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Abstract

This study presents a nature-inspired, and metaheuristic-based Marine predator algorithm

(MPA) for solving the optimal power flow (OPF) problem. The significant insight of MPA is

the widespread foraging strategy called the Levy walk and Brownian movements in ocean

predators, including the optimal encounter rate policy in biological interaction among preda-

tors and prey which make the method to solve the real-world engineering problems of OPF.

The OPF problem has been extensively used in power system operation, planning, and

management over a long time. In this work, the MPA is analyzed to solve the single-objec-

tive OPF problem considering the fuel cost, real and reactive power loss, voltage deviation,

and voltage stability enhancement index as objective functions. The proposed method is

tested on IEEE 30-bus test system and the obtained results by the proposed method are

compared with recent literature studies. The acquired results demonstrate that the proposed

method is quite competitive among the nature-inspired optimization techniques reported in

the literature.

Introduction

The optimal power flow (OPF) is an inevitable part of the energy management system for

power system planning and operation over a couple of decades. The main objective of the OPF

is to determine the most favourable operating conditions to meet the required demand by sat-

isfying all the power system operational and security constraints [1]. In 1960, French scholar

Carpentier proposed the concept of OPF to ensure reliable and economic power generation

based on precise mathematics [2]. In this context, several selective objective functions, for

instance, total generation cost, real/reactive power loss, and voltage deviation have been con-

sidered to obtain the optimal dispatch of generation by different numerical and artificial intel-

ligence (AI) techniques [3]. Generally, the OPF problem is a static non-linear, non-convex,

large scale, and highly constrained optimization problem in power system networks that deal
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with a set of independent and state variables. The control variables are the generator real

power, generator bus voltages, reactive power injections of VAR compensators, and trans-

former tap settings while the state variables including the generator reactive power, load bus

voltages, and the transmission lines limit [4]. Recently, the ever-increasing energy demand

introduces a massive challenge to the prevailing networks to deliver quality power to the con-

sumer end efficiently and economically [5]. Therefore, power utilities were repeatedly explor-

ing several economic operational strategies in the power generation of power by enforcing

equality and inequality constraints to deliver uninterrupted power supply [6]. Moreover, due

to the ever-increasing power demand, the modern power system has been operating close to

its power transfer capability limit that leads to stressed conditions of the system. Occasionally,

a small change in the operating conditions results in system instability due to a dip in the volt-

age level that may cause blackouts or brownouts of the system as similar events have been wit-

nessed in North America, Canada, India, Pakistan, and so on over the last few decades [7, 8]

Therefore, solving the OPF problem is most important to assess the voltage stability of the

system.

Numerous optimization techniques have been employed to solve the OPF problems with

different selective objective functions of generation cost, power loss, environmental emission,

voltage deviation, and voltage stability assessment index. However, most of the work in the lit-

erature attempted to solve the OPF problem to minimize the power loss for the given operating

loads. In general, the techniques to solve the OPF problem can be categorized into classical

and heuristic-based techniques. The classical method includes the Newton method, gradient

method, interior point method, linear programming, and non-linear programming [9]. These

techniques were introduced with different theoretical assumptions of convexity, differentiabil-

ity, and continuity which are not relevant to solve the OPF problems. Further, the convergence

of all the classical methods is immensely gambled on the initial guess [10] and these also

endure acute limitations in dealing with non-linear, discrete-continuous functions and control

variables [11]. Moreover, the solution quality deteriorates when the number of the controlling

parameters increases [12].

To overcome the aforementioned drawbacks of classical methods, researchers have pro-

posed nature-inspired heuristic-based optimization techniques for solving the OPF problem

due to the tremendous development of computer technology [13]. These techniques can be

broadly categorized into evolutionary-based, swarm-based, physics-based, and human-based

algorithms [14]. Due to the easy implementation and effectiveness in securing the global opti-

mality, many heuristic-based techniques have been employed to solve OPF problems consider-

ing various objective functions in the power system [15]. Kwang Y. Lee Xiaomin Bai [16],

presented a modified version of the conventional genetic algorithm (GA) to deal with OPF

problems in the power system. The main goal of this study was to reduce the reactive power

loss of the system and the obtained results were compared with successive linear program-

ming. In [17], the load flow and the economic dispatch problem were considered to verify the

viability of using GA to solve the OPF problems. Xiaohui Yuan et al., have proposed an

improved Pareto evolutionary algorithm to solve OPF problems considering fuel cost and

emission as objective functions [9]. A Biogeography- based Optimization (BBO) technique has

been used to solve several objective functions as a single-objective OPF problem by A. Bhatta-

charya et al. [18]. Similarly, physics-based optimization techniques namely Big-Bang Big

Crunch Algorithm (BBBC) [19], Gravitational Search Algorithm (GSA) [20] were applied to

solve the OPF problem. Moreover, many researchers have also employed several human-based

techniques in solving OPF problems. Based on the influence of a teacher on learners, Teach-

ing-Learning-Based Optimization (TLBO) [21], Harmony Search Algorithm (HS) [22], Tabu

Search Algorithm (TS) [23] were used to deal with the constrained OPF problems to get a
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better optimal solution. In some cases, these techniques demonstrate promising results but

stuck in local optima. Hence, several swarming behaviour-based techniques got attention for

solving OPF problems in the literature. A Particle Swarm Optimization (PSO) [24] was pro-

posed to solve OPF problems including fuel cost minimization, voltage profile improvement,

and voltage stability enhancement. Further, some meta-heuristic based techniques, for exam-

ple, Whale Optimization Algorithm (WOA) [25], Moth-Flame Optimization Algorithm

(MFO) [26], Glowworm Swarm Optimization Algorithm (GSO) [27], Jaya Algorithm (JA)

[28], Artificial Bee Colony Algorithm (ABC) [29] were employed to solve OPF problem effec-

tively and accurately. Lately, a hybrid self-adaptive heuristic algorithm was used to solve OPF

problems considering the total fuel cost, active power losses, and the emission in [30]. Based

on the trophy-winning behaviour of players, the most valuable player algorithm (MVPA)

belonging to the family of swarm intelligence was proposed by Koganti Srilakshmi et al., for

solving OPF problems on several bus test systems [31]. On the other hand, the authors in [32]

proposes a Turbulent flow of water-based optimization using the concept of nature search phe-

nomenon to solve the economic load dispatch problem of fuel cost minimization considering

the effects of valve points and ramp rate limits. A multi-objective backtracking search algo-

rithm has been proposed to solve the disparate combinations of multi-objective (fuel cost,

power loss, voltage deviations) OPF for IEEE 57-bus and 118-bus system [33]. Several other

optimization approaches of phasor based PSO, improved wind driven algorithm and adaptive

quasi-oppositional differential evaluation algorithm with migration operator of BBO were pro-

posed to enhance the exploration and exploitation search ability of agents to reach the global

minima in order to solve the different combinations of OPF problems [34–36]. However, As

the rule of thumb states that all the optimization techniques proposed in literature do not pro-

vide optimal solutions for all kind of engineering optimization problems. Because, each tech-

nique has certain limitations to solve the particular type of problems like their own merits and

demerits to solve OPF problems. Therefore, researchers continuously were looking for power-

ful nature-inspired optimization techniques to solve the OPF problems. In view of this, a

recently developed optimization technique has been used to solve the OPF problem because of

its distinct foraging strategy and Brownian movements as well as the biological interaction

between predators and prey to get the optimal solution. The prime contributions of this paper

are as follows:

• Solving single-objective OPF problem using MPA technique to minimize the fuel cost, real

power loss, reactive power losses, voltage deviation and voltage stability index of the power

system.

• The effectiveness of the method is tested on the IEEE 30-bus test system for different selec-

tive single objectives by satisfying the equality and inequality constraints of the network.

• The result obtained is compared with other well-known optimization techniques presented

in recent literary works.

• The robustness of the proposed MPA based OPF method is validated for large-scale power

system of IEEE 118-bus system.

The remainder of the paper is organized as follows: Section 2 deals with the OPF problem for-

mulation which describes the various single-objective problem formation mathematically includ-

ing equality and inequality constraints. While section 3 presents the proposed intelligence-based

MPA technique with a dynamic levy flight strategy. The results and discussion of the proposed

method technique with other well-known nature-inspired methods of optimization are is pre-

sented in section 4. Finally, section 5 portrays the conclusion and future scope of the work.
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2. OPF problem formulation

This section presents the mathematical formulation of OPF and different selective objectives

for the smooth and reliable operation of power networks. The OPF is a highly non-linear,

non-convex and constrained optimization problem. The optimal power flow problem can be

solved as a single or multi- objective function while satisfying equality and inequality con-

straints. In many research works, several objectives, for instance, fuel cost, real power loss,

environment emission, voltage stability improvement have been considered individually or

collectively that will be either maximized or minimized. In terms of optimization of real power

generation, the generator bus voltage, reactive power compensator and transformer tap set-

tings are the principles controlling parameters.

2.1 Single objective function

The objective function to be minimized is defined as,

Optimize, fi (x, u) i = 1, 2, 3,. . .,N

Subject to equality and inequality constraints represented as,

gj (x, u) = 0 j = 1, 2, 3,. . .,N

hk (x, u)�0 k = 1, 2, 3,. . .,Nwhere, f is the ith objective function, N denotes the total number

of objective functions, u and x are the control and dependent variable, respectively, gj and hk

are the equality and inequality constraints in jth and kth limits. The control variable u can be

stated as,

u = [PG2,. . .,GN, VG1,. . .,GN, Qcap1,. . .,capN, T1,. . .,N]where, PG2,. . .GN denotes the real power gen-

eration of N generators except the slack bus, VG1,. . .GN represents voltage magnitude of genera-

tor bus, Qcap1,. . .capN depicts the shunt VAR compensator and T1,. . .,N is the tap settings of

transformers.

On the other hand, the vector of dependent variable x can be represented as,

x = [PGslack, VL1. . .LN, QG1. . .GN, SL1. . .LN]where,

PGslack, denotes the real power generation of slack bus,

VL1. . .LN is the voltage magnitude of all load buses,

QG1. . .GN, is the reactive power generation, and

SL1,. . .LN is the transmission line capacity limit.

The various selective objective functions considered in this work are as follows:

2.2 Fuel cost minimization

In general, most of the literature work is based on fuel cost minimization as utility requires to

generate electricity with the least cost by considering the deregulation and open market policy.

The fuel cost function can be represented as a quadratic function of real power generations of

generators which can be mathematically defined as,

f1 ¼
PNG

i¼1
ai þ biPGi þ ci PGi

2 $=h i ¼ 1; 2; . . . ;NG ð1Þ

where, PGi is the total power generation in MW, ai, bi, and ci denote the cost co-efficient of the

specific generator, and NG is the total number of generators in the system.

2.3 Active power loss minimization (APL)

To enhance the power quality to the consumer end, the APL is considered as an objective func-

tion which can be optimized by tuning the controlling parameters of the system by satisfying
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the power flow constraints. Mathematically, APL can be described as,

f2 ¼
PNL

i¼1
gi½Vk

2 þ Vm
2 � 2VkVmcosðdk � dmÞ� MW i ¼ 1; . . . ;NL ð2Þ

where, gi is the transfer conductance, Vk and Vm represent the voltage magnitude of from and

to buses, respectively, δk and δm depicts the phase angle, and NL is the total number of trans-

mission lines of the system.

2.4 Reactive power loss minimization (RPL)

To ensure a reliable power supply with balanced voltage, another significant factor of reactive

power loss need to consider as an objective function. The RPL can be optimized by tuning the

controlling parameters of the system by satisfying power flow constraints. The mathematical

formulation of RPL is as follows,

f3 ¼
PNL

i¼1
gi½Vk

2 þ Vm
2 � 2VkVmcosðdk � dmÞ� MVari ¼ 1; . . . ;NL ð3Þ

2.5 Voltage deviation (VD)

Generally, the voltage deviation range lies between ±5% of nominal values to ensure the stable

operation of the system. Mostly in the power network, the voltage magnitude at the bus should

be maintained at 1 p. u. However, the deviation in bus voltage occurs due to a sudden increase

in load demand, insufficient reactive power support, fault or any interruption may happen.

Therefore, voltage deviation is considered to minimize and can be expressed as,

f4 ¼
PNG

i¼1
jVi � 1j i ¼ 1; 2; 3; 4; . . . ;NG ð4Þ

2.6 Voltage stability enhancement index

In addition to the fuel cost and loss function, this paper also considers the voltage stability

index to assess the system stability. The voltage stability enhancement index (VSEI) is formu-

lated as the sum of squared L-index for a given system operating condition, and is formulated

as,

Minimize; f5 ¼ fVSI ¼ max ðLf Þ ð5Þ

where, the L-index gives the proximity of the system to voltage collapse and can be defined as,

Lf ¼ 1 �
XNG

i¼1
Fji

Vi

Vj

" #

ð6Þ

where, Fij is a matrix generated from Y-bus while Vi and Vj are the voltage magnitude at i and

j bus, respectively.

2.7 Equality constraints

The active and reactive power flow balance equation between the generated and absorbed

power are generally referred to the equality constraints. These restrictions are one of the most

important controlling parameters in the power system, while the load demands need to be sat-

isfied by the generation. The equality constraints are defined as follows,

PiðV; dÞ � PGi þ PDi ¼ 0 ði ¼ 1; 2; 3; . . . ;NÞ ð7Þ

QiðV; dÞ � QGi þQDi ¼ 0 ði ¼ 1; 2; 3; . . . ;NÞ ð8Þ
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where, Pi (V, δ) and Qi (V, δ) are the real and reactive power flow equations and can be defined

as,

PiðV; dÞ ¼ Vi

Xn

j¼1

VjðHijcosðdi � djÞ þMijsinðdi � djÞ ð9Þ

QiðV; dÞ ¼ Vi

Xn

j¼1

VjðHijsinðdi � djÞ � Mijcosðdi � djÞ ð10Þ

XNG

i¼1

PGi ¼ PDi þ Ploss ð11Þ

where, NG is the number of generator buses, N represents the number of bus, Pi depicts the

active power injection, Qi denotes the reactive power injection, PDi represents the active power

load demand, QDi is the reactive power load demand, PGi is the active power generation, QGi is

the reactive power generation, V is the voltage magnitude in p.u, δ is the phase angle in rad,

the admittance matrix can be defined as Yij = Hij+jMij, i and j are the from and to buses, and

Ploss is the active power loss.

2.8 Inequality constraints

The inequality constraints are also called power system operating and security constraints

which include the power generation limit of generating units, voltage magnitude of generator

bus, transformer tap settings, and so on. These constraints are discussed as follows,

2.9 Generator constraints

The power generation and voltage limit can be expressed as follows for economic and reliable

operation of the power system:

PGimin � PGi � PGimax ði ¼ 1; 2; 3; . . . ;NGÞ ð12Þ

QGimin � QGi � QGimax ði ¼ 1; 2; 3; . . . ;NGÞ ð13Þ

Vimin � Vi � Vimax ði ¼ 1; 2; 3; . . . ;NGÞ ð14Þ

2.10 Transformer constraints

The tap changing transformers in the power system is used to control the voltage magnitudes

at a given bus to maintain the operational limits. The tap of transformers can be modelled in

terms of a reactive power source which can be represented by,

Timin � Ti � Timax ði ¼ 1; 2; 3; . . . ;NTÞ ð15Þ

2.11 Shunt compensator VAR constraints

Shunt compensator is used to maintain the voltage at the prescribed limit in order to improve

the power factor. The system voltage can be maintained at the specified range by adding shunt

or series reactors. The switchable shunt compensation can be designated to operate within the
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limit as follows,

Qimin � Qi � Qimax ði ¼ 1; 2; 3; . . . ;NGÞ ð16Þ

2.12 Security constraints

Overhead lines absorb reactive power when it is fully loaded. The long transmission lines with

light load act as reactive power generators due to the predominance of the line capacitance. In

addition, the voltage magnitude of the healthy power system should be within the range of VLi-

min to VLimax as follows,

VLimin � VLi � VLimax ði ¼ 1; 2; 3; . . . ;NÞ ð17Þ

SLimin � SLi � SLimax ði ¼ 1; 2; 3; . . . ;NÞ ð18Þ

3. Application of MPA to OPF problem

MPA is a population-based meta-heuristic optimization technique proposed by Afshin Fara-

marzi [37]. The detailed steps for MPA based optimization are presented as follows:

3.1 MPA formulation

Like other population-based methods, the initial solution in MPA is uniformly distributed

over the search region in the first iteration as follows:

X0 ¼ Xmin þ randðXmax � XminÞ ð19Þ

where, Xmin and Xmax denote the lower and upper limit of control variables, respectively, and

the rand is a random value in the range of (0, 1). According to the survival of the fittest theory,

the top predators in nature are more talented in foraging. Therefore, the fittest solution is con-

sidered as a top predator to develop a matrix called Elite. The elements of this matrix can be

used to find the prey based on the information of prey’s positions and which can be defined as:

Elite ¼

X1

1:1
X1

1:2
. . . X1

1:d

X1

2:1
X1

2:2
. . . X1

2:d

..

. ..
. ..

. ..
.

X1

n:1 X1

n:2 . . . X1

n:d

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

n�d

ð20Þ

where X1
�!

represents the top predator vector, n is the number of search agents, and d is the

number of dimensions. Both predator and prey are looking for their own food and are consid-

ered as the search agents. At the end of every iteration, the Elite matrix is updated by the better

predator compared to the top predator in its previous iteration.

Another matrix is called prey which is framed with the same dimension as that of the Elite

matrix. Generally, during the initialization process, the prey is constructed in which the preda-

tors update their position. Among the initial prey, the fittest one is used to construct the Elite

matrix. The Prey matrix is presented as:

Prey ¼

X1:1 X1:2 . . . X1:d

X2:1 X2:2 . . . X2:d

..

. ..
. ..

. ..
.

Xn:1 Xn:2 . . . Xn:d

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

n�d

ð21Þ
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where, Xi,j represents the jth dimension of ith prey. The entire optimization process is mainly

depending on the above specified two matrices.

3.2 MPA optimization scenarios

On considering the velocity ratio and mimicking pattern of predator and prey, the whole MPA

optimization process can be categorized into three main phases. The various phases that occur

based on the velocity of movement of prey to escape from predators are: high-velocity ratio,

unit velocity ratio, and low-velocity ratio phases. In MPA, each phase is specified and assigned

with a particular period of iteration. These phases are defined based on the rules overseen on

the nature of predator and prey movement while mimicking it. The following phases are

described in detail as follows:

Phase 1: During this phase, the prey is moving faster than the predator with a high-velocity

ratio. This phase usually occurs in the initial stage of iteration where exploration is more

important. Although the velocity ratio is higher than 10, the best strategy for predator in this

case is not moving at all. The mathematical model of the high-velocity ratio (v� 10) can be

described as:

While Iter <
1

3
Max Iter

Stepsizei
�����!

¼ RB
�!
� ðElitei � RB

�!
� Preyi
���!

Þ

Preyi
���!

¼ Preyi
���!

þ P:R!� Stepsizei
�����!

ð22Þ

where, RB
�!

is a vector of random numbers, P = 0.5 is a constant value, and R is a vector of uni-

form random numbers in the range of [0, 1]. This scenario occurs when either the step size or

the velocity of movement is high to achieve high exploration ability in the initial stage of the

iterations.

Phase 2: In this case, both predator and prey move at the same velocity in order to search

for their own food. This phase is also called the unit velocity ratio. In this phase, the transition

from exploration to exploitation occurs which is considered as the intermediate phase of opti-

mization. Thus, both exploration and exploitation happen in this phase, where half of the pop-

ulation is designated for exploration and the rest of the population for exploitation. Notably,

the prey is responsible for exploitation while the predator for exploration. In the unit velocity

ratio (v� 1), if prey direct in Lévy walk, and Brownian movement will be the best strategy for

the predator to attack the prey. This phase can be mathematically expressed as follows:

While Iter <
1

3
Max Iter <

2

3
Max Iter

For the first half of the population

Stepsizei
�����!

¼ RL
�!
� ðElitei � RL

�!
� Preyi
���!

Þ

Preyi
���!

¼ Preyi
���!

þ P:R!� Stepsizei
�����!

ð23Þ

where, RL
�!

is a vector of random numbers based on Lévy distribution representing Lévy move-

ment. As exploitation also occurs in the case of the second half of the populations during this
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phase which can be presented as:

Stepsizei
�����!

¼ RB
�!
� ðRB � Elitei

��!
� Preyi
���!

Þ

Preyi
���!

¼ Elitei
��!

þ P:CF� Stepsizei
�����!

ð24Þ

while CF ¼ 1 � Iter
Max Iter

� � 2� Iter
Max Iterð Þ

is considered as an adaptive parameter to control the step

size for predator movement. Multiplication of RB
�!

and Elite simulates the movement of preda-

tor in Brownian manner. On the other hand, prey updates its position according to the move-

ment of predators in Brownian motion.

Phase 3: The low-velocity ratio is seen during this phase as the predator is moving faster

than prey to attack it which happens in the last phase of the optimization. This low-velocity

ratio (v = 0.1) shows the high exploitation ability where the best strategy for the predator is

Lévy. This phase can be modeled as:

While Iter >
2

3
Max Iter

Stepsizei
�����!

¼ RL
�!
� ðRB � Elitei

��!
� Preyi
���!

Þ

Preyi
���!

¼ Elitei
��!

þ P:CF� Stepsizei
�����!

ð25Þ

As observed from the literature study, the movement of the predator in the Lévy strategy is

based on the Multiplication of RL
�!

and Elite. By adding the step size to the Elite position

ensures the movement of the predator to update the prey position. Though, the Lévy and

Brownian movement in the whole life span of a predator is the same percentage.

In the first stage, the predator is motionless but in the next stage, it moves in Brownian.

Besides in the last stage, it shows the Lévy strategy. Since prey is considered as another poten-

tial predator for its mimicking behaviour of food. At the first phase of the movement, the prey

is moving in Brownian, then in the second phase in the Lévy behavior. Each phase got one-

third of the iterations which shows the better-optimized results comparing to the switching or

repetition of the strategy. The entire exploration phases of the proposed MPA technique have

illustrated in Fig 1.

3.3 Eddy formation and FADs’ effect

Environmental factors like eddy formation or Fish Aggregating Devices (FADs) affect the for-

aging pattern in a marine predator. The FADs are responsible for the local optima and the

trapping behaviour in these points in the search region. To avoid such local optima during

simulation, this method considers longer jumps. The mathematical representation of FADs is

as follows:

Preyi
���!

¼
Preyi þ CF½Xmin þ R!� ðXmax

��!
� Xmin
��!
Þ� � U! if r � FADs

Preyi
���!

þ ½FADsð1 � rÞ þ r�ðPreyr1
���!

� Preyr2
���!

Þ if r > FADs

ð26Þ

8
<

:

where r is the uniform random number in [0, 1], Xmin
��!

and Xmax
��!

are the vectors containing the

lower and upper bounds of the dimensions respectively, r1 and r2 subscripts denote the ran-

dom indexes of the prey matrix. FADs are the probability of FADs effect and the value is
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assumed as 0.2 in the optimization which generate a random vector in [0,1]. U! denotes the

binary vector of values zero or one. The array values changes to zero or one if the array value is

lesser or greater than 0.2 respectively.

3.4 Marine memory

Marine predators have the quality memory that plays an important role in food foraging.

Additionally, this memory enhances the capability of the exploration and exploitation in the

MPA. The convergence criteria of the Elite are examined after updating the Prey and imple-

mentation of the FADs effect. The most fitted potential solution is updated after comparing

the immediate solution with respect to the fitness function. Thus, the MPA determines the

high-quality solution in the search space.

3.5 MPA phases, exploration and exploitation

The exploration and exploitation in the optimization process of MPA can be categorized into

three distinct phases. At the first phase of optimization, the prey moves in Brownian motion

within the search region. Though the distance between predator and prey is relatively large in

Brownian motion but preys can explore their neighbourhood separately in this stage which

results in good exploration of the domain. Then, the prey updates the new position after evalu-

ating the fitness function based on the survival theory. Throughout the foraging process, prey

can also be replaced as a dominant predator if it shows successful behaviour in food searching.

In the second phase, the algorithm moves from exploration into the exploitation stage. In

this case, both prey and predator look for their own food where half of the populations engage

for exploration and the other half for exploitation. In this journey, the predator follows the

Brownian motion and the prey finds food in the Lévy strategy while in absence of food it takes

Fig 1. Several optimization phases of the proposed MPA.

https://doi.org/10.1371/journal.pone.0256050.g001
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a long jump in the nearby area. At the end of this phase, predator and prey come closer

and the jumping step size decreases, drastically. Additionally, the FADs effect minimizes

the possibility of trapping into local optima for better optimization outcome. The foraging

behavior switches from Brownian to Lévy strategy for high exploration ability. On the other

hand, the search space is restricted by the defined convergence factor (CF) within the search

space.

At the last phase, the computational complexity of the proposed method is the minimum

and can be depicted as (t (nd + Cof�n)), where t is the number of iteration, n is a number of

agents, Cof is the cost of function evaluation, and d is the dimension of the problem to be

solved. Fig 2 demonstrates the optimization process of the proposed method in a flowchart.

Fig 2. Application of MPA to OPF problem MPA flowchart.

https://doi.org/10.1371/journal.pone.0256050.g002
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3.6 Application of MPA to the OPF problem

This section presents the step-by-step implementation of MPA in solving OPF problems as

described below:

Step 1: Input the test system data (e.g., Bus and line data of the system) for the validation

purpose.

Step 2: Set the MPA parameters such as number of populations, N and total number of itera-

tions, t. The total number of populations will take part to optimize the formulated objective

functions in the search space.

Step 3: Evaluate the objective functions to be optimized such as fuel cost, active power loss,

reactive power loss, voltage deviation and Voltage Stability Enhancement Index considered

as single-optimal power flow problems in Eqs 1–5 for each population.

Step 4: Now, construct Elite and Prey Matrix in order to get the optimal solution among the

populations considered.

Step 5: Determine the top predator from elite and prey for updating its position and velocity of

the prey for successive iterations.

Step 6: Exploration in three phase and update the position using Eqs 22–25

Step 7: Apply the FADs effect using Eq 26

Step 8: At this step, evaluate the objective function based on Eqs 1–5

Step 9: Check the stopping conditions of maximum number of iterations is reached using Eqs

7–18.

Step 10: Stop the program if the stopping criteria met, otherwise return to step 2.

4. Results and discussion

The effectiveness and feasibility of the proposed MPA-based optimization method was

tested on a standard IEEE 30-bus test system. This test system model consists of six genera-

tors bus, four transformers, and nine shunt compensations. The location of the generator at

buses 1, 2, 3, 8, 11, and 13. with shunt compensation at buses 10, 12, 15, 17, 20, 21, 23, 24,

and 29. Besides, the IEEE 30-bus system has 24 load buses and 41 transmission lines of

which 4 branches namely 6–9, 6–10, 4–12, and 28–27 are with the tap setting transformers

[38]. It is worth mentioning that this test system has been widely used for OPF study with

the maximum load demand of 283.4 MW, in which the total real and reactive power

demands are 2.834 pu and 1.262 pu, respectively, with the base MVA of 100. On the other

hand, the lower and upper bound limits of transformers tap and load busses were set in the

range between [0.9, 1.1] pu and [0.95, 1.05] pu, respectively. Moreover, the minimum and

maximum restrictions of the voltage magnitude of the generation units were set as [0.95,

1.1]. The proposed method was coded using MATLAB software in the PC with the subse-

quent characteristics: Intel core i5, CPU 2.60 GHz, RAM 4GB, and 64-bit operating system.

The proposed technique was run with a maximum of 500 iterations and the comparative

analysis was carried out for each case of selected objectives as detailed in the forthcoming

subsections. The optimal settings of the controlling parameters for the proposed method

have also been detailed in Table 1. The IEEE 30-bus system single line diagram has been

showed in Fig 3.
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4.1 Case 1 –Fuel cost minimization

To verify the effectiveness and performance of the proposed technique in solving the OPF

problems, the quadratic fuel cost of each generating unit was considered to optimize as the sin-

gle-objective function in this case. The mathematical formulation of the objective function is

discussed in section 2. The proposed method was employed to analyze all the controlling

parameters (i.e., real power generation dispatch) of the IEEE 30-bus test system to meet the

required load demand by satisfying the power system constraints. The obtained optimal set-

tings of controlling variables optimize the fuel cost (FC) of the system which is illustrated in

Table 2. To generate the least cost power by satisfying all the lower and upper bound restric-

tions, the generators are initialized randomly in the search region for different iterations.

Afterwards, the main optimizer MPA goes through several stages to meet the power demand

by enforcing the lower and upper boundaries restriction of each controlling parameter. In the

exploration and exploitation stage, the distinctive levy and Brownian movements demon-

strated the best global optimum solution in the search space. After the exploitation process, the

Table 1. The controlling parameters of IEEE 30-bus system for case 1 to 5 using the MPA based optimization method.

Parameters Selective Objective

FC Active PL Reactive PL VD VSEI

PG1 (MW) 177.032 51.250 51.309 175.172 171.845

PG2 (MW) 48.688 80 80 48.703 47.874

PG3 (MW) 21.305 50 50 21.515 22.800

PG4 (MW) 21.081 35 35 22.328 23.382

PG5 (MW) 11.912 30 30 12.300 12.808

PG6 (MW) 12.004 40 40 13.184 13.128

V1 (p. u.) 1.1 1.1 1.1 1.035 1.100

V2 (p. u.) 1.088 1.098 1.1 1.019 1.087

V3 (p. u.) 1.062 1.080 1.092 1.010 1.082

V4 (p. u.) 1.069 1.087 1.1 1.001 1.095

V5 (p. u.) 1.1 1.1 1.1 1.062 1.099

V6 (p. u.) 1.1 1.100 1.1 0.997 1.100

T1 1.045 1.057 1.002 1.083 1.021

T2 0.9 0.900 0.966 0.909 0.905

T3 0.987 0.984 0.995 0.956 0.999

T4 0.967 0.973 0.986 0.969 0.981

QC1 (MVAR) 5.000 5.000 5.000 5.000 5

QC2 (MVAR) 5.000 5.000 5.000 0.855 4.998

QC3 (MVAR) 5.000 4.999 4.999 5.000 5.000

QC4 (MVAR) 5.000 5.000 5.000 2.300 5.000

QC5 (MVAR) 5.000 4.999 5.000 5.000 5.000

QC6 (MVAR) 5.000 5.000 5.000 5.000 5.000

QC7 (MVAR) 3.661 3.713 4.999 5.000 5.000

QC8 (MVAR) 5.000 5.000 5.000 5.000 5.000

QC9 (MVAR) 2.995 2.540 3.248 2.722 5.000

Cost ($/h) 799.0725 999.8447 967.2060 803.9062 800.3773

Real PL (MW) 8.6223 2.8513 2.9102 9.8005 8.4383

Reactive PL (MVAR) 3.0807 24.3630 -25.2040 7.2292 5.2224

VD 1.8516 2.0479 2.1310 0.0992 2.1264

LK 0.1164 0.1151 0.1142 0.1364 0.1131

https://doi.org/10.1371/journal.pone.0256050.t001
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Fig 3. IEEE-30 bus system single line diagram.

https://doi.org/10.1371/journal.pone.0256050.g003

Table 2. Comparison of proposed algorithm with other literature work for case 1.

Parameters MPA DSA [39] SCA [6] MSCA [6] GWO [40] DGWO [40] HSA [41] FHSA [41] WEA [5] EEA [42] PSO [43] DEA [44]

PG1 (MW) 177.032 1.76954 140.21 177.401 171.094 176.949 1.77747 1.76804 1.7706 173.4593 1.7696 176.2592

PG2 (MW) 48.688 0.48713 49.00 48.632 48.615 48.519 0.48584 0.49229 0.48698 47.7363 0.4898 48.5602

PG3 (MW) 21.305 0.21383 20.26 21.2376 21.123 21.326 0.21539 0.21147 0.21302 23.7692 0.2130 21.3402

PG4 (MW) 21.081 0.21285 22.00 20.8615 22.068 21.571 0.21278 0.21043 0.21065 23.2234 0.2119 22.0553

PG5 (MW) 11.912 0.12044 11.00 11.9385 15.479 12.026 0.11014 0.11977 0.11879 11.3724 0.1197 11.7785

PG6 (MW) 12.004 0.12000 11.00 12 13.665 12.001 0.12266 0.12062 0.12 12.2530 0.1200 12.0217

V1 (p.u.) 1.100 1.08442 1.10 1.1 1.080 1.083 1.0951 1.100 1.1 1.0994 1.0855 1.0999

V2 (p.u.) 1.088 1.06454 1.10 1.0867 1.062 1.063 1.0747 1.085 1.0878 1.0853 1.0653 1.0890

V3 (p.u.) 1.062 1.03347 1.08 1.0604 1.030 1.031 1.0410 1.054 1.0618 1.0506 1.0333 1.0659

V4 (p.u.) 1.069 1.03880 1.10 1.0923 1.036 1.035 1.0531 1.062 1.0692 1.0700 1.0386 1.0697

V5 (p.u.) 1.100 1.09793 1.10 1.1 1.080 1.060 1.0976 1.098 1.0909 1.0735 1.0848 1.0965

V6 (p.u.) 1.100 1.04266 1.10 1.1 1.054 1.050 1.0892 1.095 1.1 1.0976 1.0512 1.0996

T1 1.045 1.05000 0.97 1.0439 0.982 0.977 0.9789 1.011 2.69E-0.8 0.9875 1.0233 1.0429

T2 0.900 0.96536 0.95 0.9144 1.026 1.013 0.9395 0.934 0.05 0.9250 0.9557 0.9179

T3 0.987 0.97918 0.96 1.03 0.989 0.934 1.0125 1.008 0.05 1.0375 0.9724 1.0190

T4 0.967 0.97772 0.97 0.9913 0.981 0.975 0.9452 0.976 0.05 1.0250 0.9728 0.9896

QC1 (MVAR) 5.000 0.05000 5.00 0.0246 2.144 1.695 0.0138 0.031 0.043831 0.04 0.0335 4.5453

QC2 (MVAR) 5.000 0.05000 4.80 2.56 2.929 3.394 0.0060 0.045 0.05 0.01 0.0220 4.4158

QC3 (MVAR) 5.000 0.05000 4.99 4.586 1.400 4.777 0.0398 0.041 0.019843 0.05 0.0198 4.1734

QC4 (MVAR) 5.000 0.05000 5.00 2.4098 3.526 4.153 0.0430 0.011 0.039657 0.03 0.0315 2.5171

QC5 (MVAR) 5.000 0.04991 4.60 4.6378 2.954 3.738 0.0346 0.038 0.024189 0.04 0.0454 2.0916

QC6 (MVAR) 5.000 0.05000 4.40 0.3635 3.588 4.941 0.0352 0.013 1.033 0.01 0.0381 4.1990

(Continued)
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MPA shows the global optima value at 799.072$/h for fuel cost. The comparison results con-

cerning other metaheuristic-based optimization techniques namely DSA, SCA, MSCA, GWO,

DGWO, HAS, FHSA, WEA, EEA, PSO, and DEA reveals that the proposed method showed

the global best results among other techniques presented. On the other hand, the DGWO

shows the highest value at 801.4333 $/h and is stuck at a certain time. The computational per-

formances in terms of real power generation, real power loss, reactive power loss, voltage devi-

ation, and voltage stability enhancement index for case-1 have been illustrated in Table 2.

Thus, from the numerical results, it is seen that the proposed MPA technique provides supe-

rior results for the selected single-objective cases among the mentioned literature work. Addi-

tionally, the obtained fuel cost using the proposed technique with its convergence

characteristics is portrayed in Fig 4.

4.2 Case 2 –Active power loss minimization (APL)

In this case, to verify the effectiveness and performance of the proposed technique for solving

the OPF problems, the active power loss was considered to optimize as the single-objective

Table 2. (Continued)

Parameters MPA DSA [39] SCA [6] MSCA [6] GWO [40] DGWO [40] HSA [41] FHSA [41] WEA [5] EEA [42] PSO [43] DEA [44]

QC7 (MVAR) 3.661 0.04435 5.00 3.1475 2.974 3.567 0.0002 0.045 0.94417 0.05 0.0398 2.5527

QC8 (MVAR) 5.000 0.05000 5.00 4.8426 3.688 4.996 0.0221 0.023 0.96969 0.03 0.0500 4.3812

QC9 (MVAR) 2.995 0.02992 2.50 3.9411 3.259 2.200 0.0482 0.034 0.95964 0.05 0.0251 2.7503

Cost ($/h) 799.072 800.3887 800.102 799.31 801.259 800.433 800.397 799.914 798.996 800.0831 800.41 799.2891

Real PL (MW) 8.622 8.9819 9.0633 8.7327 8.6428 8.9921 8.7613 8.4137 - 8.6150

Reactive PL(MVAR) 3.081 - - - - - - - - - - -

VD 1.852 - 2.0825 1.4246 0.7285 0.8784 0.0152 0.0146 1.5886 - 0.8765 1.5306

LK 0.116 0.12624 - - 0.1299 0.1279 - - 0.1193 0.1303 0.1296 0.1226

https://doi.org/10.1371/journal.pone.0256050.t002

Fig 4. Convergence property of the proposed MPA for case 1.

https://doi.org/10.1371/journal.pone.0256050.g004
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function. The mathematical formulation of this case is presented in section 2. For this case, the

parameter setting for simulation is given in Table 1 and the result was obtained after several

phases of exploration and exploitation by the presented approach. After the exploitation pro-

cess, the MPA shows the global optimal value of 2.8513MW for active power loss. The compar-

ison results with respect to other metaheuristic-based optimization techniques namely DSA,

SCA, MSCA, EEA, PSO, ABC, HS and EGA reveals that the proposed method showed the

global best results among others in terms of active power loss minimization. On the other

hand, the FEA technique shows the highest value at 3.3541 MW while PSO reveals the second

highest at 3.318 MW. Although, the modified SCA give the second-best result of 2.9334 MW

compared to the original SCA which performs to give 2.9425 MW active power losses. Further,

the computational performances in terms of real power generation, real power loss, reactive

power loss, voltage deviation, and voltage stability enhancement index for case-2 have been

illustrated in Table 3. Thus, from the numerical results, it is seen that the proposed MPA tech-

nique provides superior results for the selected single-objective cases among the literature

work. Additionally, the obtained power loss for the proffered technique with its convergence

characteristics is portrayed in Fig 5.

Table 3. Comparison of proposed algorithm with other literature work for case 2.

Parameters MPA SCA [6] MSCA [6] DSA [39] PSO [42] FEA [42] ABC [39] HS [39] EGA [39]

PG1 (MW) 51.250 51.578 52.08 0.510945 56.6613 59.3216 0.510780 0.525327 NR

PG2 (MW) 80 79.78 79.28 0.800000 78.9597 74.8132 0.800000 0.795432 0.80000

PG3 (MW) 50 50.00 50.00 0.500000 49.1795 49.8547 0.500000 0.498152 0.50000

PG4 (MW) 35 34.99 35.00 0.350000 35 34.9084 0.350000 0.347403 0.35000

PG5 (MW) 30 29.99 30.00 0.300000 29.8242 28.1099 0.300000 0.297884 0.30000

PG6 (MW) 40 40.00 39.97 0.400000 37.094 39.7538 0.400000 0.399480 0.40000

V1 (p. u.) 1.100 1.10 1.10 1.0605 1.0694 1.0547 1.0627 1.0754 1.0435

V2 (p. u.) 1.098 1.10 1.07 1.0566 1.0729 1.0418 1.0575 1.0728 1.0435

V3 (p. u.) 1.080 1.08 1.08 1.0378 1.0500 1.0247 1.0385 1.0540 1.0247

V4 (p. u.) 1.087 1.10 1.10 1.0453 1.0476 1.0335 1.0444 1.0637 1.0347

V5 (p. u.) 1.100 1.10 1.10 1.1000 1.0176 1.0229 1.0739 1.0991 1.0700

V6 (p. u.) 1.100 1.10 1.10 1.0474 1.0576 1.0776 1.0463 1.0967 1.0430

T1 1.057 1.01 1.05 1.0329 0.95 1.0125 1.0500 1.0022 1.0375

T2 0.900 0.93 0.95 0.9993 1.0125 0.9125 0.9375 0.9078 0.925

T3 0.984 1.00 1.01 0.9913 0.9875 1.0125 0.9875 0.9593 0.975

T4 0.973 0.97 0.99 0.9786 1.0375 1.0125 0.9750 0.9533 0.975

QC1 (MVAR) 5.000 2.81 3.15 0.0500 0.05 0.04 0.0500 0.0499 0.0500

QC2 (MVAR) 5.000 2.53 0.81 0.0500 0.05 0.02 0.0500 0.0486 0.0300

QC3 (MVAR) 4.999 3.39 4.49 0.0500 0.05 0.05 0.0500 0.0493 0.0000

QC4 (MVAR) 5.000 1.60 2.40 0.0500 0.03 0.01 0.0500 0.0488 0.0100

QC5 (MVAR) 4.999 2.99 1.48 0.0500 0.04 0.05 0.0400 0.0442 0.0400

QC6 (MVAR) 5.000 4.11 4.64 0.0500 0.05 0.00 0.0500 0.0499 0.0200

QC7 (MVAR) 3.713 1.86 3.17 0.0422 0.02 0.02 0.0300 0.0411 0.0500

QC8 (MVAR) 5.000 3.96 4.69 0.0500 0.00 0.05 0.0500 0.0499 0.0500

QC9 (MVAR) 2.540 3.12 1.80 0.0303 0.01 0.02 0.0200 0.0317 0.0500

Cost ($/h) 999.845 966.788 965.648 967.6493 954.348 952.3785 967.681 964.5121 967.86

Real PL (MW) 2.851 2.9425 2.9334 3.09450 3.318 3.3541 3.1078 2.9678 3.2008

Reactive PL (MVAR) -24.363 - - - - - - - -

VD 2.048 1.8161 1.5987 - - - - - -

LK 0.115 - - 0.12604 - - 0.1386 0.1154 0.12178

https://doi.org/10.1371/journal.pone.0256050.t003
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4.3 Case 3—Reactive power loss minimization (RPL)

In this case, further to verify the effectiveness and performance of the propounded technique

in solving the OPF problem, the reactive power loss was considered as the single-objective

function. The mathematical formulation of this case is also detailed in section 2 with its opti-

mal setting of the control parameter is portrayed in Table 1. The main goal of this objective

function is to minimize the reactive power losses by the proposed MPA technique. This objec-

tive can be achieved by deducting the reactive power demand from reactive power generation.

After the exploitation process, the MPA shows the global optima value of -25.204 MVAR for

reactive power loss. The comparison results with respect to other metaheuristic-based optimi-

zation techniques reveals that the proposed method showed the global best results among oth-

ers in the case of reactive power loss minimization. On the other hand, the BHBO technique

shows the worst value of -20.1522 MVAR while EM reveals the second- highest value of

-22.0196MVAR. Although, the recently used hybrid HFPSO showed almost similar result. The

computational performances in terms of real power generation, real power loss, reactive

power loss, voltage deviation, and voltage stability enhancement index for case-3 have been

illustrated in Table 4. Thus, from the numerical results, it is seen that the proposed MPA tech-

nique provides superior results for the selected single-objective cases among all mentioned lit-

erature work. Additionally, the obtained reactive power loss with its convergence

characteristics is portrayed in Fig 6.

4.4 Case 4—Voltage deviation (VD)

In this case, the minimization of voltage deviation has been considered to be optimized as the

fourth single objective function. The obtained optimal values of all controlling parameters of

the power system by the proposed MPA for voltage deviation have been given in Table 4. To

verify the effectiveness and performance of the proposed technique in solving the OPF prob-

lem comparing with other techniques, the numerical results obtained in the literature from

Fig 5. Convergence property of the proposed MPA for case 2.

https://doi.org/10.1371/journal.pone.0256050.g005
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several recently developed meta-heuristic methods have been presented in Table 5. The mathe-

matical formulation of this case is discussed in section 2. At the initial run of the MPA, the

algorithm optimizes the parameter by exploring the search space and for the increase in itera-

tion, the exploitation phase increases with a decrease in exploration in order to reach the global

optimal solution. After the exploitation process, the MPA shows the global optima value at

0.099 for voltage deviation. The comparison results with respect to other metaheuristic-based

optimization techniques namely SCA, MSCA, WEA, PSO, MOJA, and GSA reveal that the

proposed method showed the global best results among others. It is observed that all other

reported literature work has demonstrated quite similar results in voltage deviation. The

computational performances in terms of real power generation, real power loss, reactive

power loss, voltage deviation, and voltage stability enhancement index for case-4 have been

illustrated in Table 5. Thus, from the numerical results, it is seen that the proposed MPA tech-

nique provides superior results for the selected single-objective cases among the presented

technique in literature work. Moreover, the optimization of voltage deviation by the proposed

technique is given in Fig 7.

Table 4. Comparison of proposed algorithm with other literature work for case 3.

Parameters MPA EM [45] IEM [45] HFPSO [46] PSO [46] BHBO [47] MVO [48]

PG1 (MW) 51.309 64.0008 51.4349 51.3085 52.0175 73.6130 51.348

PG2 (MW) 80 75.0319 80.0000 80 79.8978 70.9447 80.000

PG3 (MW) 50 48.1465 50.0000 35 49.9998 48.5176 50.000

PG4 (MW) 35 32.7775 35.0000 50 29.8163 31.7662 35.000

PG5 (MW) 30 28.9746 30.0000 35 29.8163 25.5264 29.998

PG6 (MW) 40 37.9527 40.0000 40 40.0000 36.7867 40.000

V1 (p. u.) 1.100 1.0927 1.1000 1.1 1.1000 1.0817 1.100

V2 (p. u.) 1.100 1.0885 1.1000 1.1 1.1000 1.0784 1.100

V3 (p. u.) 1.092 1.0764 1.0939 1.0919 1.0858 1.0651 1.093

V4 (p. u.) 1.100 1.0910 1.1000 1.1 1.1000 1.0703 1.100

V5 (p. u.) 1.100 1.0160 1.1000 1.1 1.0376 1.0088 1.100

V6 (p. u.) 1.100 1.0659 1.1000 1.1 1.0688 1.0398 1.100

T1 1.002 1.0874 1.0121 1.0018 1.0603 1.0504 1.000

T2 0.966 0.9879 0.9000 0.9657 1.0391 0.9973 0.937

T3 0.995 1.0232 0.9870 0.9949 1.0241 1.0104 0.993

T4 0.986 1.0461 0.9816 0.9863 1.0363 1.0284 0.983

QC1 (MVAR) 5.000 3.2124 0.6417 5 0.3746 2.7586 0.775

QC2 (MVAR) 5.000 4.7420 0.0299 5 4.9986 2.5341 3.857

QC3 (MVAR) 4.999 4.1200 4.4270 5 4.9999 2.9776 3.668

QC4 (MVAR) 5.000 1.8437 0.0000 5 1.3503 2.3622 2.923

QC5 (MVAR) 5.000 3.1539 5.0000 5 4.9548 2.9648 4.170

QC6 (MVAR) 5.000 3.2219 4.9813 5 0.6480 2.8198 2.113

QC7 (MVAR) 4.999 4.6849 0.0098 5 2.7229 2.7216 3.390

QC8 (MVAR) 5.000 3.1210 0.0225 5 4.9995 2.7057 5.000

QC9 (MVAR) 3.248 2.8779 4.0354 3.3162 1.4439 2.6123 2.952

Cost ($/h) 967.206 939.4832 967.2229 967.2057 966.95 924.1365 967.250

Real PL (MW) 2.910 3.4851 2.9186 2.9101 2.9101 3.7545 2.948

Reactive PL (MVAR) -25.204 -22.0196 -25.1422 -25.204 -23.756 -20.1522 -25.038

VD 2.1310 0.7773 2.0860 2.1318 0.9126 0.4878 2.041

LK 0.1140 0.1330 0.1162 0.1142 0.1323 0.1371 0.117

https://doi.org/10.1371/journal.pone.0256050.t004
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Fig 6. Convergence property of the proposed MPA for case 3.

https://doi.org/10.1371/journal.pone.0256050.g006

Table 5. Comparison of proposed algorithm with other literature work for case 4.

Parameters MPA SCA [6] MSCA [6] WEA [5] PSO [24] MOJA [49] GSA [50]

PG1 (MW) 175.172 122.82 112.585 0.82313 1.7368 89.0808 1.73320940

PG2 (MW) 48.703 74.98 79.76 0.67094 0.4910 78.6206 0.49263900

PG3 (MW) 21.515 15.50 22.25 0.48874 0.2181 49.8306 0.21567799

PG4 (MW) 22.328 31.40 25.09 0.31858 0.2330 34.6289 0.23274500

PG5 (MW) 12.300 29.16 29.95 0.28385 0.1388 23.9941 0.13774500

PG6 (MW) 13.184 18.04 20.85 0.29467 0.1200 12.0077 0.11964300

V1 (p. u.) 1.035 1.00 1.01 1.0055 1.0142 1.0248 1.026900

V2 (p. u.) 1.019 1.04 0.99 1.0028 1.0022 1.0143 1.009980

V3 (p. u.) 1.010 1.02 1.02 1.0191 1.0170 1.0127 1.014280

V4 (p. u.) 1.001 1.04 1.05 1.0037 1.0100 1.0071 1.008680

V5 (p. u.) 1.062 1.00 1.05 0.99844 1.0506 1.0441 1.050289

V6 (p. u.) 0.997 1.03 0.99 1.0047 1.0175 1.0004 1.016340

T1 1.083 0.98 1.04 0.04149 1.0702 1.0646 1.071330

T2 0.909 0.95 0.95 0.03150 0.9000 0.9010 0.900000

T3 0.956 1.00 0.96 0.04979 0.9954 0.9574 0.996500

T4 0.969 0.95 0.95 0.9703 0.9699 0.973200

QC1 (MVAR) 5.000 3.40 4.75 0.04999 0.0403 4.4080 0.04143700

QC2 (MVAR) 0.855 0.09 4.13 0.03514 0.0369 0.0000 0.03562000

QC3 (MVAR) 5.000 2.77 4.87 0.04081 0.0500 4.8290 0.05000000

QC4 (MVAR) 2.300 0.63 3.16 0.05 0.0000 0.0773 0.00000000

QC5 (MVAR) 5.000 4.50 4.93 0.00573 0.0500 4.9988 0.05000000

QC6 (MVAR) 5.000 4.19 4.91 1.0115 0.0500 4.8611 0.05000000

(Continued)
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4.5 Case 5—Voltage stability enhancement index (VSEI)

In this case, to verify the effectiveness and performance of the proposed technique in solving the

OPF problem, the voltage stability enhancement index was considered to optimize as the fifth

single-objective function. Generally, the voltage stability index should be in the range of zero

(no-load case) to one (voltage collapse). This voltage stability index is used to find out the accu-

rate voltage instability of the system in order to avoid the voltage collapse of the power network.

Therefore, it is necessary to consider the VSEI in OPF problem- solving. The mathematical for-

mulation of this case is mentioned in section 2. The proposed method was employed to analyze

all the controlling parameters of the IEEE 30-bus test system to meet the required demand by

satisfying all the power system constraints. The obtained optimal settings of controlling vari-

ables to optimize the VSEI of the system which is illustrated in Table 6. In order to ensure the

optimized outcomes, the proposed method of MPA undergoes through several stages to meet

the power demand by enforcing the lower and upper boundaries restriction of each controlling

parameter. In the exploration and exploitation stage, the distinctive levy and Brownian move-

ments demonstrated the best global optimum solution in the search space. After the exploitation

Table 5. (Continued)

Parameters MPA SCA [6] MSCA [6] WEA [5] PSO [24] MOJA [49] GSA [50]

QC7 (MVAR) 5.000 4.79 5.00 0.99173 0.0500 4.9784 0.05000000

QC8 (MVAR) 5.000 4.95 4.93 0.98067 0.0500 4.9206 0.04983700

QC9 (MVAR) 2.722 1.06 0.39 0.95189 0.0259 2.5858 0.02588000

Cost ($/h) 803.906 843.604 8.49.281 911.801 806.38 907.2475 804.314844

Real PL (MW) 9.801 8.5031 7.0828 4.5989 - 4.7626 0.09765939

Reactive PL (MVAR) 7.229 - - - - - -

VD 0.099 0.1082 0.1030 0.0875 0.0891 0.0935 0.093269

LK 0.136 - - 0.1262 0.1392 0.1488 0.135776

https://doi.org/10.1371/journal.pone.0256050.t005

Fig 7. Convergence property of the proposed MPA for case 4.

https://doi.org/10.1371/journal.pone.0256050.g007
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process, the MPA shows the global optima value at 0.113 for VSEI. The comparison results with

respect to other metaheuristic-based optimization techniques such as WEA, DSA, BBO,

MODE, PSO, and GA reveals that the proposed method showed the global best results among

others in terms of solution quality and convergence property. On the other hand, the WEA and

BBO showed the global minima in case 5 at 0.0927 and 0.09803 respectively, although the other

parameters like fuel cost showed the worst value which is are the major concern. The computa-

tional performances in terms of real power generation, real power loss, reactive power loss, volt-

age deviation, and voltage stability enhancement index for case-5 have been illustrated in

Table 6. Thus, from the numerical results, it is seen that the proposed MPA technique provides

superior results for the selected single-objective cases among all mentioned literature work.

Additionally, the convergence characteristic for this case is portrayed in Fig 8.

4.6 Case 6—Analysis of large-case test system

In this case, an IEEE 118-bus system data has been considered to verify the effectiveness of the

proposed technique for solving the large-scale power system. The active and reactive power

Table 6. Comparison of the proposed algorithm with other literature work for case 5.

Parameters MPA WEA [5] DSA [39] BBO [39] MODE [39] PSO [24] GA [42]

PG1 (MW) 171.845 1.7874 0.52190 0.99415 0.12712 1.7553 117.971

PG2 (MW) 47.874 0.20106 0.80000 0.34794 0.3885 0.4798 76.13

PG3 (MW) 22.800 0.15001 0.50000 0.49901 0.4476 0.2092 30.99

PG4 (MW) 23.382 0.10003 0.35000 0.34831 0.3400 0.2450 33.43

PG5 (MW) 12.808 0.29992 0.30000 0.29569 0.2669 0.1151 19.099

PG6 (MW) 13.128 0.4 0.39631 0.39995 0.1738 0.1200 13.832

V1 (p. u.) 1.100 1.0998 1.06780 1.0995 1.0700 1.0891 1.04

V2 (p. u.) 1.087 1.0649 1.07250 1.0822 1.0520 1.0693 1.0570

V3 (p. u.) 1.082 1.0017 1.06000 1.0738 1.0610 1.0464 1.0718

V4 (p. u.) 1.095 1.0632 1.05000 1.0499 1.0400 1.0465 1.0223

V5 (p. u.) 1.099 1.1 1.05787 1.0837 1.0980 1.0277 1.0248

V6 (p. u.) 1.100 0.95623 1.01076 0.96403 1.0520 1.0294 1.0450

T1 1.021 0.05 1.0500 1.0999 1.0390 0.9694 0.9250

T2 0.905 0.05 0.9000 1.0999 0.9590 0.9238 0.9125

T3 0.999 0.05 0.9356 1.1000 0.9960 0.9467 0.9000

T4 0.981 0.5 0.9846 0.90246 0.9820 0.9820 1.0750

QC1 (MVAR) 5.000 0.04999 0.0500 0.047741 0.0405 0.0162 0.00

QC2 (MVAR) 4.998 0.5 0.0500 0.049482 0.0442 0.0424 0.05

QC3 (MVAR) 5.000 0.04999 0.0500 0.047491 0.0419 0.0256 0.05

QC4 (MVAR) 5.000 0.5 0.0500 0.047138 0.0498 0.0465 0.03

QC5 (MVAR) 5.000 0.0169 0.0500 0.049353 0.0486 0.0348 0.02

QC6 (MVAR) 5.000 1.1 0.0500 0.049498 0.0490 0.0500 0.03

QC7 (MVAR) 5.000 1.0993 0.0500 0.049404 0.0496 0.0488 0.04

QC8 (MVAR) 5.000 1.1 0.0500 0.048298 0.0490 0.0500 0.05

QC9 (MVAR) 5.000 0.90648 0.0500 0.048054 0.0490 0.0500 0.05

Cost ($/h) 800.377 854.418 967.4718 917.3597 856.90 801.16 844.473

Real PL (MW) 8.438 10.4372 3.4217 4.95 5.40 - 8.052

Reactive PL (MVAR) 5.222 - - - - - -

VD 2.126 0.8479 - - - 0.9607 -

LK 0.113 0.0927 0.1244 0.09803 0.1246 0.1246 0.1133

https://doi.org/10.1371/journal.pone.0256050.t006
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demand of this system are 4242 MW and 1439 MVAR, respectively. The quadratic fuel cost of

each generating unit was considered to be optimize as the single-objective function to demon-

strate the effectiveness of proposed method. in this case. The mathematical formulation of this

e objective function is discussed in section 2. The proposed method was employed to analyze

all the controlling parameters (i.e., real power generation dispatch) of the IEEE 118-bus test

system to meet the required load demand by satisfying the power system constraints of equal-

ity and inequality. The obtained optimal settings of controlling variables that optimize the fuel

cost (FC) of the system which is illustrated in Table 7. To generate the least cost power by satis-

fying all the lower and upper bound restrictions, the generators are initialized randomly in the

search region for different iterations. Afterwards, the main optimizer MPA goes through sev-

eral stages to meet the power demand by enforcing the lower and upper boundaries restriction

Fig 8. Convergence property of the proposed MPA for case 5.

https://doi.org/10.1371/journal.pone.0256050.g008

Table 7. Controlling variables of IEEE 118-bus system.

Parameters Value Parameters Value Parameters Value Parameters Value Parameters Value

PG1 25.82641 PG65 4.68592 VG1 1.03644 VG65 1.05635 T8 0.98167

PG4 0.82954 PG66 0 VG4 1.05897 VG66 1.07416 T32 1.0042

PG6 0 PG69 0 VG6 1.05142 VG69 1.08738 T36 0.98786

PG8 0.82235 PG70 16.74587 VG8 1.04061 VG70 1.06097 T51 0.97243

PG10 396.37794 PG72 21.29686 VG10 1.05135 VG72 1.05453 T93 0.99825

PG12 85.63114 PG73 0.38982 VG12 1.04938 VG73 1.06814 T95 0.98374

PG15 18.0197 PG74 425.347 VG15 1.04513 VG74 1.05721 T102 1.03342

PG18 12.1527 PG76 0.2663 VG18 1.04572 VG76 1.04863 T107 0.9885

PG19 20.64721 PG77 4.1874 VG19 1.04579 VG77 1.06263 T127 0.98748

PG24 0 PG80 498.3164 VG24 1.05831 VG80 1.07537 QC5 22.1875

PG25 192.3364 PG85 0 VG25 1.07192 VG85 1.05852 QC34 15.642

PG26 274.8895 PG87 0 VG26 1.08589 VG87 1.08615 QC37 4.2751

PG27 18.35485 PG89 0.4872 VG27 1.05236 VG89 1.07826 QC44 22.3526

(Continued)
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of each controlling parameter. In the exploration and exploitation stage, the distinctive levy

and Brownian movements demonstrated the best global optimum solution in the search space.

After the exploitation process, the MPA shows the global optima value of at 129422.56$/h for

fuel cost and active power loss 74.64 MW, respectively. Additionally, the obtained fuel cost

using the proposed technique with its convergence characteristics is portrayed in Fig 9.

Table 7. (Continued)

Parameters Value Parameters Value Parameters Value Parameters Value Parameters Value

PG31 7.17113 PG90 0.3367 VG31 1.04138 VG90 1.06861 QC45 15.2674

PG32 26.24774 PG91 225.6524 VG32 1.045313 VG91 1.07467 QC46 2.3982

PG34 12.85337 PG92 38.4756 VG34 1.06075 VG92 1.07541 QC48 7.826

PG36 7.1522 PG99 0 VG36 1.06205 VG99 1.0673 QC74 11.6733

PG40 33.82485 PG100 7.4375 VG40 1.07354 VG100 1.07719 QC79 24.1432

PG42 31.39974 PG103 34.8527 VG42 1.05268 VG103 1.06346 QC82 5.3876

PG46 18.0887 PG104 6.2875 VG46 1.05152 VG104 1.05618 QC83 7.9287

PG49 193.61117 PG105 147.94211 VG49 1.06358 VG105 1.06313 QC105 14.6295

PG54 49.00784 PG107 0 VG54 1.05604 VG107 1.6288 QC107 6.2836

PG55 31.22416 PG110 347.8255 VG55 1.05829 VG110 1.06429 QC110 22.5176

PG56 55.53385 PG111 35.3524 VG56 1.04872 VG111 1.05344 Fuel Cost ($/h) 129422.56

PG59 149.28334 PG112 30.6253 VG59 1.06105 VG112 1.0611 Active Power Loss (MW) 77.64119

PG61 349.00741 PG113 0 VG61 1.07251 VG113 1.0521

PG62 462.83747 PG116 0 VG62 1.06084 VG116 1.07613

https://doi.org/10.1371/journal.pone.0256050.t007

Fig 9. IEEE 118-bus convergence curve.

https://doi.org/10.1371/journal.pone.0256050.g009
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5. Conclusion

In this work, article, a nature-inspired metaheuristic Marine predator-based optimization

technique has been employed to solve several types of single objective OPF problems of fuel

cost, real and reactive power loss, voltage deviation and voltage stability enhancement index

by satisfying both the equality and inequality constraints of power system network. The effec-

tiveness of the methods is tested on a standard IEEE 30-bus benchmark system and the con-

vergence characteristic exhibits the proposed optimization techniques outperforms to optimal

solution. The results obtained for various cases of single-objective function is compared with

GA, PSO, BBO, WEA, DSA, and MODE. It is seen that the proposed MPA of fuel cost, active

power loss, reactive power loss, voltage deviation, and voltage stability enhancement index was

obtained to achieve the global optima of for each individual objective. This is attained through

the unique foraging strategy of marine predators with Levy and Brownian movements attrib-

uted to getting the competitive optimized results for the formulated OPF problems. The results

obtained demonstrated that the proposed method recorded the global minima comparing

with other recently developed methods reported in the literature. In particular, the proposed

MPA technique showed promising results of 799.0725 $/hr (case-1), 2.851 MW (case-2),

-25.204 MVar (case-3), 0.099 (case-4) and 0.113 (case-5) in terms of solution quality for several

objectives considered and this claim is also exhibited in convergence characteristics of for dif-

ferent OPF problems studied. Further, to demonstrate the robustness of the proffered tech-

nique, an IEEE 118-bus system is tested for the case of fuel cost minimization and the results

obtained depicts the optimal fuel cost of 129422.56 $/hr. However, the study of placement of

distributed generations and contingency ranking is the future scope of the proposed research

work.
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