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Abstract

The northern shrimp (Pandalus borealis Krøyer) population in the Gulf of Maine collapsed

during an extreme heatwave that occurred across the Northwest Atlantic Ocean in 2012.

Northern shrimp is a boreal species, and reaches its southern limit in the Gulf of Maine.

Here we investigate proximate causes for the population collapse using data from fishery-

independent surveys, environmental monitoring, and the commercial fishery. We first exam-

ined spatial data to confirm that the decline in population estimates was not due to a major

displacement of the population, and then tested hypotheses related to fishing mortality and

shifts in predation pressure. Fishing mortality may have contributed but could not explain

the magnitude of the decline or the disappearance of pre-exploitable size individuals. Stom-

ach contents analysis and biomass trends revealed no new fish predators of shrimp. How-

ever, longfin squid (Doryteuthis pealeii Lesueur) was unique among all species in showing

time-series biomass peaks during spring, summer and fall of 2012, and spatial overlap with

northern shrimp was unusually high in 2012. Longfin squid is a voracious and opportunistic

predator that consumes crustaceans as well as fish. We hypothesize that the warmer tem-

peratures of 2012 not only led to expansion of longfin squid distribution in Gulf of Maine, but

had differential effects on migration phenology that further increased spatial overlap with

northern shrimp. The weight of our evidence suggests that longfin squid predation was likely

a significant factor in the collapse of northern shrimp in the Gulf of Maine.

Introduction

Climate change has led to well-documented changes in marine, terrestrial and freshwater eco-

logical communities stemming from a diversity of processes, including productivity changes,

shifts in species distributions, and changes in timing of seasonal events (phenology) [1–8].

These in turn have the potential to alter competitive and predator-prey interactions, with con-

sequences for species dominance, biodiversity and population persistence. In addition,

changes in the physical environment (temperature, oxygen saturation, acidity) exert direct
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physiological impacts that can compromise growth, reproduction and survival, even if well

below lethal levels [9, 10].

Climate change has been associated with an increasing frequency of extreme climatic events

[11–13], a well-documented example of which was a marine heatwave experienced in the Gulf

of Maine (GOM) and more broadly in the Northwest Atlantic Ocean during 2012 [13–17].

This event was the most intense in the GOM in over 30 years, and was superimposed upon a

longer-term warming trend that was more rapid than warming in> 99% of the world’s oceans

[18]. Mean sea surface temperature (SST) in the GOM for 2012 was 2˚C above the 1982–2011

average, and was above average in all months of the year [14]. Bottom temperatures were also

high, especially in summer and fall [15]. In addition, a phenology shift in the establishment of

spring temperature conditions reached a new extreme, occurring more than 2 weeks earlier

than in the previous 3 decades [19]. The warm conditions continued into spring of 2013, when

the transition to spring also occurred earlier than usual [19]. The 2012 marine heatwave had

severe socio-economic repercussions for the highly valued lobster fishery in the GOM through

temperature effects on migration and molt timing [13, 14]. In the same year, the population of

northern shrimp (Pandalus borealis Krøyer) in the GOM suddenly collapsed [20]. This species

is the target of a locally important fishery and is another species emblematic of coastal Maine.

In this paper, we use foundational knowledge of the biology and ecology of northern shrimp

and extensive monitoring data available for the GOM to investigate possible mechanisms

involved in the population collapse.

Northern shrimp is a boreal species that reaches the southern limit of its distribution in the

GOM, where its temperature sensitivity has been well documented [21–24]. Temperature has

been linked to northern shrimp growth rates [25, 26], timing of the larval hatch [27], early life

survival [28], and recruitment [24]. In the GOM, the species occurs primarily in the relatively

cool western portion of the Gulf [29]. Post-larval stages are benthic and exhibit nocturnal verti-

cal migrations, with the exception of brooding females [23, 29, 30].

Northern shrimp are sequential hermaphrodites. In the GOM, they generally reproduce as

males at age 2, transform to females at age 3, and reproduce as females at ages 4 and 5 [23, 31]

(age assignments based on length and life history stage [32]). During late fall, the brooding

females migrate from offshore habitat (~100–300 m [29]) to near-shore coastal areas (<~100

m [29]) where they hatch their brood during late winter and early spring [23, 27, 29]. Juveniles

remain in coastal waters for about a year before migrating offshore to join the mature stock

[30, 31]. The fishery has been constrained to winter and early spring since 1999 [33], and tar-

gets the brooding females in their nearshore habitat. Although the fishery targets egg-bearing

females, which are the largest individuals (generally� 22 mm carapace length (CL)), the fish-

ery avoids exploitation of males (future brood stock) that remain offshore during winter. The

fishery was closed in late 2013 and has remained closed since [34].

Here we document the collapse of the GOM northern shrimp population during the 2012

marine heatwave and investigate proximate causes for the collapse. Specifically, we consider

potential shifts in distribution of northern shrimp, explore changes in predation including

appearance of novel predators, sudden changes in predator biomass, predation intensity, and/

or spatial overlap with northern shrimp, and evaluate the possible role of fishing mortality.

Methods

Data sources

Our primary data sources were bottom trawl surveys conducted in offshore waters in spring,

summer, and fall, and inshore waters in spring (Table 1, Fig 1). Spring and fall offshore surveys

were conducted by the Northeast Fisheries Science Center (NEFSC) and summer offshore
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Table 1. Meta-data for fishery-independent surveys used.

Survey Region Depth (m) Gear Tow duration and speed Average number of stations/year

NEFSC spring/fall1, 2 Offshore ~56–290 <2009: 36 Yankee net, 12.5 mm mesh codend

liner

<2009: 30 min, 3.8 knots 42 (85 entire GOM)

�2009: 20 min, 3 knots

�2009: 4-seam bottom trawl, 25.4 mm codend

ME-NH spring3 Inshore ~38–172 Modified shrimp trawl, 25.4 mm mesh codend 20 min at 2.5 knots 67 (109 for spatial indicators)

ASMFC & NEFSC

summer4
Offshore ~50–250 Modified shrimp trawl, 25.4 mm mesh codend 15 min. at 2 knots 50

Depth and station statistics are relevant to shrimp habitat area only, except where noted.
1[35]
2 [36]
3[37]
4 [38].

https://doi.org/10.1371/journal.pone.0253914.t001

Fig 1. Map of the study area in the Gulf of Maine, USA. Inset shows location of Gulf of Maine in the northwest

Atlantic Ocean. Credit: Alicia Miller, NEFSC. ME = Maine, NH = New Hampshire, MA = Massachusetts.

https://doi.org/10.1371/journal.pone.0253914.g001
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surveys jointly by the Atlantic States Marine Fisheries Commission (ASMFC) and NEFSC.

The summer offshore survey is a dedicated northern shrimp survey and provides the most

complete and detailed data; the other surveys are multi-species surveys which capture a broad

array of species. Spring inshore surveys were carried out by the states of Maine (ME) and New

Hampshire (NH) and occurred about 3 weeks later than the offshore spring surveys (Table 1).

All surveys used stratified random sampling designs (strata defined by depth, latitude and lon-

gitude). Biomass and abundance indices were estimated as stratified means, expressed in rela-

tive terms because catchability coefficients for many species are either unknown or poorly

known. The first year for most analyses was 2003, when the complete set of time series began,

and the terminal year was 2017, representing one northern shrimp life cycle (5 years) after the

2012 collapse. The offshore survey regions were the same as those used in annual northern

shrimp population assessments (depths 50–290 m) [20], except for analysis of potential shifts

to areas outside historical northern shrimp habitat, detailed below. The inshore survey data

included depths from 38 m to 172 m except for the spatial overlap analysis (9–172 m). Further

details of survey operations are given in Table 1. Sampling conducted as part of this study fol-

lowed US Government Principles for the care and use of vertebrates (NMFS Animal Care and

Use Policy). NMFS fisheries research activities are not subject to IACUC reviews at this time.

Methods for sampling northern shrimp catches were as follows. At each station, the mixed-

species catch of caridean shrimp was weighed, and a 2 kg subsample (1 kg in inshore surveys)

collected to estimate species composition and sex, life history stage and carapace length com-

position for northern shrimp. When less than 2 kg (1 kg, inshore survey) of shrimp were

caught at a station, the entire catch was processed. Samples were frozen and processed later

onshore for the spring inshore and spring and fall offshore surveys, and were processed on

board during the summer offshore surveys. Each sample comprised approximately 130

(inshore surveys) to 250 shrimp (offshore surveys) on average.

NEFSC offshore survey methods underwent a major change in 2009 with a new survey ves-

sel, a modified trawl net design, shorter tow duration, and slower trawling speed (Table 1)

[39]. Conversion coefficients accounting for the changes were experimentally estimated for

many species, and we applied these when calculating survey indices for predators. Conversion

coefficients were not available for northern shrimp or some infrequently caught species [40].

For species with no conversion coefficients, NEFSC surveys were treated as two time series,

split at 2009. The summer offshore and spring inshore surveys include some fixed (non-ran-

dom) stations. These were used in analysis of spatial patterns but not in estimating survey bio-

mass or abundance indices.

Shrimp were not identified to species on spring offshore surveys during 2006–2012, there-

fore we estimated northern shrimp catch for those years from aggregate shrimp catch (all cari-

dean species) using

yi ¼ 0:0133xi
2 þ 0:4849xi þ 0:0249 r2 ¼ 0:83 ð1Þ

Where y = northern shrimp catch, i = tow, and x = total caridean shrimp catch. The rela-

tionship was estimated from spring offshore survey data in years when all shrimp were identi-

fied (1991–2005, 2013–2016), during which time northern shrimp was 62.3% on average of the

total caridean shrimp catch by weight.

All temperature data were collected using conductivity/temperature/depth casts at each sur-

vey station. Trends in offshore spring and fall temperatures (bottom temperature, BT and sea

surface temperature, SST) were characterized using anomalies that corrected for variation in

timing of surveys. The anomalies were calculated relative to a set of reference annual BT and

SST cycles that were estimated using measurements taken at approximately 20 fixed sampling
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locations in the western GOM 3–6 times per year during 1978–1987 [41]. The anomaly at each

survey station was the difference between the observed value and the reference value for that

location and date, and the overall anomaly estimate for each survey was the stratified mean of

the station anomalies [41]. Comparable anomaly data were not available for the spring inshore

and summer offshore surveys, therefore temperature for those series was expressed as stratified

means.

Timing of the spring thermal transition was estimated using NOAA’s Optimum Interpola-

tion ¼ Degree Daily Sea Surface Temperature (OISST, [19]), calculated for the western GOM

(42-44o N latitude, 70.5–68˚ W longitude, K. Friedland, NEFSC, personal communication).

The transition to spring was defined as the first day on which the daily temperature estimate

exceeded the average annual temperature [19] during 1982–2017. Duration of summer was

taken as the difference between timing of spring and fall onsets (fall onset estimated as the first

day on which daily temperature fell below average annual temperature [19]).

Analysis

Shifts in distribution. To test the hypothesis that the decline of northern shrimp survey

indices was due to emigration of northern shrimp to previously unoccupied or less-occupied

habitats in the GOM, we examined catch data from NEFSC offshore fall surveys. The fall sur-

vey was used because it covers most of the offshore waters of the GOM (Fig 1), and all life his-

tory stages (>~age 1) of northern shrimp are distributed offshore in the fall. We calculated

two metrics of spatial distribution, the center of gravity (CG) and its inertia or variance, and

used these to test for changes in distribution over time.

To estimate CG, distances between points (trawl stations) were calculated in a Euclidean

reference system [42]. This was done by setting the minimum longitude and latitude of the

strata for each survey as (0, 0) and converting all coordinates to km. The cosine of the mid-

point latitude for the respective survey was used to convert longitude. This process is also

known as geographical referencing [43].

The CG is the bivariate mean location of the population [42, 44, 45], hereafter referred to as

the X- and Y- components of the CG [46, 47]:

CG ¼

Xn

i¼1

xiwizi

Xn

i¼1

wizi

ð2Þ

where xi (i = 1,. . ., n) is location (geographically referenced longitude or latitude), wi is the

area of influence, and zi is the catch biomass (kg). In the case of irregular sampling, spatial

indicators are weighted with an area of influence [44, 45]. Given the stratified random survey

designs (as opposed to a grid), a Dirichlet tessellation, also known as Voronoï polygons [48],

was used as a non-subjective method to calculate areas of influence for each survey, with areas

along the edge of the study area clipped to the boundary of the respective strata.

The inertia (variance) describes how dispersed the population is around its CG [42, 44, 45]:

I ¼

Xn

i¼1

ðxi � CGÞ2wizi

Xn

i¼1

wizi

ð3Þ
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I was decomposed into two orthogonal axes describing the maximum and minimum com-

ponents of the inertia. The square root of I for a given axis gives the standard deviation of the

respective axis.

Time series analysis of northern shrimp spatial distribution used the same methods as in

[46] and [47]. The relationship between each spatial indicator and year was modeled with a lin-

ear regression (i.e., a generalized linear model with Gaussian distribution and identity link

function). Significant fits were tested for serial correlation; however, no corrections with a first

order autoregressive model were necessary.

Changes in predation. The potential role of predation was evaluated by investigating

whether new predators were present in 2012 and whether predation by known predators

had changed in intensity due to increased predator biomass, increased consumption of

northern shrimp, and/or increased spatial overlap between northern shrimp and

predators.

To identify potential new predators and evaluate whether known predators had anoma-

lously high biomass during 2012, we estimated biomass indices for all species caught in the

four seasonal surveys. We took this broad approach to looking for potential predators because

shifts in species distributions have been documented on the Northeast US continental shelf in

recent years [49–52], suggesting that novel predators could have been present. The analysis

excluded bivalve mollusks, American lobsters Homarus americanus Milne Edwards, and rock

crabs Cancer irroratus Say in the offshore survey, and bivalve mollusks, crabs, sponges, echino-

derms, and barnacles in the inshore survey, as well as species caught in fewer than 10 tows dur-

ing the 15-year time series; all other species (n = 59–99 species) were included. We

standardized the biomass indices to range between 0 and 1

Bis ¼
bis � bmins

bmaxs
� bmins

ð4Þ

where B is the standardized biomass index, i is year, s is species, b is the observed biomass

index, min is time series minimum biomass index and max is time series maximum biomass

index. We selected species for further consideration if they had a standardized biomass index

above 0.85 in 2012. Analysis of spring offshore and fall offshore surveys initially included only

2009–2017 because calibration coefficients were not available for all species caught; however,

we found that all species with Bis> 0.85 had calibration coefficients, so we subsequently used

the entire time series (2003–2017). We excluded 10 species with catch rates of� 2 individuals

per survey. We also queried stomach contents data collected from finfish during offshore

spring and fall surveys (33 species on average) to identify any new fish species consuming Pan-

dalid shrimp in 2012.

To assess potential changes in intensity of predation on northern shrimp, we examined

occurrence of Pandalid shrimp in stomachs of 20 northern shrimp predator species [52] using

two metrics: percent of shrimp in the diet (by weight, PW) and percent frequency of occur-

rence of shrimp in predator stomachs (PFO), excluding species with sample sizes less than 40

stomachs (average) per season. We defined outliers in the PW and PFO time series as observa-

tions greater than the mean + 2 standard deviations (SD). The food habits data were collected

during NEFSC spring and fall offshore surveys during 2003–2015. Stomach contents were

identified from a length-stratified subsample of individuals at each survey station up to a maxi-

mum number per species, stratum and station. Data collected included prey species identifica-

tion, volume or weight of each prey species, prey number, and total stomach volume or

weight. To identify new predators, we searched for all species consuming members of the Pan-

dalid family, which could include 4 shrimp species, the biomass of which is dominated by P.
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borealis (Eq 1; [53]). Further detail on food habits sampling and statistical estimators is avail-

able in [54]. Diet data were not collected during inshore surveys or summer offshore surveys,

and were not collected for invertebrates on any surveys.

Based on results of our predation analyses and existing literature [53, 54], we focused on

eight species for investigation of spatial overlap between predators and northern shrimp (spiny

dogfish Squalus acanthias Linnaeus, Acadian redfish Sebastes fasciatus Storer, silver hake Mer-
luccius bilinearis Mitchill, Atlantic cod Gadus morhua Linnaeus, white hake Urophycis tenuis
Mitchill, Atlantic mackerel Scomber scombrus Linnaeus, windowpane Scophthalmus aquosus
Mitchill, and longfin squid Doryteuthis pealeii Lesueur). Two metrics were used to evaluate

changes in spatial overlap. The first was the proportion of tows that caught both northern

shrimp and a given predator, reflecting relatively fine-scale (local) distribution patterns. The

second metric was a global index of collocation (GIC), which describes the degree of overlap

in the distributions of two populations by comparing the distance between their CGs (ΔCG)

and the mean distance between individuals taken at random and independently from each

population [44, 45]:

GIC ¼ 1 �
DCG2

DCG2 þ I1 þ I2

ð5Þ

where I is from Eq 3. GIC ranges between 0, in the extreme case where each population is con-

centrated on a single, but different location, and 1, where the two CGs are identical. GIC

values> 0.8 are considered highly collocated, while values between 0.6 and 0.8 are considered

to have low collocation [42].

The spatial overlap metrics were estimated for 2003–2017 for each survey. For the offshore

surveys, the strata sets were the same as those used in the annual northern shrimp assessments

(Fig 1). For the inshore survey, additional strata sets that extended further inshore (~9-37m)

and offshore (101–172 m) were included. The crenulated Maine coastline caused incomplete

boundaries if the shallower stratum was not included.

Overfishing. The potential role of fishing pressure was evaluated using results of a recent

benchmark assessment that validated 3 population models developed for GOM northern

shrimp [33], as well as a simple model-free analysis developed here. We calculated biomass-

weighted relative F as:

Freli
¼ Li=SSBi� 1 ð6Þ

where i = year, L = landings (kt), SSB = spawning biomass index from the summer offshore

survey [33]. We used SSB indices because these would reflect the exploitable stock available to

the fishery in the subsequent year (~5–6 months after the survey). Landings of northern

shrimp are considered equivalent to catch because discarding rates of northern shrimp are

very low [33, 55]. The full assessment time series (1985–2017) was used for the Frel analysis.

Results

Northern shrimp population trends

Biomass indices for northern shrimp declined by over 50% (averaged over all surveys) in 2012

(Fig 2, data in S1 Fig), and abundance indices were very low for all sizes and life history stages

(age 1+, Fig 3, data in S2 Fig), including small individuals (primarily males) not exploited by

the fishery. Most of the decline occurred between the time of the spring offshore survey (mid-

point day of year (DOY) 116, 29% drop in biomass index from 2011) and the summer offshore

survey (midpoint DOY 217, 71% drop from 2011). In spring of 2013, the offshore biomass
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index was again lower (92% lower than in spring 2012) and all other seasonal surveys were

similarly depressed compared to 2012 (spring inshore -77%, summer offshore -58%, fall off-

shore -56%), suggesting that a further decline had occurred between fall 2012 and spring 2013

surveys.

Fig 2. Relative biomass and recruitment indices for northern shrimp from surveys in shrimp habitat areas. (A.)

2003–2008, (B.) 2009–2017, (C.) recruitment indices (number per tow of presumed age 1 northern shrimp in summer

offshore surveys) [33]. Survey methods for offshore spring and fall surveys changed in 2009. Average coefficients of

variation (CV) for the biomass indices were spring inshore 8%, summer offshore 7%, fall offshore 16% (2003–2008),

17% (2009–2017); CV for spring offshore survey was not calculated. Spr = spring.

https://doi.org/10.1371/journal.pone.0253914.g002
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Fig 3. Stratified mean number per tow at length of northern shrimp by life history stage. (A.) spring inshore surveys, (B.) summer

offshore surveys. Note change in summer offshore y-axis scale in 2006. Female 1 is first year breeding female, female 2 is second year

breeding female, transitional is in process of changing from male to female. Life history stage data were not collected during spring inshore

surveys until 2005.

https://doi.org/10.1371/journal.pone.0253914.g003
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Temperature trends

Offshore spring and fall bottom temperature anomalies (BTA) increased from a low in 2004 to

highs in 2011 (spring) and 2012 (spring and fall, Fig 4A., data in S3 Fig). The sea surface tem-

perature anomaly (SSTA) was also relatively high in spring of 2013. Thereafter, temperature

anomalies fluctuated at a relatively high level without apparent trend. Spring inshore and sum-

mer offshore BT followed a similar trend, with lows in 2004 and highs in 2012 (Fig 4B., data in

S3 Fig). Other years with relatively warm BTA and BT in all seasons were 2006 and 2016. The

timing of surveys is shown in Fig 4D. (data in S3 Fig).

The onset of spring conditions in the northern shrimp habitat area occurred steadily earlier

between 2003 and 2013, shifting at a rate of -2.5 days per year (linear regression, a = 162.7, b =

-2.48, r2 = 0.86, Fig 4C.). The earliest spring onsets occurred in 2012 and 2013, when spring

arrived more than 3 weeks earlier than in 2003 (May 15, 2012 and May 13, 2013 vs. June 9,

2003). The duration of summer increased by 4.7 days per year during the same time period

(linear regression, a = 147.9, b = 4.70, r2 = 0.87, Fig 4), with the longest summer (in 2012) eight

weeks longer than in the cool year of 2004.

Shifts in distribution

There was no evidence that northern shrimp distribution had shifted to areas of the GOM out-

side the historical habitat area. Neither latitude (YCG) nor longitude (XCG) of northern

shrimp distribution within the entire GOM showed a significant trend (linear regression,

Fig 4. Bottom and surface water temperature and seasonal phenology for the study area. (A.) Bottom and surface temperature anomalies (BTA and

SSTA, respectively) for NEFSC spring and fall surveys. Anomalies correct for variation in timing of surveys; (B.) stratified mean bottom temperature for

spring, summer and fall surveys; (C.) estimated yearday of spring onset and duration of summer in the western Gulf of Maine; (D.) average survey date

(yearday).

https://doi.org/10.1371/journal.pone.0253914.g004
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P>0.05, Fig 5, data in S4 Fig). The 2012 latitude estimate was the farthest north of the time

series but was only 30 km from the time series mean and was well within historically occupied

areas (Fig 6, data in S5 Fig). Inertia declined significantly over time (β = -159.45, t(13) = -2.70,

p = 0.018, Fig 5), indicating an overall contraction of the population.

Changes in predation

An overview of the results of the predation analyses is given in S1 Appendix.

Predator biomass. In our analysis of all species caught in the four surveys (S2 Appendix),

11 species exhibited a time-series biomass peak (standardized biomass index>0.85) in one or

Fig 5. Results of spatial analysis showing no trend in location but significant contraction of occupied area.

Changes over time in (A.) longitude (back-transformed from XCG), (B.) latitude (back-transformed from YCG) and

(C.) inertia (variance of center of gravity) for northern shrimp in NEFSC fall surveys during 2003–2017. Shaded bar

highlights 2012, when the shrimp decline became apparent.

https://doi.org/10.1371/journal.pone.0253914.g005

Fig 6. Number of northern shrimp per tow in fall surveys before and after the population collapse. (A.) 2006–2011; (B.) 2012–2017. Black

triangle marks center of gravity in 2012.

https://doi.org/10.1371/journal.pone.0253914.g006
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more seasons during 2012 (Table 2). Five of these species were considered unimportant due to

their diet (Atlantic hagfish, Atlantic wolffish, American shad, Gulf Stream flounder, krill) and/

or habitat use (butterfish) (Table 2). Of the remaining 5 species, 3 were previously documented

predators of northern shrimp in the GOM (Atlantic halibut, silver hake, windowpane; [53,

56]) and the remaining two were Atlantic mackerel and longfin squid. Atlantic mackerel bio-

mass peaked in fall of 2012. Longfin squid was unique in showing biomass peaks in all three

seasons in 2012 (in spring inshore, summer offshore and fall offshore surveys), and was also

the only species showing a peak in spring of 2013 (offshore). Standardized biomass indices for

20 previously identified predators [53] plus Atlantic mackerel and longfin squid are shown in

Fig 7 (data in S6 Fig). The biomass peak offshore in summer 2012 for windowpane was due to

a catch of 1 individual, and therefore was dropped from further consideration.

Predator diets. No new predators of Pandalid shrimp were identified in 2012 by querying

the food habits database, which includes only fish species. Pandalid shrimp did not occur

more frequently in stomach contents (PFO) of the 11 fish predators with sufficient sample

sizes during NEFSC spring or fall offshore surveys in 2012 or in spring of 2013 (PFO, Fig 8,

data in S7 Fig). The only species that was an outlier in terms of percent of stomach content by

weight (PW) in 2012 was Atlantic cod in spring (7.4% PW, SD = 3.9, n = 29 tows, 77 stomachs;

time series PW mean = 1.6%, average PW SD = 2.3).

Atlantic mackerel was initially excluded from diet analysis due to low sample sizes; how-

ever, we examined the stomach content data because of its potential importance indicated by

biomass trends. In the 24 stomachs (15 tows) sampled in spring 2012, only one included

shrimp-like crustaceans (this broad category could include krill, Crangon spp, and other

shrimp-like species as well as Pandalids). In fall 2012, neither shrimp-like crustaceans nor Pan-

dalids were found in any of the 26 stomachs sampled (14 tows).

Spatial overlap. The proportion of tows catching both northern shrimp and a given pred-

ator fluctuated over time, with a drop for some species after the 2012 northern shrimp decline

(Fig 9, data in S8 Fig). Silver hake and white hake were caught with northern shrimp in a high

proportion of tows, as were Acadian redfish and spiny dogfish in summer offshore surveys.

The only species that showed clear increases in tow-by-tow co-occurrence in 2012 was longfin

squid (all four seasonal surveys). Co-occurrence with squid remained relatively high in spring

of 2013, both inshore and offshore.

Table 2. Species with peaks in relative biomass indices in 2012.

Species Spring offshore Spring inshore Summer offshore Fall offshore

Atlantic halibut Hippoglossus Linnaeus x

Atlantic mackerel Scomber scombrus Linnaeus x

Longfin squid Doryteuthis pealeii Lesueur x x x

Silver hake Merluccius bilinearis Mitchill x

Windowpane Scophthalmus aquosus Mitchill x

Atlantic hagfish Myxine glutinosa Linnaeus x

Atlantic wolffish Anarhichas lupus Linnaeus x

Butterfish Peprilus triacanthus Peck x x

American shad Alosa sapidissima Wilson x

Gulf Stream flounder Citharichthys arctifrons Goode x

Krill (Euphausiacea) x

Number of species examined 85 59 75 99

Gray shaded cells indicate species that are considered unlikely to have had an impact due to diet and/or habitat use.

https://doi.org/10.1371/journal.pone.0253914.t002
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Fig 7. Standardized relative biomass indices (mean kg/tow) for northern shrimp predators in the western Gulf of Maine. Indices

from offshore spring and fall surveys were calibrated for changes in survey methods beginning in 2009. Shaded bar highlights 2012, when

the shrimp decline became apparent. Dashed line indicates standardized biomass = 0.85. Species were selected for further consideration if

they had a standardized biomass index above 0.85 in 2012.

https://doi.org/10.1371/journal.pone.0253914.g007
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The global index of collocation (GIC) showed similar patterns of overlap (Fig 10, data in S9

Fig), with high collocation of northern shrimp with silver hake and white hake in most seasons

and years, and with other species in some seasons (e.g. spiny dogfish, white hake and Atlantic

cod in summer). In 2012, GIC was high for Acadian redfish in the spring inshore survey, for

spiny dogfish, silver hake, Atlantic cod, white hake and longfin squid in the summer offshore

survey, and for Atlantic mackerel and longfin squid in the fall offshore survey. The overlap

with longfin squid offshore in summer 2012 was highly unusual. Prior to 2012, the longfin

squid collocation index was 0 for the offshore summer survey, but was 0.98 for 2012.

Overfishing. Relative F was high in 2011, but not in 2012 (Fig 11, data in S10 Fig). Frel val-

ues were highest during 1995–1998, with 1995 Frel more than double the 2011 estimate and

four times the 2012 estimate.

Fig 8. Percent frequency of occurrence and percent by weight of Pandalid shrimp in fish predator stomachs. Food

habits data were collected in offshore spring and fall surveys. Shaded bar highlights 2012, when the shrimp decline

became apparent.

https://doi.org/10.1371/journal.pone.0253914.g008
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Discussion

During 2012, temperature in northern shrimp habitat areas in the GOM reached record highs,

spring conditions were established unusually early, and summer persisted longer than usual.

Survey indices for northern shrimp plummeted, affecting both exploitable-size shrimp and

shrimp too small to be vulnerable to the fishery. Indices were further depressed the following

spring, and the ASMFC declared the northern shrimp population in the GOM collapsed [20].

Despite a fishing moratorium beginning in December 2013, the population had not recovered

by 2019 [34].

The 2012 marine heatwave is an obvious culprit in the northern shrimp collapse, given the

boreal distribution of this species and the well-documented effects of temperature on its biol-

ogy [22–25, 27, 28]. However, the potential mechanisms involved are not obvious. Acute phys-

iological effects appear unlikely as a primary cause. Although bottom temperatures reached

record highs, they remained 2–3˚C cooler than recorded for some breeding populations (11–

12˚C, [57, 58]), and some evidence suggests that lethal temperature may be as high as 16.5˚C

[23, 57]). Several northern shrimp populations persist in thermal environments that are

warmer than the GOM despite being located further north (e.g. the Skagerrak and Norwegian

Deep, Norway and the North Sea [23, 58–60]). More subtle effects of warmer water in the

GOM (e.g. declines in metabolic performance [9]) would be difficult to observe, and cannot be

fully ruled out. However, in the few studies that have been conducted with juvenile and adult

Fig 9. Local index of collocation (proportion of tows catching both predator and northern shrimp). Shaded bar

highlights 2012, when the shrimp decline became apparent.

https://doi.org/10.1371/journal.pone.0253914.g009
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northern shrimp, temperature effects on growth (positive, [26]) and physiological condition

(negative, [61]) were not observed until treatments were 3–5˚C above what would have been

encountered in the natural environment where these experiments were conducted [62]. These

Fig 10. Global Index of Collocation (GIC) of 8 predators with northern shrimp. Values above the dashed line

(GIC> 0.8) indicate high collocation. Shaded bar highlights 2012, when the shrimp decline became apparent.

https://doi.org/10.1371/journal.pone.0253914.g010

Fig 11. Northern shrimp biomass-weighted relative F, landings (kt), and spawning stock biomass index. Spawning

stock biomass (SSB) index (based on summer offshore surveys) and landings data are from [34].

https://doi.org/10.1371/journal.pone.0253914.g011
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results suggest that sub-lethal temperatures were unlikely to have been an immediate cause of

the 2012 collapse. Direct physiological effects of high temperatures have rarely been identified

as the proximate cause of local extinctions or population declines [1].

The impact of fishing mortality (F) is difficult to quantify, especially in the absence of bio-

logical reference points [33]. A recent benchmark assessment estimated very high fishing mor-

tality in 2011 and 2012 [33, 63], suggesting that fishing mortality may have been a factor in the

population collapse. However F estimates were also very high during 1995–2001, exceeding

the 2011–2012 values in two of the three models evaluated, with no concomitant collapse of

the population. Our calculations similarly indicated high relative F in 2011 (though not in

2012), but Frel was much higher in the mid-1990s than in 2011. These lines of evidence suggest

that high F could have contributed to, but cannot fully explain, the population collapse seen in

2012. Even if overfishing had been occurring, it could not explain the demise of second-year

male northern shrimp because they remain in offshore waters and are not available to the fish-

ery, which is prosecuted inshore.

An alternative explanation for the decline of northern shrimp indices is that the population

did not collapse, but instead moved out of its established habitat into waters outside the sur-

veyed areas. Our analysis of spatial distribution within the GOM did not support this hypothe-

sis. The result is unsurprising because bottom waters in the southwestern portion of the GOM

are colder than in the northeastern part [29, 52, 64]. While we could not determine whether

northern shrimp may have moved entirely out of the GOM (e.g. northeastward to the Scotian

Shelf), such movement would require an extensive counter-current migration for which there

is no evidence. Genetic studies suggest little to no mixing between GOM and Scotian Shelf

northern shrimp stocks [60], despite the potential for downstream drift of Scotian Shelf north-

ern shrimp into eastern GOM. Northern shrimp have not been found in NEFSC annual sur-

veys to the south of GOM (NEFSC unpublished survey data). We conclude that a shift in

distribution cannot explain the decline in northern shrimp abundance indices in the GOM,

and that the survey indices reveal a true population collapse.

A review of climate-linked population declines and local extinctions found that species

interactions were the immediate cause in most studies where mechanisms could be identified

[1]. In the case of GOM northern shrimp, changes in several predator-prey relationships could

have been involved in 2012 and early 2013. Three previously identified predators had a bio-

mass peak in 2012 in one of the four surveys (Atlantic halibut, silver hake, windowpane).

Atlantic halibut has a relatively high average PFO of Pandalid shrimp in its diet (12.5% of

stomachs, [53]) and could have been important inshore in spring of 2012. Silver hake generally

has a close spatial association with northern shrimp and biomass peaked in fall 2012, but PFO

and PW were relatively low (Fig 8). Windowpane has a low average PFO for shrimp (1.4%,

[53]) and low spatial overlap, but had relatively high biomass in the inshore spring survey in

2012. However, the species that emerged most frequently in our indicators was longfin squid,

which had high biomass in 3 of 4 surveys in 2012 and in spring of 2013, and much higher than

usual spatial overlap with northern shrimp (Figs 9 and 10). Longfin squid is a semi-pelagic spe-

cies that can reach mantle lengths of over 40 cm [65, 66], and occupies seasonally-varying

depths ranging from 6 to 400 m. Longfin squid undertake diel vertical migrations, as do north-

ern shrimp, occurring near bottom during the day and higher in the water column at night

[67, 68]. Their rapid individual growth and short life cycle (9–12 months longevity [65, 66])

allows the population to respond quickly to changes in conditions. Food habits data for cepha-

lopods are not routinely collected on NEFSC surveys because their food is thoroughly masti-

cated, making at-sea identification of prey species difficult [69]. However, targeted studies

have shown that crustaceans, including various species of shrimp, can be an important diet

component [67, 70–72]. In a review of longfin squid feeding patterns, Macy [70] concluded
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that the longfin squid is “a highly opportunistic predator, whose diet primarily reflects the

local abundance of potential prey species”. These observations leave little doubt that longfin

squid has the potential to prey on northern shrimp given the opportunity. Unfortunately we

do not have direct observation of longfin squid diets during the collapse period, and laboratory

studies to examine feeding behavior of longfin squid were outside the scope of this study.

Could longfin squid have been a major player in the collapse of the GOM northern shrimp

population? Squid species are frequently identified as keystone species, i.e. those capable of

exerting a strong effect on ecosystems even at relatively low biomass (e.g. [73]). In the Gulf of

California, a major drop in sardine landings was associated with an influx of Humboldt squid

Dosidicus gigas in the previous year [74], and depressed landings of Pacific hake have been

associated with spikes in D. gigas abundance further north in CA [75]. A bioenergetics study of

longfin squid in the Northwest Atlantic concluded that the species was capable of exerting con-

trol over recruitment of the five finfish species that were examined [76]. In the GOM, the his-

torical record provides further evidence for a possible controlling role for longfin squid.

During the warm 1950s, northern shrimp catches dropped to zero despite continued fishing

effort, and a fishery for longfin squid developed ([21, 77], Fig 12). A similar squid fishery

response to the 2012 influx of longfin squid was seen as well [13, 14]. More recently, an

extreme drop in northern shrimp abundance indices, including pre-recruit males, occurred

contemporaneously with an increase in longfin squid biomass indices during fall 2006 through

summer 2007 (Figs 3 and 7). These observations suggest possible trophic control by longfin

squid, and align with observations of squid impacts in other systems.

We hypothesize that the impact of longfin squid could have been exacerbated in 2012 due

to the early onset of spring. Historically longfin squid have not been abundant in GOM

inshore waters until summer. By the time the longfin squid arrive, female northern shrimp

would have migrated back offshore from coastal waters after hatching their brood, thus over-

lapping very little with longfin squid (Fig 13). With the earlier arrival of spring in 2012, the

influx of longfin squid apparently occurred earlier (confidential monthly landings data, ME

DMR and NEFSC), a response that has also been documented in a related squid species [78].

The northern shrimp hatch period began early in 2012, but its duration was unusually long,

ending only 4 days earlier than average [27]. Thus female northern shrimp were likely still

available inshore when the squid arrived, resulting in higher than usual spatial overlap in

Fig 12. Maine longfin squid and northern shrimp landings and annual average sea surface temperature.

Temperature recorded daily at Boothbay Harbor, Maine, 1939–1967. Squid landing units are mt, shrimp landings are

in log(mt+1). Data from [21, 77].

https://doi.org/10.1371/journal.pone.0253914.g012
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coastal areas (Figs 9, 10 and 13). This suggests that mismatched shifts in migration phenology

may have increased the opportunity for longfin squid to prey on female northern shrimp in

the inshore habitat, in addition to their expanded presence in offshore waters in 2012 and

early 2013.

Northern shrimp in the GOM may have been caught in a squeeze between bottom up and

top down processes in recent years. The GOM has been warming rapidly [14, 18], and the

northern shrimp population was showing signs of stress before 2012 with low survival to age 1

of the 2010 and 2011 year classes [28, 33], which were hatched in relatively warm years (Fig 4).

Previous studies of GOM northern shrimp have linked warmer temperatures to a depressed

stock-recruitment relationship [24], and to reduced early life survival [28]. These may reflect

bottom up pressures such as metabolic tradeoffs or trophic mismatch [28], or top-down pres-

sure on early life stages, possibly in the form of egg parasitism [79] or increased predation. In

contrast, the 2012 collapse was sudden as might be expected from an abrupt shift in predation

pressure, a top-down effect. A shift in the balance between bottom up and top down pressures

may explain why the population quickly recovered from a low spawning biomass in 2001

while it did not in 2012. The years 2001 and 2002 were relatively warm, but were followed by

several unusually cold years and the highest recruitment indices on record [33]. The 2012 heat

wave was followed by another warm year, a return to more average temperatures during 2014–

2015, then another warm year in 2016. Studies of other northern shrimp populations have also

shown the importance of both the physical environment and predation in the species’ popula-

tion dynamics [80–84]. Though not as extreme as during 2012 and early 2013, squid biomass

Fig 13. Conceptual model of seasonal distribution patterns of northern shrimp and longfin squid. (A.) cold years,

(B.) warm years.

https://doi.org/10.1371/journal.pone.0253914.g013
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has remained generally higher (Fig 7), temperatures relatively warm in most years (Fig 5) and

spring relatively early (Fig 5) compared to the early 2000s.

Factors that we could not address in this study could have played a role in the collapse. For

example, climate change is expected to increase susceptibility of crustaceans to disease, partic-

ularly when pathogens have optimal temperatures higher than their host’s [85]. Two patheno-

genic parasites are associated with northern shrimp in GOM, one causing egg mortality [79]

and the other causing black spot gill syndrome (BSGS, [86]). Egg mortality would not explain

a sudden population collapse, but BSGS causes necrosis of infected gill lamellae, which pre-

sumably compromises shrimp condition. BSGS was first recorded for GOM northern shrimp

in 1967, with the highest rates of infection (proportion of individuals infected) approximately

55% in fall and winter when females were egg-bearing (i.e. not molting) [87]. In limited sam-

pling during fall 2012, 95% of shrimp showed some level of infection, and the average propor-

tion infected was>70% in 4 of 5 years of limited sampling during 2012–2016 (H.-Y. Chang,

Univ. Maine, personal communication). It seems possible BSGS could have contributed to the

continued decline of shrimp between fall of 2012 and spring of 2013, but beyond that we are

unable to speculate about the role of episodic disease in the collapse.

Other factors frequently cited as detrimental effects of climate change include ocean acidifi-

cation (OA) and major changes in trophic ecology. Experimental work with northern shrimp

larvae reared at pH predicted for the year 2100 showed longer developmental times [88, 89],

but survival was not affected [88]. Due to the complexity of the carbonate system in the GOM,

recent warming events have not resulted in strong acidification [90], suggesting that OA was

not a major factor in the 2012 collapse of northern shrimp. Changes in trophic ecology in the

GOM have been observed in recent years (e.g. [6, 91–93]); however, these seem unlikely to

have resulted in a catastrophic decline of post-juvenile northern shrimp given the generalist

feeding strategy of the shrimp [23].

Conclusions

Understanding processes occurring in the natural environment is challenging because of the

multiplicity of mechanisms interacting and fluctuating through time. Dramatic events such as

the GOM shrimp population collapse provide an opportunity to see through the haze a bit

more clearly. Our results suggest that longfin squid may have been a major player in the col-

lapse of GOM northern shrimp during an extreme marine heatwave event, and provide further

evidence that changing species interactions will have major impacts as ecosystems reorganize

due to climate change.
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9. Pörtner HO, Farrell AP. Physiology and climate change. Science. 2008; 690–692. https://doi.org/10.

1126/science.1163156 PMID: 18974339
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