximity-based SNN,

although there is significant support based on grounded SNN from the original network. b) Grounded triplets per

income decile. The fraction of grounded triplets is always less than half of the predicted triplets, except in decile 2,

where it reaches almost 60% of the predictions.

https://doi.org/10.1371/journal.pone.0256603.g006
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Discussion

The results show great predictability in the formation of ties between people holding certain

surnames. Triadic closure is an empirical regularity well established in the social sciences [7].

If persons A and B share a common friend C, they are much likelier to become friends than in

the alternative scenario where they do not share C as a friend. So far, most research has exam-

ined triadic closures either theoretically [4, 7], to statistically model networks [6], or in micro-

Fig 7. Grounded predictions generally show paths that connect two micro-clusters. Figures a and d show the connection of a larger cluster and a

smaller one, exhibiting an absorption pattern. Figures b and c show the relationship of two clusters of similar sizes. In all the cases indicated, the new

connection (marked with a red dotted line) creates a shorter path between both micro-clusters, decreasing the resulting graph’s diameter.

https://doi.org/10.1371/journal.pone.0256603.g007
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empirical contexts. This paper empirically investigates the formation of triads at the level of an

entire population. It shows that surname-based groups are prone to form triads.

Chile is one of the most unequal countries in the world [26], with a pattern of social mobil-

ity where it is especially hard to enter the elites. [27]. Our previous research [1] showed that

Santiago’s upper class is highly endogamous, not unlike an ethnic minority in its tendency to

form in-group marital unions. This pattern can be explained in two ways: from the preferences

of wealthy individuals to connect with others similar to them, or from the structure of the net-

work around them.

The results of this study reveal the importance of the second mechanism, a dimension of

socioeconomic segregation that is independent from homogamy: the subjective preference

that people may have to connect with others like themselves [28]. People also connect with

and marry their socioeconomic in-groups because the latter inhabit the same locations in the

network. In this sense, an upper-class person may not have a particular preference of marrying

someone of her own status group, but she may end up doing so regardless because the network

of social interactions constrains the marital options available to her.

Importantly, we make a distinction between empirical and more abstracts forms of network

proximity. Neighbors may come in the form of grounded triplets, but also as proximate points

in the embedding space. We show that triadic closure occurs not only in the empirical net-

work, but also in the embedding space. If nodes A and B are both similar to C, they have a

good chance of forming a tie in the network. Link prediction tasks therefore would benefit

from taking not only the empirical graph into account but also the embeddings of nodes.

Conclusions

This paper develops a model to predict the formation of new links in the network of surname

affinity in Santiago, Chile (SA19k). It formulates the problem as a knowledge base completion

task, and finds that the TuckER method produces the best results. The results show that the

formation of affinity links between surnames in Santiago, Chile, is highly predictable. We find

that proximity in the network explains a large proportion of new links. Importantly, the

method distinguishes between proximity in the empirical network and proximity in the

embedding space, and finds that the latter is more predictive of link formation than the

former.

The results shed light on an unexplored dimension of socioeconomic segregation. People

may or may not prefer connecting with and marrying others belonging to their same socioeco-

nomic status. However, given that the network of social interactions places constraints on

their options, they are still likely to connect with or marry in-groups. Extensions of this paper

could incorporate proximity in the embedding space as a parameter in statistical models that

aim to disentangle the effects of different types of network proximity in explaining the social

segregation that we often observe in empirical networks.

Supporting information
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