
RESEARCH ARTICLE

Mixed-precision weights network for field-

programmable gate array

Ninnart FuengfusinID
1*, Hakaru Tamukoh1,2

1 Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu,

Fukuoka, Japan, 2 Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology,

Kitakyushu, Fukuoka, Japan

* fuengfusin.ninnart553@mail.kyutech.jp

Abstract

In this study, we introduced a mixed-precision weights network (MPWN), which is a quanti-

zation neural network that jointly utilizes three different weight spaces: binary {−1,1}, ternary

{−1,0,1}, and 32-bit floating-point. We further developed the MPWN from both software and

hardware aspects. From the software aspect, we evaluated the MPWN on the Fashion-

MNIST and CIFAR10 datasets. We systematized the accuracy sparsity bit score, which is a

linear combination of accuracy, sparsity, and number of bits. This score allows Bayesian

optimization to be used efficiently to search for MPWN weight space combinations. From

the hardware aspect, we proposed XOR signed-bits to explore floating-point and binary

weight spaces in the MPWN. XOR signed-bits is an efficient implementation equivalent to

multiplication of floating-point and binary weight spaces. Using the concept from XOR

signed bits, we also provide a ternary bitwise operation that is an efficient implementation

equivalent to the multiplication of floating-point and ternary weight space. To demonstrate

the compatibility of the MPWN with hardware implementation, we synthesized and imple-

mented the MPWN in a field-programmable gate array using high-level synthesis. Our pro-

posed MPWN implementation utilized up to 1.68-4.89 times less hardware resources

depending on the type of resources than a conventional 32-bit floating-point model. In addi-

tion, our implementation reduced the latency up to 31.55 times compared to 32-bit floating-

point model without optimizations.

Introduction

A convolutional neural network (CNN) has attracted attention owing to its abilities to achieve

the state-of-the-art results in image recognition [1], semantic segmentation [2], and object

detection [3]. One of advantage of a CNN is its scalability which allows it to increase its param-

eters to operate with larger and more complex data. For example, LeNet-5 [4], one of first

CNN models, was proposed with 60,000 learnable parameters to operate on a handwritten

digit dataset, MNIST [5]. The AlexNet [1] model, the winner of the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) 2012 [6], increased the number of parameters to 62

million. This number has further increased to 144 million with VGG-19 [7], which was pro-

posed for ILSVRC 2014.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 1 / 26

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Fuengfusin N, Tamukoh H (2021) Mixed-

precision weights network for field-programmable

gate array. PLoS ONE 16(5): e0251329. https://doi.

org/10.1371/journal.pone.0251329

Editor: Chi-Hua Chen, Fuzhou University, CHINA

Received: November 24, 2020

Accepted: April 23, 2021

Published: May 10, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0251329

Copyright: © 2021 Fuengfusin, Tamukoh. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Programming code is

available at https://github.com/ninfueng/mpwn.

Funding: This work was supported by JSPS

KAKENHI Grant Number 17K20010, URL https://

kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-

17K20010/. The funders had no role in study

https://orcid.org/0000-0001-9241-1736
https://doi.org/10.1371/journal.pone.0251329
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251329&domain=pdf&date_stamp=2021-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251329&domain=pdf&date_stamp=2021-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251329&domain=pdf&date_stamp=2021-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251329&domain=pdf&date_stamp=2021-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251329&domain=pdf&date_stamp=2021-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251329&domain=pdf&date_stamp=2021-05-10
https://doi.org/10.1371/journal.pone.0251329
https://doi.org/10.1371/journal.pone.0251329
https://doi.org/10.1371/journal.pone.0251329
http://creativecommons.org/licenses/by/4.0/
https://github.com/ninfueng/mpwn
https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-17K20010/
https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-17K20010/
https://kaken.nii.ac.jp/en/grant/KAKENHI-PROJECT-17K20010/


With an increasing trend in the number of parameters of a CNN, deploying a large-scale

CNN in embedded devices has become challenging due to the memory and hardware limita-

tions of edge devices. To solve these problems, various approaches have been proposed,

including network pruning [8], a quantization neural network (QNN) [9–11], knowledge dis-

tillation [12], and efficient architecture design [13, 14].

In this paper, we focus on the QNN approach. In general, a QNN reduces the bit width of

CNN parameters to less than a conventional 32-bit. The immediate effect is to reduce the over-

all memory footprint of the model. Another effect is that because the conventional data type of

a CNN is floating-point, which is not suitable for implementation in hardware due to its com-

plexity, a QNN can restrict its parameters to a hardware-friendly data type, such as the fixed-

point or integer format [15].

The concept of the QNN is possible due to the ability of neural network to dynamically

adapt its parameters during training to minimize the quantization loss. For example, one of

QNN, BinaryConnect (BC) [9], reduces the bit width of the weight from 32-bit floating-point

to 1-bit without significant loss in accuracy. However, in terms of computation, to utilize the

advantages of precision reduction, specialized hardware is necessary to exploit the specific data

types, as the commercial central processing unit (CPU) and graphics processing unit (GPU)

do not support fixed-point arithmetic or data types.

Another problem in the QNN is that reducing the bit width has a trade-off with the quanti-

zation error. The higher the quantization error, the lower the performance of the QNN. To

handle this trade-off, we propose a mixed-precision weights network (MPWN). The MPWN is

designed to exhibit performance close to that of a conventional 32-bit floating-point model

while maintaining a low bit width and other properties of QNN. The MPWN is a QNN that

consists of three different weight spaces: binary {−1, 1}, ternary {−1, 0, 1}, and, 32-bit floating-

point.

The MPWN assigns one of these weight spaces to the weight layer by considering on the

order of layer or number of parameters within the layer. With three possible weight spaces per

weight layer, the search range increases exponentially when the number of layers increases.

Each search is expensive, as it requires time and resources to train a model from scratch.

Therefore, finding an optimal combination by random search may not be effective. We

address this problem with an accuracy sparsity bit (ASB) score, which quantifies the quality of

the MPWN model in terms of three desired properties: accuracy, sparsity, and number of bit.

Using a single scalar score enables the searching with Bayesian optimization (BO).

Another objective of this study is to demonstrate the effectiveness of the MPWN in hard-

ware implementation. Therefore, we implemented MPWN in a field-programmable gate array

(FPGA). One advantage of an FPGA over the conventional software language is it enables bit-

wise manipulation. Another advantage is that it allows the user to define, store, and compute

an arbitrary data type. However, the main disadvantage of an FPGA design is a long develop-

ment time. To gain advantages from both software and hardware, high-level synthesis (HLS)

has been developed. HLS is a development platform that converts C-like languages (C, C++,

and System C) to the hardware description language (HDL) (Verilog and VHDL) language.

This allows users to rapidly develop applications with an interface of a C-like language with

fewer constraints from the HDL language. With this property, HLS is especially useful when

applies HLS with the deep learning algorithm that its state-of-the-art algorithm has been rap-

idly changed. A drawback of HLS compared to optimized handcrafted HDL is that HLS-gener-

ated HDL code may cause a higher latency and hardware utilization. For instance, Ordaz et al.

[16] compared between HDL and HLS implementations of cyclic redundancy check (CRC)

and found out that HDL implementation consumes less than LUT by 1.58 times and less

amount of latency by 2.63 times.

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 2 / 26

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0251329


In this study, we utilized Xilinx Vivado HLS (VHLS) [17] for hardware synthesis and Xilinx

Vivado for hardware implementation. We demonstrate that by exploiting the weight spaces of

the MPWN, we can reduce the hardware utilization of multiplication by replacing it with XOR

signed bits (XSB) and ternary bitwise operation (TBO) [18]. XSB is a VHLS algorithm for XOR

between signed bits of operands. TBO is also the same algorithm with XSB with an ability to

detect zeros. If TBO detects input as zero, it will also output as zero. We demonstrate that XSB,

TBO, and a specific data type can be used to significantly reduce the overall latency and hard-

ware resources of the model compared with directly utilizing floating-point arithmetic only.

In prior works, there are at least two cases to deploy a mixed precision model. The first case

is due to a limitation of low-precision models, for instance, Nakahara et al. [19] proposed a

binarized YOLOv2 [20] designed for FPGA implementation. However, binarized neural net-

work (BNN) [10] or a QNN with both binary weights and activations does not perform a

bounding box prediction or regression task effectively. To address this problem, Nakahara

et al. assigned the last layer of binarized YOLOv2 as the floating-point instead. Another case is

to improve the performance of the low-precision model to be closer to a 32-bit floating-point

model. For instance, Chu et al. [21] proposed a quantization method to progressively reduce

the bit-width from the input to last layer. This method is realized from an observation that fea-

ture distributions in the shallow layer contain a low quantity of class separability while in the

deeper layers, the distributions have a high quantity of class separability. Wang et al. [22] pro-

posed a method using reinforcement learning to search suitable bit-widths in the layer-wise

direction. By using with a hardware simulator, the energy and latency of the quantized model

were utilized as direct feedbacks to the reinforcement learning controller. From these two cate-

gories, our work is categorized in the second category. The objective in this study is to achieve

the performance of a 32-bit floating-point model while maintaining the properties of QNNs.

To the best of our knowledge, comparing to previous researches in the mixed-precision net-

work field, our novelty is we utilized a BO to search a suitable quantization layer instead of

using the reinforcement learning or differentiable architecture search [23]. We provide ASB
score that we specifically designed for the weight spaces. We included a sparsity as a part of

ASB and we also left a choice to not quantization into the search space.

In terms of prior works in the FPGA direction, several works focus on QNNs with both

weights and activations as either binary, fixed-point, and floating-point. For instance, FINN

[24] and GUINNESS [25] are frameworks to construct BNN to the FPGA. Both FINN and

GUINNESS utilizes HLS as a backend component to deploy BNN models into FPGA. Rongshi

et al. [26] and Cho et al. [27] also utilized HLS to construct a floating-point and fixed-point

CNN, respectively. Comparing with prior works in the FPGA field, to the best of our knowl-

edge, our novelty is we provide a first FPGA implementation of binary or ternary weights

model with floating-point activation. To effectively deploy with binary or ternary weights and

floating-point activations, we also introduce XSB and TBO to replace floating-point multipli-

cations with bitwise operations.

The main contributions of this study are as follows:

• We further evaluated the MPWN on the Fashion-MNIST [28] and CIFAR10 [29] datasets.

• We provided a more insightful analysis of MPWN weight spaces and heuristic rules with

grid search for all possible combinations of the MPWN.

• We proposed the ASB score which makes it possible to systematically search for the optimal

combination of the MPWN with BO.

• We designed XSB, a replacement for multiplication between floating-point and binary values

1, −1 for VHLS implementation.

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 3 / 26

https://doi.org/10.1371/journal.pone.0251329


• We synthesized and implemented the MPWN in an FPGA and demonstrated its effective-

ness in terms of both latency and area.

• We published our programming codes on https://github.com/ninfueng/mpwn.

The remainder of this paper is structured as follows. Section 2 explains the building blocks

of our study, including the QNNs and directives. Section 3 introduces the MPWN model, ASB
score, and hardware design of the MPWN, and Section 4 presents the experimental results of

our MPWN simulation, hardware synthesis, and hardware implementation. Section 5 con-

cludes the paper.

Quantization neural networks and FPGA

In this section, we describe two related QNNs that are applied as parts of the MPWN. In addi-

tion, we introduce fundamental VHLS concepts that are applied in later sections.

BinaryConnect

BinaryConnect (BC) [9] is a QNN that binarizes its weights to the set {−1, 1}. With 2 possibili-

ties, a binarized weight can be represented with a 1-bit. The BC quantization equation is

expressed as Eq (1), where i is the index of the weight layer, W is the floating-point weight, and

Wb is the binarized weight:

Wb
i ¼

1; Wi � 0;

� 1; Wi < 0

(

ð1Þ

However, Eq (1) cannot be used for back-propagation. Eq (1) causes the gradient to be

zeros everywhere except at 1 and −1. To modify this function to be trainable, BC overwrites

the back propagation of Eq (1) to Eq (2), where L is the loss function. Eq (2) allows gradients

to be able to pass through Eq (1) in the same manner as an identity function:

@L
@Wi

¼
@L
@Wb

i
ð2Þ

In BC, there is an additional modification, or weight clipping, to the updating equation as

illustrated in Eq (3), where η is the learning rate. Eq (3) clips the updated weights into the

range of [-1, 1]. The authors of [9] indicated that this pushes the weights back into the active

region.

Wi ¼ min max Wi � Z
@L
@Wi

; � 1

� �

; 1

� �

ð3Þ

Ternary weight network

A ternary weight network (TWN) [11] is a QNN that quantizes its weights in each layer to the

set {−Si, 0, Si}, where Si 2 R, Wt represents the ternarized weights, and i is the order of layer. Si
can be determined using Eq (5). The TWN quantization equation is presented in Eq (4), where

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 4 / 26

https://github.com/ninfueng/mpwn
https://doi.org/10.1371/journal.pone.0251329


Δ is a threshold that can be determined by using Eq (6).

Wt
i ¼

Si; Wi > Di;

0; Wi � Di;

� Si; Wi < � Di

8
>>><

>>>:

ð4Þ

Si ¼ Ei2fijjWi j>Dg
ðjWijÞ ð5Þ

Di ¼ 0:7� EðjWijÞ ð6Þ

Compared to BC with an additional zero in the weight space or with higher precision, the

TWN has higher performance or accuracy. However, this doubles the number of bits to repre-

sent its weight becomes twice. With an additional zero, TWN introduces the concept of spar-

sity. Sparsity is defined as the number of zeros in a given array divided by the number of all

parameters in the array. Back-propagation of the TWN faces the same problem as back-propa-

gation of BC. The TWN solves this problem with the same method as BC using the redefined

back-propagation of the quantization equation as expressed in Eq (7):

@L
@Wi

¼
@L
@Wt

i
ð7Þ

Directives and hardware design in Vivado high-level synthesis

There are several metrics for hardware synthesis and implementation, including latency, hard-

ware utilization, and power consumption. In terms of hardware resources in recent FPGAs,

four fundamental hardware resources are block RAM (BRAM-18K), DSP48F block, flip-flop

(FF), and look-up table (LUT).

One advantage of an FPGA over a CPU is that it can be designed to perform large-scale par-

allelism. Although parallelism greatly reduces the latency, the trade-off is that it also signifi-

cantly increases hardware resources. Since VHLS receives a C-likes language as input and

C-like languages are not designed for hardware implementation, VHLS solves this problem by

providing users with hints regarding how to convert C-type functions into hardware. VHLS

provides directives or pragma in C-like languages as hints. Using the directives, we can com-

municate to VHLS how to manage parallelism, memory, and other aspects.

There are three directives that we utilize throughout this study. The first two directives are

related to parallelism, while the third directive is related to memory management. The first

directive is the PIPELINE directive. Placing PIPELINE directives after a for loop indicates to

VHLS that the for loop can be accelerated by data pipeline parallelism. The second is the

UNROLL directive, which indicates that the computation in the for loop can be executed in

parallel across the for loop. The third directive, the ARRAY_PARTITION directive, is mostly

applied with either PIPELINE or UNROLL. Performing parallel computing requires accessing

multiple data at the same time. By using ARRAY_PARTITION, a large memory is divided into

multiple smaller blocks of memory. Therefore, it can access smaller memory in the same clock

cycle without access conflict. With these three mentioned directives, we can apply parallel

computing throughout our model to accelerate computation and reduce latency.

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 5 / 26

https://doi.org/10.1371/journal.pone.0251329


Mixed-precision weights network and FPGA design

In this section, we describe our proposed method, MPWN, in terms of both algorithm and

hardware design. This includes the MPWN algorithm and its effective design in hardware.

Mixed-precision weights network

Mixed-precision weights network (MPWN) is designed to utilize the advantages of the weight

spaces from BC, TWN, and 32-bit floating-point. The MPWN is partly motivated by dropout

[30], which is a regularization method that randomly drops weight connections of a neural

network in each batch training. Randomly dropping weights reduces the tendency of neurons

to cooperate with other neurons, which leads to over-fitting. The optimal dropout rate is not

always equal throughout the weight layers. The optimal rate depends on the layer order and

the type of weight layer (e.g., convolutional layer, fully-connected layer). The difference in the

optimal dropout rate reveals the sensitivity of the weight layer to the constraint. Disturbing a

high sensitivity weight layer causes a greater negative effect in terms of performance than dis-

turbing a low-sensitivity layer. Using this concept, the MPWN places different constraints

depending on the sensitivity of the weight layers.

For hardware implementation, the performance of the TWN is still acceptable without the

scaling factor Si. Therefore, we utilize the TWN without the scaling factor, which also reduces

the overall complexity of the hardware implementation. During inference, the 32-bit floating-

point model can be reduced to the 16-bit floating-point without decreasing in performance.

Therefore, we utilize with 16-bit floating-point instead of 32-bit floating-point.

We define the notations for representing MPWN layers as follows: F indicates that layer is

16-bit floating-point or full-precision, B indicates that the layer is the BC, and T indicates that

the layer is TWN without the scaling factor. Therefore, FBT refers to a CNN with three layers.

The first layer is 16-bit floating-point, the second layer is BC, and the third layer is TWN. The

advantage of each weight space is summarized in Table 1. Overall, F is correlated with the per-

formance of the model. B reduces the bit width of model the most, and T introduces sparsity

into the model.

With several metrics to optimize in the MPWN, we reduce these scores to a single score

called the accuracy sparsity bit (ASB) score. The ASB score is a linear combination of accuracy,

sparsity, the number of bits, as expressed in Eq (8), where a is the model test accuracy, s is the

sparsity of the model, and bnor is 1 minus the normalized number of bits. bnor is defined in Eq

(9), where bmax is the number of bits from the 16-bit floating-point model and b is the number

of bits of given MPWN. Using Eq (9) instead of using only b
bmax

, the optimization direction

reverses from minimization to maximization which is the same direction as a and s.

ASB ¼
aþ sþ bnor

3
ð8Þ

bnor ¼ 1 �
b

bmax
ð9Þ

Table 1. Overview of properties of each mixed-precision weights network weight space.

Accuracy Sparsity Bits per Weight (bit) Weight space

Full precision weights (F) High None 16 R
Ternary weights (T) Mid High 2 {−1, 0, 1}

Binary weight (B) Low None 1 {−1, 1}

https://doi.org/10.1371/journal.pone.0251329.t001

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 6 / 26

https://doi.org/10.1371/journal.pone.0251329.t001
https://doi.org/10.1371/journal.pone.0251329


In Eq (8), a, s, and bnor does not contribute equally due to different in distributions. One of

the metrics in ASB may distribute with a low variance relative to other metrics. Therefore, the

metric with low variance contributes to ASB less than others. One of the factors of this low var-

iance issue is a narrow range between the minimum and maximum values of the metric. To

solve this issue, we introduce a min-max normalization to re-distribute each metric of ASB
into the same range [0, 1]. The min-max normalization is defined in Eq (10) where x is an orig-

inal value, xmax is a maximum value in the distribution, xmin is a minimum value in the distri-

bution, and xn is a normalized value.

xn ¼
x � xmin

xmax � xmin
ð10Þ

Finding maximum and minimum values in the worst-case is required to train all possible

combinations of MPWN which is not feasible with a large model. Therefore, we introduce a

method to estimate the maximum and minimum values of a, s, and bnor instead. This method

is called as estimating rules which are formulated from properties from Table 1 and observa-

tions from grid-search with all possible combinations of MPWN with the LeNet-5 model.

From this grid-search, the F model contains the highest amount of a and the lowest amount of

bnor and s. The B model contains the highest amount of bnor and close to the lowest amount of

a. The T model contains almost the highest amount of s. With these properties, we formulate

the estimation rules are as follows:

• F model contains a maximum value of a while B model contains a minimum value of a.

• B model contains a maximum value of bnor while F contains a minimum value of bnor.

• T model contains a maximum value of s while F contains a minimum value of s.

By using these estimation rules, we can estimate the maximum and minimum values for a,

s, and bnor by only using information from F, B, and T models. Using the min-max normaliza-

tion improves the variance issue to an extent by improving the range of the metric with low

variance. To further improve on the variance situation, one of the methods to increase or

decrease the variance of a distribution is to multiply with a constant. Therefore, we can balance

the variance of each metric of ASB by modifying Eq (8) to a weighted average as shown in Eq

(11) using with weights: α, β, and γ. We can convert Eq (11) back to Eq (8) by using α = 1,β =

1, and γ = 1. α, β, and γ can be adjusted to indicate what degree the a, s, and b contribute to

ASB.

ASB ¼
aaþ bsþ gbnor

aþ bþ g
ð11Þ

The goal of the MPWN is to maximize the vector of quantization layers l, as shown in Eq

(12), where l 2 ln, l 2 {F, B, T}, and n denotes the number of weight layers.

l� ¼ argmax lASB ð12Þ

The computational complexity of identifying the global maximum of the MPWN is O(3n).

Each iteration of the search is expensive in terms of training time. To avoid examining all pos-

sible combinations of layers, in a previous study [31], we proposed human-based knowledge

rules or three heuristics rules to identify a reasonable optimized l. The heuristic rules are as

follows:

1. Layers that contain a large number of weight parameters should be T.

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 7 / 26

https://doi.org/10.1371/journal.pone.0251329


2. Layers that contain a small number of weight parameters should be B.

3. The first and last layers should be F.

In this case, we define a large number as a number that more than one positive standard

deviation from a mean and we define a small number as a number that less than or equal to

one positive standard deviation from the mean. To provide an example, we apply these heuris-

tic rules to LeNet-5 [32]. The result is the FBTBF model since the third layer of LeNet-5 is a

fully-connected layer with the number of weights that exceeds one standard deviation from

the mean. These heuristic rules originate from several observations. For the first rule, placing

T into a layer with the largest number of weight parameters causes the high sparsity in the

model. Therefore, by only fixing T to certain layers, we can optimize other layers with other

types of weight spaces. The second rule states that the default weight layer should be B to opti-

mize the number of bits. B is the most suitable in terms of hardware implementation. The

third rule states that placing F into the first layer significantly improves the accuracy. The last

layer affects the confidence of the prediction, therefore, we also select the last layer as F.

The three heuristic rules allow the MPWN to perform a single search to find a suitable com-

bination for the ASB score; however, the heuristic rules do not guarantee a global maximum.

Systematizing the search process using the ASB score allows BO to be used. BO is convention-

ally applied to search the optimal hyperparameters. BO is summarized in [33]. In general, BO

optimizes a given cost function with two objectives. The first objective is to explore the func-

tion and map the surrogate model from the obtained information. The second objective is to

search for a local optimal location of the given function. BO is suitable for our layer search

from the two following aspects:

• BO does not require gradient; therefore we can optimize our MPWN model with the sparsity

and number of bits, which are not differentiable metrics.

• BO is defined with the constraint that each iteration is expensive to evaluate which meets the

requirements of our problem [33].

1- and 2-bit signed integer

To fully utilize an FPGA with the MPWN, VHLS provides support to access arbitrary data

types, such as signed integer (int), unsigned integer (uint), and the fixed-point (fixed) data

type. To optimize the data type of B and T, we utilize 1-bit (int1) and 2-bits signed integer

(int2), respectively. However, the range of int1 can contain only in the set of {−1, 0}, which

does not cover 1 in the B weight space. To address this problem, we replace 1 with 0. This does

not affect the performance of the MPWN implementation, as the replacement still holds the

same signed bit information that is used in XSB. Reducing the number of bits with a specific

data type promises a significant reduction in memory resources in our FPGA implementation.

Half-precision floating-point

VHLS supports another data type: a half-precision floating-point or 16-bit floating-point

(half). A QNN displays the robustness of a CNN against reducing precision, and we exploit

this property by assigning the half data type to our MPWN model. Compared with 32-bit float-

ing-point (float) and 64-bit floating-point (double) in terms of multiplication of two variables

with of the same data type, half has the potential to reduce both the hardware resources and

latency, as illustrated in Table 2. Table 2 presents the results of the implementation generated

by VHLS, where the target device is Zynq UltraScale+ MPSoC ZCU102 or xczu9eg-ffvb1156-

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 8 / 26

https://doi.org/10.1371/journal.pone.0251329


2-i. Table 2 demonstrates that half can reduce the resources to roughly half of those of float to

one-fifth of those of double.

XOR signed-bits

The MPWN may consist of multiple B. Therefore, it is necessary to further optimize the com-

putation in the weight space. The multiplication between float and binary values {−1, 1} causes

a sign to be changed. However, without a specific design, the multiplication between them is

treated as a floating-point multiplication that consumes more resources than necessary. XOR

signed bits (XSB) is designed as a replacement for multiplication between float and binary val-

ues. Multiplication between these variables is reduced with the XOR operation between the

sign bits of the two operands, as illustrated in Fig 1.

In general, implementing XSB in HDL is simple whereas implementing it in VHLS is com-

plicate. We present an XSB algorithm in C++ for VHLS, as illustrated in Listing 1. VHLS pro-

vides C++ libraries that support bitwise manipulation; however, the manipulation is

constructed as methods within a built-in data type in VHLS. The problem that we face is that

we cannot apply these methods directly with an unsupported data type (double, float, and

half). Therefore, we are required to first convert an unsupported data type to bitwise supported

data type. Then, we perform bitwise manipulation of the selected bit and convert it back to the

unsupported data type.

Listing 1. XOR signed-bits for Vivado high-level synthesis.

void xor_signed_bits(int1 w, half x, half &out)

{

#pragma HLS INLINE OFF

Table 2. Latency and hardware resources for multiplication of two variables with the same data type.

Data type Latency (Clock cycle) Hardware Resource

DSP48E FF LUT

double 4 11 304 236

float 1 3 130 150

half 1 2 66 49

https://doi.org/10.1371/journal.pone.0251329.t002

Fig 1. XOR signed bits. The top binary row presents a binary representation of the half data type, which represents a

value of −123. The second binary row displays a binary representation of int1, which represents −1. By XOR only the

most significant bit from both rows, the result is 123, which is the same as the answer to the general floating-point

multiplication.

https://doi.org/10.1371/journal.pone.0251329.g001

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 9 / 26

https://doi.org/10.1371/journal.pone.0251329.t002
https://doi.org/10.1371/journal.pone.0251329.g001
https://doi.org/10.1371/journal.pone.0251329


int16 tmp_x;

int16 tmp_out;

// Convert half floating point to int16-
// to access ap int built-in method.

// Use uint1 because to cover {0, 1}.

tmp_x = �reinterpret_cast<int16�>(&x);

// XOR between signed-bit between weight and activation.

uint1 sign = tmp_x.sign()^ w.sign();

// Get bits from 14 to 0, not include the signed bit.
int15 notsign = tmp_x.range(14, 0);

// Concate between XOR result and concatenate-
// between the rest of activation bits.
tmp_out = sign.concat(notsign);

out = �reinterpret_cast<half�>(&tmp_out);

}

Here, fixed is considered to apply instead of half. However, VHLS provides the fixed imple-

mentation with a binary representation as 2’s complement, which is not compatible with the

XSB algorithm. Toggling the sign of fixed requires reversing all the bits of fixed and subtracting

by 1, which is an expensive process. Therefore, we apply our MPWN with half instead of fixed.

Ternary bitwise operation

Ternary bitwise operation (TBO) was proposed by Honda et al. [18] as a replacement of multi-

plication with a ternary weight. TBO utilizes only an XOR and 15 AND gates as illustrated in

Fig 2. TBO utilizes AND gates to detect whether the ternary weight is a zero or one (both posi-

tive and negative). If the weight is zero, the AND gates reset the variable to zero. Otherwise, it

lets the variable pass through. Using the same concept of XSB, we can implement TBO in

VHLS as shown in Listing 2 below.

Listing 2. Ternary bit-wise operation for Vivado high-level synthesis.

void xor_signed_bits (int2 w, half x, half &out)

{

#pragma HLS INLINE OFF

int16 tmp_x;

Fig 2. Ternary bitwise operation. The top binary row presents a binary representation of the half data type, which

represents a value of −123. The second binary row displays a binary representation of int2, which represents 0. By

using XOR and AND gates, the result is −0.

https://doi.org/10.1371/journal.pone.0251329.g002

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 10 / 26

https://doi.org/10.1371/journal.pone.0251329.g002
https://doi.org/10.1371/journal.pone.0251329


int16 tmp_o;

tmp_x = �reinterpret cast<int16�>(&x);

// XOR between signed-bit between weight and activation.

uint1 b15 = tmp_x.sign() ^w.sign();

uint1 w0 = w.range(0, 0);

// AND between OR results and rest of activation bit.
uint1 b0 = w0 && tmp_x.range(0, 0);

uint1 b1 = w0 && tmp_x.range(1, 1);

uint1 b2 = w0 && tmp_x.range(2, 2);

uint1 b3 = w0 && tmp_x.range(3, 3);

uint1 b4 = w0 && tmp_x.range(4, 4);

uint1 b5 = w0 && tmp_x.range(5, 5);

uint1 b6 = w0 && tmp_x.range(6, 6);

uint1 b7 = w0 && tmp_x.range(7, 7);

uint1 b8 = w0 && tmp_x.range(8, 8);

uint1 b9 = w0 && tmp_x.range(9, 9);

uint1 b10 = w0 && tmp_x.range(10, 10);

uint1 b11 = w0 && tmp_x.range(11, 11);

uint1 b12 = w0 && tmp_x.range(12, 12);

uint1 b13 = w0 && tmp_x.range(13, 13);

uint1 b14 = w0 && tmp_x.range(14, 14);

// Concatenate between all resultant bit.
uint15 b_con = (b14, b13, b12, b11, b10, b9, b8, b7, b6, b5, b4, b3, b2, b1, b0);

tmp_o = b15.concat(b_con);

out = �reinterpret_cast<half�>(&tmp_o);

}

Overview of FPGA implementation

Using the ASB with BO allows us to find more optimized MPWN combinations than a combi-

nation from heuristic rules. Therefore, we implemented the model FTTTF that achieves the

highest ASB. Our implementation of T was implemented with TBO instead of sparse matrix

multiplication and convolutional operation due to the high overhead of sparse matrix format.

For instance, to decompose a weight of a fully-connected layer, Wf with a coordinate format

(COO), if Wf does not contain any sparsity, COO decomposes Wf with three times the number

of parameters comparing to Wf. In the case of the convolutional layer with the weight, Wc, this

overhead becomes worse. The number of parameters becomes five times comparing to Wc.

With FTTTF model, the sparsity in each T layer is roughly 0.5. Using COO format consumes

1.5 times the amount of origin parameters in the case of the fully-connected layer. This

becomes worse in the case of the convolutional layer that consumes 2.5 times the origin

amount of parameters.

Our implementation of the MPWN is designed layer by layer. We also optimize the layer by

placing directives into it. Fig 3 displays an overview of our MPWN design on an FPGA. Since

quantization is applied to convolutional and fully-connected layers only, we evaluate the per-

formance and apply directives in these layers only. In Fig 3, we defined our notation as follows:

Conv#N indicates a convolutional layer, Fully connected#N indicates a fully-connected layer,

BN#N indicates a batch normalization layer [34], Flatten indicates a rearranging layer to con-

vert the shape activation to operate in the fully-connected layer, and N indicates the order of

the weight layer.

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 11 / 26

https://doi.org/10.1371/journal.pone.0251329


To explain how we place the directives, we must first define a convolutional and fully-con-

nected layer. The convolutional layer is defined in Eq (13), where W 2 RCout�Cin�Kr�Kc ,

X 2 RCin�Ir�Ic , Kr denotes the number of kernel rows, Kc denotes the number of kernel col-

umns, Cin denotes the number input channels, Cout denotes the number of output channels, Ir
is the input activation row, Ic is the input activation column, Or is the output feature row, Oc is

the output feature channel, and F is the feature map. The convolutional layer operation con-

sists of six for loops that can be accelerated with parallelism. It should be noted that the bias

term is ignored because the convolutional layer is followed by batch normalization [34], which

consists of a term that acts as a bias.

F ¼
XCout

n¼1

XOr

m¼1

XOc

l¼1

XCin

k¼1

XKr

j¼1

XKc

i¼1

Wn;k;j;iXk;jþm;iþl ð13Þ

In the convolutional layer function in VHLS, we utilize parallelism by placing the UNROLL
directive inside the Oc, loop which hints that all loops below should be computed in parallel. In

addition, we also place the PIPELINE directive inside the Or loop to further accelerate the oper-

ation that unrolled. In the convolutional layer, we apply ARRAY_PARTITION with a factor of

8 to both W and X.

We define a fully-connected layer or matrix multiplication as Eq (14), where

W 2 RR�C
,X 2 RC

, b 2 RC
, R denotes the number of rows of the weight, and C denotes the

number of columns of the weight.

F ¼
XC

j¼1

XR

i¼1

Wj;iXj þ bj ð14Þ

Fig 3. Overview of mixed-precision weights network implementation. All parameters of the MPWN are stored in

BRAMs. Blue blocks indicate blocks that are optimized with directives, while green blocks indicate blocks that are not

optimized with directives.

https://doi.org/10.1371/journal.pone.0251329.g003

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 12 / 26

https://doi.org/10.1371/journal.pone.0251329.g003
https://doi.org/10.1371/journal.pone.0251329


In the matrix multiplication function in VHLS, we place PIPELINE inside C for data pipe-

lining of the process. We also apply ARRAY_PARTITION with a factor of 16 to both W and X.

It should be noted that the first two fully-connected layers do not include the bias term b.

Experimental results and discussion

In this section, we describe our experiments, which can be categorized into software simula-

tion and hardware implementation.

Software simulation

In this section, we separated into two sections: Fashion-MNIST and CIFAR10 datasets. In the

Fashion-MNIST section, we further evaluated our heuristic rules by running a grid search cov-

ering all possible combinations of the MPWN with the LeNet-5 model. We applied BO to

search for optimal MPWN combinations in terms of the ASB score. We evaluated how many

search iterations were necessary to obtain a model with better ASB than heuristic rules. We

also conducted an experiment to examine the effect of converting half to float. In the CIFAR10

section, we evaluated the robustness of our proposed methods by performing BO searches

with ResNet-18 [35] model and CIFAR10 dataset.

Fashion-MNIST. To evaluate the MPWN model, we used the Fashion-MNIST dataset

[28] as a benchmark image dataset. Fashion-MNIST is a clothing image dataset that consists of

60,000 training images and 10,000 test images. Each image is a grayscale image consisting of

28x28 pixels. We preprocessed each pixel value to the range [0, 1] by dividing each image pixel

by the maximum pixel intensity, 255. In this part, our MPWN model was programmed using

PyTorch [36], a deep learning framework. The base structure of the CNN that we applied to

the MPWN was LeNet-5 [4] with the structure: 6C5 −MP 2− 16C5 −MP2 − 120FC − 84FC
− 10Softmax, where C5 is a 5 × 5 convolutional layer, MP2 is a 2 × 2 max-pooling layer, FC is a

fully-connected layer and Softmax is an output layer. We used the rectified linear unit (ReLU)

as the activation function, and applied dropout [30] in the fully-connected layers with p = 0.5

except in the last layer. We utilized batch normalization [34] to stabilize our training process,

and our model was optimized with Adam [37] with an initial learning of 10−3. We trained all

models for 200 epochs and stepped down the learning rate to one-tenth every 75 steps. We set

the training batch size to 128 and we utilized ASB with α = 1,β = 1, and γ = 1 in this

experiment.

To visualize the heuristic rules, we performed a grid-search across all possible combinations

of the MPWN; in other words, we trained 35 = 243 combinations of the model. We summa-

rized all metrics from these combinations into three box plots. In Figs 4 and 5. present box-

plots that display the test accuracy on the y-axis and the type of weight layer on the x-axis. By

running all possible combinations, F in the first and last layer correlates with the test accuracy

compared with other weight layers. However, F in the last layer has an excessively high vari-

ance compared with F on the first layer. This reveals that we can update the last heuristic rules

by changing the last layer of the CNN from F to other types of layers. However, the first should

still remain F.

The third layer of LeNet-5 contains the highest number of parameters compared with other

weight layers. From the first heuristic rule, by setting the third layer as T affects the sparsity of

the model, as illustrated in Fig 6. Note that the T layer in FBTBF contains sparsity within the

layer as 0.4974. This amount of sparsity can be counted as 0.3495 sparsity of the model. This

first heuristic rule contains another advantage. Placing T only in layers that contain a large

number amount of parameters (fully-connected layer) eases the hardware implementation rel-

ative to the convolutional layer, which contains a large number amount of for loops.

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 13 / 26

https://doi.org/10.1371/journal.pone.0251329


The results of MPWN, TWN, BC, and BNN are presented in Table 3. In Table 3, we defined

the ASB before as ASB without the min-max normalization and we also defined ASB as ASB
with the min-max normalization. We report metrics in the training epoch that achieved the

highest test accuracy. It should be noted that to scale with other methods, we did not apply the

scaling factor Si in Eq (5) to the TWN. We also did not clip weights in B layer with Eq (3).

With heuristic rules, the FBTBF model was the optimized model. As displayed in Table 3,

FBTBF obtained the advantages (i.e., accuracy, sparsity, and the number of bits) from the

16-bit floating-point, TWN, and BC models in a single model. However, by running all possi-

ble combinations of the MPWN, we found that the best ASB model without the min-max nor-

malization was FTTTT with ASB as 0.7558. Comparing MPWN, TWN, and BC with BNN,

BNN with binary activations promises a better in terms of hardware friendliness where its fea-

ture maps accumulation can be replaced with popcount operation. However, its test accuracy

is significantly dropped comparing with other methods.

We plotted a box-plot of distributions of each element in ASB score as illustrated in Fig 7.

In Fig 7, there are differences in mean and variance between each metric. Therefore, each met-

ric contributes differently to ASB. We applied the Pearson correlation to measure the contribu-

tions of a, s, and b to ASB. We found that the Pearson correlation between a, s, and b to ASB
are -0.2249, 0.5575, and 0.8493, respectively. The main issue in this ASB is the correlation

between a and ASB is negative. We expected this issue is caused from the variance of a is insig-

nificant or 5.36 × 10−5 comparing with s and bnor that is 0.09865 and 0.03881, respectively.

One of main contribution of the small variance of a is a contains a narrow range of distribu-

tion from the minimum value at 0.8784 and maximum value at 0.9109. To improve the

Fig 4. Box plot of test accuracy and effect of layer type in the first layer.

https://doi.org/10.1371/journal.pone.0251329.g004

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 14 / 26

https://doi.org/10.1371/journal.pone.0251329.g004
https://doi.org/10.1371/journal.pone.0251329


variance issue of a, we can rescale all element in ASB into the same scale by using a min-max

normalization. By applying with the min-max normalization, normalized metrics are illus-

trated in Fig 8. The Pearson correlation between a, s, and bnor to ASB became 0.2816, 0.7743,

and 0.5153, respectively and the variance of a, s, and bnor becomes 0.05074, 0.1302, and 0.0112,

respectively. The best combination in term of ASB is changed from FTTTT to FTTTF. We

expected by rescaling the range of a, this signified the correlation between the F layer to ASB
score, therefore the FTTTF becomes more important than FTTTT.

The min-max normalization requires minimum and maximum values of a, s, and bnor to

perform the normalization. However, to find actual minimum and maximum values, in the

worst case, this requires training all possible MPWN combination which is not feasible with

the large model. Therefore, we estimated the minimum and maximum values by using the esti-

mating rules that we mentioned in the mixed-precision weights network section instead. To

evaluate the estimating rules, we compared the mean square error (MSE) between normalized

values from the estimating rules to the normalized values from the actual maximum and mini-

mum values. We also provided a comparison with normalized values from maximum and

minimum values that were known from the random search. These comparisons are shown in

Table 4. The box-plot of ASB after min-max normalization with actual and estimated values

are illustrated in Fig 8.

From Table 4, by using the random search for 50 iterations or approximately one-fifth of all

possible combinations, the random search achieved the lower MSE of ASB comparing with the

estimating rules or Proposed. These results indicate that our estimating rules did not provide

Fig 5. Box plot of test accuracy and effect of layer type in the last or fifth layer.

https://doi.org/10.1371/journal.pone.0251329.g005

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 15 / 26

https://doi.org/10.1371/journal.pone.0251329.g005
https://doi.org/10.1371/journal.pone.0251329


the perfect estimations of the minimum and maximum values. However, our estimating rules

still provide a better alternative if we do not wish to train for 50 different models.

Bayesian optimization. We conducted an experiment with BO and the ASB score with α
= 1, β = 1, and γ = 1. We evaluated the effectiveness of BO in finding optimal combinations of

the MPWN. We applied BO from an implementation from hyperopt [38], and used BO to

search for optimized MPWN models for 100 iterations. That is, we searched with BO for 100

different combinations of the MPWN. In each iteration, BO received feedback or the ASB
score and learned what the subsequent combination of MPWN should be. Fig 9 presents the

ASB score improvement of BO in each iteration. The ASB score on the y-axis changed only

Fig 6. Box plot of sparsity and effect of layer type in the third layer.

https://doi.org/10.1371/journal.pone.0251329.g006

Table 3. Comparison between different combinations the mixed-precision weights network. ASB before denotes ASB without the min-max normalization and ASB

denotes ASB with the min-max normalization.

Type of layers Test accuracy Sparsity Amount of bit ASB before ASB

Full Precision 0.9109 0.0 707,040 0.3036 0.3333

TWN [11] 0.8928 0.4852 88,380 0.751 0.7551

BC [9] 0.8798 0.0 44,190 0.6057 0.3477

BNN [10] 0.8475 0.0 44,190 0.595 0.0164

FBTBF 0.8984 0.3495 89,760 0.7069 0.7289

FTTTT 0.9036 0.4919 90,480 0.7558 0.8689

FTTTF 0.9071 0.4911 102,240 0.7512 0.8984

https://doi.org/10.1371/journal.pone.0251329.t003

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 16 / 26

https://doi.org/10.1371/journal.pone.0251329.g006
https://doi.org/10.1371/journal.pone.0251329.t003
https://doi.org/10.1371/journal.pone.0251329


when BO found a new combination that produced a higher ASB score. We determined that

BO was able to find the global maximum FTTTF after 79 iterations (i.e., approximately one-

third of all possible search numbers). BO was able to find a better alternative to FBTBF or a

model with an ASB score higher than 0.7289 after 5 iterations of searching. Therefore, heuristic

rules still provide a better alternative if we do not wish to spend the time and resources to train

5 different models.

Fig 7. Distributions of accuracy, sparsity, and normalized bit from all possible combinations of MPWN with LeNet-5.

https://doi.org/10.1371/journal.pone.0251329.g007

Fig 8. Box plots of each elements in ASB after the min-max normalization. Left: after the min-max normalization

with estimated minimum and maximum values. Right: after the min-max normalization with actual minimum and

maximum values.

https://doi.org/10.1371/journal.pone.0251329.g008

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 17 / 26

https://doi.org/10.1371/journal.pone.0251329.g007
https://doi.org/10.1371/journal.pone.0251329.g008
https://doi.org/10.1371/journal.pone.0251329


Effect of float and half on MPWN model. After training the FTTTF model for 200

epochs, we measured the effect of converting all parameters in the MPWN from float to half.
We conducted this experiment in the PyTorch environment. The results are presented in

Table 5. We observed that the performance of the FTTTF does not change. Therefore, in this

case, we were able to convert float to half without performance loss.

CIFAR10. In this section, we further evaluated our proposed methods by applying BO

with ResNet-18 [35] and CIFAR10 [29] dataset. ResNet-18 is a CNN that consists of 18 weight

layers with several residual connections which allow both feature maps and gradients to flow

with. CIFAR10 is an image dataset that consists of 50,000 training images and 10,000 test

images. Each image is an RGB image consisting of 32x32 pixels. We preprocessed each image

in channel-wise direction with means and standard deviations of the training dataset. To

Table 4. Comparison between the min-max normalization from the random search and the estimating rules. Proposed denotes the minimum and maximum values

from the estimating rules. GPU time indicates the total training time with the same setting as the Fashion-MNIST section using NVIDIA GeForce GTX 1080 and Intel

Xeon CPU E5-1620 v3.

Round of random search MSE of a MSE of s MSE of b MSE of ASB GPU time (minute)

10 0.0251 0.0119 1.377 × 10−3 4.496 × 10−3 208

30 2.71 × 10−3 3.307 × 10−3 0.2697 × 10−3 0.6016 × 10−3 603

50 2.01 × 10−3 0.0 2.769 × 10−6 0.211 × 10−3 991

Proposed (3) 0.524 × 10−3 4.827 × 10−3 0.0 0.366 × 10−3 59

https://doi.org/10.1371/journal.pone.0251329.t004

Fig 9. Bayesian optimization search with ASB score. This graph displays the best ASB in the current iteration search. The

score changes when a higher score is found. The orange dashed line indicates the normalized ASB score of the heuristic rule

(0.7289).

https://doi.org/10.1371/journal.pone.0251329.g009

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 18 / 26

https://doi.org/10.1371/journal.pone.0251329.t004
https://doi.org/10.1371/journal.pone.0251329.g009
https://doi.org/10.1371/journal.pone.0251329


modify ResNet-18 to operate with CIFAR10, we adjusted a first convolutional layer of ResNet-

18 to 64C3 with stride of one and we also removed the max-pooling layer. To avoid overfitting,

we applied data augmentations by random padding border pixels of an image with four pixels

and random crop the image back to original 32x32 pixels. The image was further augmented

by random horizontal flipping. We trained the ResNet-18 with 256 batch size for 150 epochs

with Adam [37]. We set an initial learning rate with 10−3 and step down to one-tenth every 50

epochs. We quantized all weight layers within ResNet-18, including weights from residual con-

nections. For the notation, We denote weights from residual connections after the underscore.

For instance, FFFFF_FFF indicates a neural network with five F weight layers and three resid-

ual connections with F weights.

We performed 70 rounds of BO search with ASB (α = 1, β = 1, and γ = 1). Each metric of

ASB was normalized with the estimating rules. Since there are 318 possible combinations of

MPWN, outcomes of this BO search are not expected to contain a global maximum of ASB.

We displayed the top-5 ASB combinations from BO search in Proposed section of Table 6. We

also included a Baseline section that consists F, B, and T models. Note that in Baseline, we

also calculated ASB with the estimating rules.

In Table 6, we discovered patterns of heuristic rules in the top-5 combinations. In ResNet-

18, the number of weight parameters increases gradually from the first to last convolutional

layer. Therefore, the last three convolutional layers of ResNet-18 contribute 63.34 percent of

all weight parameters. Using the first heuristic rule (layers that contain a large number of

weight parameters should be T), these last three convolutional layers should be T to maximize

the sparsity. This pattern of first and third heuristic rule (the first and last layers should be F)

can be identified throughout Proposed. With patterns of heuristic rules appeared in top-5

combinations, this signified a correlation between the heuristic rules and optimal ASB
combinations.

Using BO with ASB allows searching a better alternative to models from Baseline. For

example, FFFTTTFTBBBFTTTTTF_TBT or the top-1 model in Proposed contains all

desired properties of ASB or high test accuracy, sparsity while maintaining a low amount of

bits in a single model.

Table 5. Comparison between float and half from FTTTF model.

Test accuracy Difference with float

float 0.9053 0.0

half 0.9053 0.0

https://doi.org/10.1371/journal.pone.0251329.t005

Table 6. Top-5 combinations from each BO search. Iteration denotes the number of BO searches. Note that the a, s, and b are not normalized with the min-max normali-

zation and Iteration starts with 0.

Combinations ASB a s b Iteration

Baseline FFFFFFFFFFFFFFFFFF_FFF 0.3333 0.9366 3.584 × 10−6 178,629,632 -

TTTTTTTTTTTTTTTTTT_TTT 0.7852 0.9221 0.93557 22,328,704 -

BBBBBBBBBBBBBBBBBB_BBB 0.3333 0.9209 6.27 × 10−7 11,164,352 -

Proposed FFFTTTFTBBBFTTTTTF_TBT 0.8156 0.9276 0.8086 32,713,728 64

FFTBTTFTFBFFTTBTTF_TBT 0.8092 0.935 0.5996 40,860,672 37

BFFTFTFBFBTFTTTTTF_TBT 0.7915 0.9248 0.8486 35,858,112 4

FFFTTTFFBBTFTTTTTF_TBB 0.7717 0.9232 0.8413 35,236,864 22

FFTTTTFBFBTFTTTBTF_TTB 0.7504 0.9286 0.5945 32,394,240 55

https://doi.org/10.1371/journal.pone.0251329.t006

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 19 / 26

https://doi.org/10.1371/journal.pone.0251329.t005
https://doi.org/10.1371/journal.pone.0251329.t006
https://doi.org/10.1371/journal.pone.0251329


Hardware synthesis and implementation

In this section, we synthesized a FTTTF model with Vivado HLS version 2019.02 and imple-

mented this model with Xilinx Vivado 2019.2 [39]. We evaluated the model in terms of latency

and hardware area compared with a conventional 32-bit floating-point model. We also per-

formed comparisons between models with directives and without directives.

All hardware synthesis results were obtained by using VHLS with the option of C synthesis.

The target FPGA was Zynq UltraScale+ MPSoC ZCU102 (ZCU102) or xczu9eg-ffvb1156-2-i.

ZCU102 consisted of the following hardware resources: 1824 BRAM_18K, 2520 DSP48E,

548,160 FF, and 274,080 LUT. Our FPGA operated with a target clock frequency of 100 MHz,

and our implemented model used weights and biases from training in the software simulation

part.

XOR signed-bit and ternary bitwise operation synthesis. We synthesized XSB and TBO

as a replacement for multiplication between half and int1 and half and int2, respectively.

Therefore, we compared hardware resources and latency with multiplication between other

data types, as illustrated in Table 7.

Using XSB instead of floating-point arithmetic significantly reduced the latency and hard-

ware resources. XSB consumed only two LUTs to perform multiplication, while TBO con-

sumes 32 LUTs. Each pair of LUTs used to construct a logic gate. Therefore, XSB utilizes a

logic gate, while TBO utilizes 16 logic gates. Note that in both XSB and TBO, the latency can-

not be zero in practice. We only displayed the results from VHLS C synthesis.

In term of behavior, XSB should perform in the same manner as Listing 3. Listing 3 detects

the most significant bit (MSE) of the binary weight and flips the MSE of float. However, detect-

ing requires a control logic which is expensive VHLS. For example, by using Listing 3 to C syn-

thesis with Vivado HLS 2019.2, it consumes 2 cycles at 100 MHz, 2 DSP48Es, 97 FFs, and 150

LUTs. Comparing with XSB that consume only 2 LUTs and 0 latency, XSB is more efficient in

both hardware utilization and latency.

Listing 3. XOR signed-bits using a control logic.

void xor_signed_bit_using_control_logic(int1 w, half x, half &o)

{

#pragma HLS INLINE OFF

o = w.sign() == 0 ? x: −x;

}

Hardware synthesis. We synthesized the MPWN with FTTTF into an FPGA with VHLS.

We performed several comparisons with the model with float and with and without directives.

We used the following notations. Proposed signifies that all float data type were replaced with

half; in T, the multiplication was replaced with TBO. Base-line signifies that all data type were

float and that all operations in the model were the floating-point arithmetic. Directive signifies

Table 7. Comparison of latency and hardware utilization of multiplication between two variables with data type 1 and 2, respectively. The latency unit is a clock

cycle. The two last row represents XOR signed bit and ternary bitwise operation, respectively.

Data type 1 Data type 2 Latency Hardware Resource

DSP48E FF LUT

double double 4 11 304 236

float float 1 3 130 150

half half 1 2 66 49

half int1 0 0 0 2

half int2 0 0 0 32

https://doi.org/10.1371/journal.pone.0251329.t007

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 20 / 26

https://doi.org/10.1371/journal.pone.0251329.t007
https://doi.org/10.1371/journal.pone.0251329


that we applied optimization directives in VHLS to optimize the latency of the model with par-

allelism. However, this resulted in a trade-off of higher hardware utilization.

A comparison of the latency and resources using these methods is presented Tables 8 and 9,

respectively. Table 8 includes comparisons with ARM Cortex-A53. We utilized ARM Cortex-

A53 in Zynq UltraScale+ MPSoC ZCU102. To use this CPU, we generated a PetaLinux image

[40] and executable files from C++ files using SDSoC 2018.3 [41]. The setting of these C+

+ files was the same as Base-line. We ran executable files three times and reported the latency

mean and interval of two standard deviations.

We observed that the convolutional layers had a longer latency than the fully-connected

layers even though there were fewer parameters. We hypothesized that this was due to the

complexity of the convolutional layer, and the VHLS performed worse when dealing with a

Table 8. Comparison between different FPGA synthesis of LeNet-5 layer by layer in terms of latency (ms).

Layer Base-line Proposed Base-line directive Proposed directive CPU ARM Cortex-A53 Comparing Proposed directive and CPU

Conv#1 7.364 4.738 0.027 0.0264 0.148±0.009 5.61x

Conv#2 13.059 5.369 0.122 0.119 0.684±0.009 5.75x

Fully connected#3 2.460 0.924 0.020 0.0147 0.173±0.002 11.77x

Fully connected#4 0.808 0.304 0.009 0.006 0.066±0.006 11.0x

Fully connected#5 0.067 0.042 0.004 0.002 0.004±0.0 2.0x

https://doi.org/10.1371/journal.pone.0251329.t008

Table 9. Comparison between different FPGA synthesis in terms of hardware utilization. The number inside parentheses indicates the percentage of hardware utiliza-

tion of Zynq UltraScale+ MPSoC ZCU102. In the Total row, some layers may not be included, such as the flatten, max-pooling, and batch normalization layers.

Layer Components Base-line Proposed Base-line directive Proposed directive

Conv#1 BRAM-18K 0 (0%) 0 (0%) 0 (0%) 0 (0%)

DSP48E 5 (0%) 4 (0%) 170 (7%) 136 (5%)

FF 591 (0%) 317 (0%) 71,343 (13%) 24,194 (4%)

LUT 814 (0%) 589 (0%) 45,469 (17%) 24,858 (9%)

Conv#2 BRAM-18K 0 (0%) 0 (0%) 0 (0%) 0 (0%)

DSP48E 5 (0%) 2 (0%) 70 (3%) 28 (1%)

FF 598 (0%) 254 (0%) 120,868 (22%) 47,089 (8%)

LUT 894 (0%) 668 (0%) 69,094 (25%) 43,888 (16%)

Fully connected#3 BRAM-18K 0 (0%) 0 (0%) 0 (0%) 0 (0%)

DSP48E 5 (0%) 2 (0%) 160 (6%) 64 (2%)

FF 542 (0%) 161 (0) 44,342 (8%) 24,294 (4%)

LUT 538 (0%) 302 (0%) 38,933 (14%) 21,869 (8%)

Fully connected#4 BRAM-18K 0 (0%) 0 (0%) 0 (0%) 0 (0%)

DSP48E 5 (0%) 2 (0%) 150 (6%) 60 (2%)

FF 566 (0%) 185 (0%) 31,682 (6%) 13,486 (2%)

LUT 544 (0%) 302 (0%) 27,134 (10%) 14,874 (5%)

Fully connected#5 BRAM-18K 0 (0%) 0 (0%) 0 (0%) 0 (0%)

DSP48E 5 (0%) 4 (0%) 140 (6%) 112 (4%)

FF 526 (0%) 227 (0%) 26,240 (5%) 12,891 (2%)

LUT 530 (0%) 304 (0%) 19,937 (7%) 11,570 (4%)

Total BRAM-18K 40 (2%) 25 (1%) 51 (3%) 29 (1%)

DSP48E 54 (2%) 43 (1%) 719 (29%) 429 (17%)

FF 8,228 (2%) 3,831 (0%) 302,914 (55%) 126,198 (23%)

LUT 14,360 (5%) 9,232 (3%) 214,386 (78%) 126,787 (46%)

https://doi.org/10.1371/journal.pone.0251329.t009

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 21 / 26

https://doi.org/10.1371/journal.pone.0251329.t008
https://doi.org/10.1371/journal.pone.0251329.t009
https://doi.org/10.1371/journal.pone.0251329


large number of for loops in the convolutional layer. With the directives, both Proposed and

Base-line significantly improved the latency; however, they also significantly increased the

hardware utilization. Compared with ARM Cortex-A53, we were able to reduce the latency 2.0

to 11.77 times depending on the type of layer.

Table 10 includes comparisons in term of latency of MPWNs, Rongshi et al. [26], GUIN-

NESS [25], and Cho et al. [27]. Rongshi et al. proposed a 32-bit floating-point LeNet-5 on

Xilinx Zybo Z7 board (zynq7020). Cho et al. proposed a fixed-point LeNet-5 model that targets

xczu9eg-ffvb1156-2-i. Cho et al. utilized 20-bit fixed-point on the first layer and 16-bit fixed-

point on the latter layers. GUINNESS is a graphical user interface for training BNN on a GPU

and deploying BNN on an FPGA. We utilized the GUINNESS from [42] to construct a BNN

with a default LeNet-5 configuration of GUINNESS. This BNN was set to target Zynq Ultra-

Scale+ MPSoC ZCU102 (xczu9eg-ffvb1156-2-i). All of the related works operate with the same

100 MHz frequency.

Note that there are serveral differences between our and related models. The first difference

is Rongshi et al. and Cho et al. applied the third layer as a convolutional layer instead of a fully-

connected layer that we utilized. The second one is the default setting of GUINNESS for

LeNet-5 is 64C3 − 64C3 − 64C3 − 32AP − 10FC, where 32AP is a global average pooling that

averages feature maps in width and height directions. The third one is Rongshi et al., and Cho

et al. did not apply batch normalization layers. The fourth difference is Cho et al. replaced

max-pooling layers with average pooling layers and utilized a Tanh activation function instead

of ReLU. The last one is GUINNESS and Cho et al. expect grayscale 32x32 images as inputs

instead of grayscale 28x28 images that we used. Our Proposed directive performed 11.62,

10.03, and 4.556 times less latency comparing Rongshi et al., GUINNESS, and Cho et al.,

respectively.

Hardware implementation. To implement the model, we exported our model in VHLS

as intellectual property (IP). We used Vivado 2019.2 to implement the exported IP to ZCU102.

The results of the implementation are provided in Tables 11 and 12. In Table 11, there is an

additional hardware resource which is the look-up table random-access memory (LUTRAM).

Comparing Tables 9 and 11, the synthesis and implementation displayed a different amount of

hardware utilization. Note that in Table 11, Cho et al. did not provide the hardware utilization

from the implementation. Therefore, we reported the Cho et al. synthesis results in Table 11.

In terms of Proposed and Proposed directive, the implementation exhibited significantly

reduced hardware utilization than the synthesis. Our Proposed reduced LUT 2.31 times,

LUTRAM 11.25 times, FF 2.89 times, BRAM 1.6 times, and DSP 1.25 times compared to Base-

line. Proposed directive further reduced LUT 2.59 times, LUTRAM 4.89 times, FF 2.92 times,

BRAM 1.76 times, and DSP 1.68 times compared with Base-line directive. Comparing with

Table 10. Comparison between baseline implementation of LeNet-5, our proposed method, and related works in

term of latency.

Latency (ms) Comparison with Baseline

Baseline 24.799 1x

Proposed 11.995 2.07x

Baseline directive 1.222 20.29x

Proposed directive 0.786 31.55x

Rongshi et al. [26] 9.135 2.715x

Cho et al. [27] 3.581 6.925x

GUINNESS [25] 7.882 3.146x

https://doi.org/10.1371/journal.pone.0251329.t010

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 22 / 26

https://doi.org/10.1371/journal.pone.0251329.t010
https://doi.org/10.1371/journal.pone.0251329


Table 11. Comparison between FPGA implementations of LeNet-5 in the term of hardware utilization. In an improvement factor column displays pairwise compari-

sons between Baseline with Proposed and Baseline directives with Proposed directives. All improvement factors from related works are compared with Baseline

directives.

Components Total amount Improvement factor

Baseline LUT 8,305 1.0x

LUTRAM 180 1.0x

FF 6,787 1.0x

BRAM 20 1.0x

DSP 55 1.0x

Proposed LUT 3,599 2.31x

LUTRAM 16 11.25x

FF 2,345 2.89x

BRAM 12.5 1.6x

DSP 44 1.25x

Baseline directive LUT 209,720 1.0x

LUTRAM 49,477 1.0x

FF 243,540 1.0x

BRAM 25.5 1.0x

DSP 719 1.0x

Proposed directive LUT 81,050 2.59x

LUTRAM 10,142 4.88x

FF 83,266 2.92x

BRAM 14.50 1.76x

DSP 429 1.68x

Rongshi et al. [26] LUT 14,659 14.31x

FF 14,172 17.18x

BRAM 119.5 0.2134x

DSP 125 5.752x

Cho et al. [27] LUT 32,589 6.435x

FF 33,585 7.251x

BRAM 95 0.2684x

DSP 143 5.028x

GUINNESS [25] LUT 5,034 41.66x

LUTRAM 278 178x

FF 4,417 55.14x

BRAM 23.5 1.085x

https://doi.org/10.1371/journal.pone.0251329.t011

Table 12. Comparison between implementations of LeNet-5 in terms of total on-chip power (W). The improve-

ment factor column displays a pairwise comparison between Baseline with Proposed and Baseline directives with Pro-

posed directives. All improvement factors from related works are compared with Baseline directives.

Total on-chip power (W) Improvement factor

Baseline 0.852 1.0x

Proposed 0.72 1.18x

Baseline directive 2.901 1.0x

Proposed directive 1.414 2.05x

Rongshi et al. [26] 1.8 1.612x

Cho et al. [27] - -

GUINNESS [25] 0.66 4.395x

https://doi.org/10.1371/journal.pone.0251329.t012

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 23 / 26

https://doi.org/10.1371/journal.pone.0251329.t011
https://doi.org/10.1371/journal.pone.0251329.t012
https://doi.org/10.1371/journal.pone.0251329


Rongshi et al., GUINNESS, and Cho et al., our Proposed directive utilizes more hardware uti-

lization except for BRAMs.

Table 12 presents a comparison in terms of power utilization. Proposed reduced the power

consumption of Baseline 1.18 times. However, Proposed directive further reduced the power

consumption 2.05 times compared to Base-line directive. Although our Proposed directive

consumed more hardware resources than Rongshi et al., our power consumption of Proposed

directive is less than Rongshi et al. 1.27 times. However, our Proposed directive still consumes

2.142 times more power consumption than GUINNESS.

Conclusion

In this study, we introduced MPWN, a QNN that jointly utilizes three weight spaces: floating-

point, binary, and ternary. We proposed a systematized search to find optimal MPWN combi-

nations with BO and the ASB score. To ensure each metric of ASB contains a positive correla-

tion with ASB, we introduced a min-max normalization to rescale each metric of ASB. To

accelerate the min-max normalization process, we provided estimating rules to estimate mini-

mum and maxmum values of each ASB metric using information from only three models. We

further evaluated previously proposed heuristic rules and the trade-off between heuristic rules

and BO search. Our hardware implementation of the MPWN exploited the weight space in the

MPWN with TBO and a specific data type. All of these elements demonstrated that the

MPWN can be implemented in an FPGA with significantly fewer hardware resources and

lower on-chip power consumption, and latency than a conventional 32-bit floating-point neu-

ral network.

Author Contributions

Conceptualization: Ninnart Fuengfusin.

Formal analysis: Ninnart Fuengfusin.

Funding acquisition: Hakaru Tamukoh.

Investigation: Ninnart Fuengfusin.

Methodology: Ninnart Fuengfusin.

Project administration: Hakaru Tamukoh.

Software: Ninnart Fuengfusin.

Supervision: Hakaru Tamukoh.

Validation: Ninnart Fuengfusin, Hakaru Tamukoh.

Writing – original draft: Ninnart Fuengfusin.

Writing – review & editing: Ninnart Fuengfusin, Hakaru Tamukoh.

References
1. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks.

In: Advances in neural information processing systems; 2012. p. 1097–1105.

2. Chen LC, Papandreou G, Schroff F, Adam H. Rethinking atrous convolution for semantic image seg-

mentation. arXiv preprint arXiv:170605587. 2017;.

3. Tan M, Pang R, Le QV. Efficientdet: Scalable and efficient object detection. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 10781–10790.

4. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Pro-

ceedings of the IEEE. 1998; 86(11):2278–2324. https://doi.org/10.1109/5.726791

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 24 / 26

https://doi.org/10.1109/5.726791
https://doi.org/10.1371/journal.pone.0251329


5. LeCun Y, Cortes C, Burges C. MNIST handwritten digit database. AT&T Labs [Online] Available: http://

yannlecuncom/exdb/mnist. 2010; 2:18.

6. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recogni-

tion challenge. International journal of computer vision. 2015; 115(3):211–252. https://doi.org/10.1007/

s11263-015-0816-y

7. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv

preprint arXiv:14091556. 2014;.

8. Han S, Pool J, Tran J, Dally W. Learning both weights and connections for efficient neural network. In:

Advances in neural information processing systems; 2015. p. 1135–1143.

9. Courbariaux M, Bengio Y, David JP. Binaryconnect: Training deep neural networks with binary weights

during propagations. In: Advances in neural information processing systems; 2015. p. 3123–3131.

10. Courbariaux M, Hubara I, Soudry D, El-Yaniv R, Bengio Y. Binarized neural networks: Training deep

neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:160202830.

2016;.

11. Li F, Zhang B, Liu B. Ternary weight networks. arXiv preprint arXiv:160504711. 2016;.

12. Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. arXiv preprint

arXiv:150302531. 2015;.

13. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. SqueezeNet: AlexNet-level accu-

racy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:160207360. 2016;.

14. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv preprint arXiv:170404861. 2017;.

15. Jacob B, Kligys S, Chen B, Zhu M, Tang M, Howard A, et al. Quantization and training of neural net-

works for efficient integer-arithmetic-only inference. In: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition; 2018. p. 2704–2713.

16. Ordaz JRG, Koch D. On the HLS Design of Bit-Level Operations and Custom Data Types. In: FSP

2017; Fourth International Workshop on FPGAs for Software Programmers. VDE; 2017. p. 1–8.

17. Xilinx VH. Vivado Design Suite User Guide-High-Level Synthesis; 2019.

18. Honda K, Tamukoh H. A Hardware-Oriented Echo State Network and its FPGA Implementation. Journal

of Robotics, Networking and Artificial Life. 2020; 7:58–62. https://doi.org/10.2991/jrnal.k.200512.012

19. Nakahara H, Yonekawa H, Fujii T, Sato S. A lightweight YOLOv2: A binarized CNN with a parallel sup-

port vector regression for an FPGA. In: Proceedings of the 2018 ACM/SIGDA International Symposium

on field-programmable gate arrays; 2018. p. 31–40.

20. Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: Proceedings of the IEEE conference on

computer vision and pattern recognition; 2017. p. 7263–7271.

21. Chu T, Luo Q, Yang J, Huang X. Mixed-precision quantized neural networks with progressively

decreasing bitwidth. Pattern Recognition. 2021; 111:107647. https://doi.org/10.1016/j.patcog.2020.

107647

22. Wang K, Liu Z, Lin Y, Lin J, Han S. Haq: Hardware-aware automated quantization with mixed precision.

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2019.

p. 8612–8620.

23. Liu H, Simonyan K, Yang Y. Darts: Differentiable architecture search. arXiv preprint arXiv:180609055.

2018;.

24. Umuroglu Y, Fraser NJ, Gambardella G, Blott M, Leong P, Jahre M, et al. Finn: A framework for fast,

scalable binarized neural network inference. In: Proceedings of the 2017 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays; 2017. p. 65–74.

25. Nakahara H, Yonekawa H, Fujii T, Shimoda M, Sato S. GUINNESS: A GUI based binarized deep neural

network framework for software programmers. IEICE TRANSACTIONS on Information and Systems.

2019; 102(5):1003–1011. https://doi.org/10.1587/transinf.2018RCP0002

26. Rongshi D, Yongming T. Accelerator Implementation of Lenet-5 Convolution Neural Network Based on

FPGA with HLS. In: 2019 3rd International Conference on Circuits, System and Simulation (ICCSS).

IEEE; 2019. p. 64–67.

27. Cho M, Kim Y. Implementation of Data-optimized FPGA-based Accelerator for Convolutional Neural

Network. In: 2020 International Conference on Electronics, Information, and Communication (ICEIC).

IEEE; 2020. p. 1–2.

28. Xiao H, Rasul K, Vollgraf R. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learn-

ing Algorithms; 2017.

29. Krizhevsky A, Nair V, Hinton G. The CIFAR-10 dataset. online: http://wwwcstorontoedu/kriz/cifarhtml.

2014;55.

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 25 / 26

http://yannlecuncom/exdb/mnist
http://yannlecuncom/exdb/mnist
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.2991/jrnal.k.200512.012
https://doi.org/10.1016/j.patcog.2020.107647
https://doi.org/10.1016/j.patcog.2020.107647
https://doi.org/10.1587/transinf.2018RCP0002
http://wwwcstorontoedu/kriz/cifarhtml
https://doi.org/10.1371/journal.pone.0251329


30. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent

neural networks from overfitting. The journal of machine learning research. 2014; 15(1):1929–1958.

31. Fuengfusin N, Tamukoh H. Mixed Precision Weight Networks: Training Neural Networks with Varied

Precision Weights. In: International Conference on Neural Information Processing. Springer; 2018.

p. 614–623.

32. LeCun Y, et al. LeNet-5, convolutional neural networks. URL: http://yannlecuncom/exdb/lenet. 2015;

p. 20.

33. Agnihotri A, Batra N. Exploring Bayesian Optimization. Distill. 2020.

34. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covari-

ate shift. arXiv preprint arXiv:150203167. 2015;.

35. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE

conference on computer vision and pattern recognition; 2016. p. 770–778.

36. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: An imperative style, high-

performance deep learning library. In: Advances in Neural Information Processing Systems; 2019.

p. 8024–8035.

37. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014;.

38. Bergstra J, Yamins D, Cox D. Making a science of model search: Hyperparameter optimization in hun-

dreds of dimensions for vision architectures. In: International conference on machine learning; 2013.

p. 115–123.

39. Xilinx V. Vivado Design Suite User Guide Implementation; 2019.

40. Xilinx P. PetaLinux Tools Documentation; 2018.

41. Xilinx S. SDSoC Environment User Guide; 2019.

42. Nakahara H, et al.. GUINNESS: A GUI based binarized Neural NEtwork SyntheSizer toward an FPGA;

2017. https://github.com/HirokiNakahara/GUINNESS.

PLOS ONE Mixed-precision weights network for field-programmable gate array

PLOS ONE | https://doi.org/10.1371/journal.pone.0251329 May 10, 2021 26 / 26

http://yannlecuncom/exdb/lenet
https://github.com/HirokiNakahara/GUINNESS
https://doi.org/10.1371/journal.pone.0251329

