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Abstract

Governments issue “stay-at-home” orders to reduce the spread of contagious diseases, but

the magnitude of such orders’ effectiveness remains uncertain. In the United States these

orders were not coordinated at the national level during the coronavirus disease 2019

(COVID-19) pandemic, which creates an opportunity to use spatial and temporal variation to

measure the policies’ effect. Here, we combine data on the timing of stay-at-home orders

with daily confirmed COVID-19 cases and fatalities at the county level during the first seven

weeks of the outbreak in the United States. We estimate the association between stay-at-

home orders and alterations in COVID-19 cases and fatalities using a difference-in-differ-

ences design that accounts for unmeasured local variation in factors like health systems

and demographics and for unmeasured temporal variation in factors like national mitigation

actions and access to tests. Compared to counties that did not implement stay-at-home

orders, the results show that the orders are associated with a 30.2 percent (11.0 to 45.2)

average reduction in weekly incident cases after one week, a 40.0 percent (23.4 to 53.0)

reduction after two weeks, and a 48.6 percent (31.1 to 61.7) reduction after three weeks.

Stay-at-home orders are also associated with a 59.8 percent (18.3 to 80.2) average reduc-

tion in weekly fatalities after three weeks. These results suggest that stay-at-home orders

might have reduced confirmed cases by 390,000 (170,000 to 680,000) and fatalities by

41,000 (27,000 to 59,000) within the first three weeks in localities that implemented stay-at-

home orders.

Introduction

Coronavirus disease 2019 (COVID-19) first appeared as a cluster of pneumonia cases in

Wuhan, China on December 31, 2019 [1] and was declared a global pandemic by the World

Health Organization (WHO) on March 11, 2020 [2]. As of May 27, 2020, the European
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Centers for Disease Control reports that worldwide there have been 5,555,737 confirmed cases

of COVID-19, resulting in 350,212 deaths [3].

The United States has both the highest number of cases (1,681,212) and deaths (98,916) due

to the disease [3]. As a result, the U.S. government has been widely criticized for inaction in

the early stages of the pandemic [2]. Although the first confirmed case of COVID-19 was

reported to the Centers for Disease Control on January 21, 2020 and documented transmission

commenced immediately [4], a national state of emergency was not declared until nearly two

months later on March 13. At that time, the only mandatory response at the national level was

international travel restrictions [5].

While the national government has the authority to act, the United States is a federal politi-

cal system where public health is normally the purview of the fifty states. Furthermore, each

state often delegates health authority to cities and/or counties, geographic political units nested

within states. As a result, responses to COVID-19 varied across states and counties and led to

spatial and temporal variation in implementation of mitigation procedures. This variation in

policy responses has likely contributed to significant variation in the incidence of cases and

fatalities—as well as the downstream social and economic effects of the disease—across juris-

dictions in the United States [6–11].

Numerous government policies have been proposed and used to mitigate the spread and

consequence of pandemic diseases like COVID-19, ranging from investments in medical test-

ing, contact tracing, and clinical management, to school closures, banning of mass gatherings,

quarantines, and population stay-at-home orders [12]. China’s extensive interventions appear

to have been successful at limiting the outbreak [13, 14]. These include quarantines both for

those diagnosed and those undiagnosed but who had been in Hubei province during the out-

break [15], and restrictions on travel to and from affected areas [16]. In contrast, school clo-

sures across East Asia were estimated to be much less effective [17].

With estimates that a large portion of transmissions occur from pre-symptomatic and

asymptomatic individuals [18], epidemiological simulations suggest that quarantines of symp-

tomatic individuals alone will be insufficient to halt the pandemic [19]. This has led to wide-

spread adoption of population-wide policies to dramatically reduce social contact. A crucial

question of interest to public policymaking is the effectiveness of these different mitigation

policies in slowing transmission rates of the virus [20, 21].

Here, we study the role of stay-at-home orders, perhaps the most common policy interven-

tion in the United States aimed at reducing the transmission of SARS-COV-2. Stay-at-home

orders require citizens to shelter in their residence with very few exceptions and have typically

been implemented along with school closures, bans on mass gatherings, and closure of non-

essential businesses. These policies are associated with a significant reduction in observed

mobility [22], and early evidence from New York City and California suggests that they can be

effective in reducing case growth in the United States [8, 23].

A variety of statistical challenges confront estimation of the effectiveness of non-pharma-

ceutical policy interventions on SARS-COV-2 transmission. The most significant of these is

the problem of treatment endogeneity. Because policymakers implement interventions by

choice, implementation might be correlated with disease progression. Population-wide inter-

ventions might be more likely to occur the more dramatic the pandemic. This “selection into

treatment” problem may confound the influence of the policy intervention on disease progres-

sion with the natural course of the pandemic.

Existing work aimed at estimating the causal effects of stay-at-home orders attempts to

overcome this challenge by employing an event-study design, comparing the progression of

the disease over time in counties that implemented stay-at-home orders before and after the

order was implemented [24]. Because such designs estimate the effect of the intervention
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based on within-unit changes in the outcome, they do not account for the possibility that

counties that implemented stay-at-home orders may differ systematically from counties that

did not. Consequently, it is possible that the effects of the policy estimated in previous work

may be due to unobserved characteristics of implementing counties that correlate with disease

dynamics, rather than the causal effects of the stay-at-home orders themselves.

To illustrate this issue, consider the following hypothetical scenario. Imagine that stay-at-

home orders have no effect on disease progression, but that individual behavioral changes—

unrelated to formal policy restrictions—do limit transmission. Suppose the March 13 declara-

tion of a national emergency due to COVID-19 induced some counties to issue stay-at-home

orders and also induced millions of Americans nationwide to—independent of orders—

change their behavior from March 13 forward. Suppose we collected data on rates of transmis-

sion before and after stay-at-home orders in issuing counties, only, to conduct an event study

design to estimate the effect of such orders pre-order versus post-order. We would see that

SARS-COV-2 transmission rates fell following implementation of stay-at-home orders. And—

absent accounting for reduced transmission due to individual behavioral changes nationwide

—we would erroneously conclude that stay-at-home orders effectively and substantively

changed transmission dynamics.

Identifying the effect of orders using over-time changes in counties that issued stay-at-

home orders could induce the kind of bias we described in the previous paragraph. Even if

these designs include never-order units in their sample, the inclusion of unit fixed effects

means that units that never change policy do not contribute to the estimated effects of that pol-

icy. To overcome this identification challenge, we implement a difference-in-differences

approach that uses the hundreds of counties that do not issue a stay-at-home order during our

time period of study as explicit controls. We group counties by the calendar date of their issu-

ance of stay-at-home orders. For each calendar date-of-order group, we compare case progres-

sion following the stay-at-home order to case progression in the no-stay-at-home order

control counties for each calendar date subsequent to that group’s order date. Our method

identifies the causal effects of stay-at-home orders only under the assumption that the disease

would have progressed in implementing counties in the same way as it did in fact progress in

non-implementing counties, had counties with stay-at-home orders never issued the orders.

This approach complements the event-study approach. The event-study approach is a com-

parison of early and late adopters. The estimand of the comparison of early and late adopters is

the impact on cases and fatalities in (eventually) adopting counties if orders had been adopted

earlier. Our approach, in contrast, compares adopters and non-adopters by calendar date to

hold constant the national context. The estimand of this comparison is the impact on cases

and fatalities in non-adopting counties if orders had been adopted there on the calendar date

of comparison.

The relevant estimand depends upon the policy question of interest. However, if both

designs return similar empirical results, our confidence in the relationship between stay-at-

home orders and reductions in COVID-19 cases and fatalities should correspondingly

increase. Our hope is that our empirical approach can serve as a complement to event-study

designs such Courtemanche et al. (2020) [24], demonstrating the robustness of empirical

results across varying identifying assumptions. Our figures below further highlight the impor-

tance of appropriately controlling for nationwide context.

One option for analysis is to estimate the effects of policy interventions relative to the local

date of the first case. However, time since local onset is confounded with the national informa-

tional environment and corresponding individual behavioral changes. Our methodological

approach is to use calendar date to control for the national stimulus on individual behavioral

change.
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Two other challenges to estimation should be acknowledged. First, stay-at-home orders are

sometimes issued concurrently to other policy interventions such as school closures, restaurant

and bar closures, and masking requirements. The estimates we present below are best inter-

preted as a compound treatment of stay-at-home orders plus the weighted average of the corre-

lated interventions in our sample. Second, county-specific policies might spill over to counties

geographically adjacent to treated counties, e.g. other counties in the same commuting zone.

We note that positive spillovers to adjacent counties who do not issue orders would attenuate

estimated effects if the adjacent counties are in the never-order control group, meaning our esti-

mates here would be downward biased. Given our grouping strategy, such spillovers would not

influence our estimated effects if adjacent counties issued orders on different calendar dates,

which is a benefit of our design relative to a standard difference-in-differences approach.

Results

We collected data on stay-at-home orders, COVID-19 confirmed cases, rates of testing, and

fatalities by day and county throughout the United States (see Methods) from March 24th

through May 7th, 2020. Fig 1 shows that the number of cases and fatalities grew exponentially

from March 1 to May 3, 2020. It also suggests that efforts to “flatten the curve” initiated in

mid-to-late March helped to reduce the rate of exponential growth.

Fig 2A shows the distribution of stay-at-home order dates. By April 7, 2020, 18 states (1,451

counties) had different counties with different order dates, 27 states and the District of Colum-

bia had statewide orders with no local variation (1,307 counties) and 5 states (386 counties)

had no order in place. Fig 2B shows how the mean county-level weekly growth rate in

Fig 1. (a) Log of cumulative confirmed COVID-19 cases by county and date. (b) Log of cumulative confirmed COVID-19 fatalities by county and date. Each

panel plots the time series, at the county-level, of cumulative cases and cumulative deaths. As can be seen, some of the counties with earliest detection of cases

observed the highest total number of cases as well as some of the steepest growth in cases. Lines are gradient-colored by date of first case and date of first

fatality, respectively (dark blue = early to orange = late).

https://doi.org/10.1371/journal.pone.0248849.g001
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COVID-19 cases changed relative to the date the stay-at-home order went into effect in coun-

ties that implemented a stay-at-home order (this depicts results similar to what would be

obtained by an event study approach). If one evaluated only the information presented in Fig

2B, one might conclude that stay-at-home orders produced substantial decline in case growth.

But without controlling for changes in case growth in counties with no stay-at-home orders,

this conclusion might be biased either upwards or downwards in magnitude by behavioral

changes correlated with orders.

The growth rate of cases began to decline following stay-at-home orders. In Fig 3, we group

counties by the date a stay-at-home order was implemented and show how confirmed cases

and fatalities observationally change with respect to the order. For example, the top blue curve

in both panels refers to all counties with stay-at-home orders enacted on March 23 or 24, nota-

bly including the epicenter of the pandemic in New York. We then plot the set of counties that

did not issue any stay-at-home order during this time period with a thicker orange line to

highlight how this group of counties differs from those with an order across the same calendar

dates. Although the curves have been “flattened” in all counties, the flattening in counties with-

out an order is notably slower, particularly with respect to cases.

Table 1 shows growth in log weekly cases both on the date an order goes into effect and 21

days after the order. Each row presents corresponding weekly growth on the same dates for

the set of all counties where no such order ever went into effect. For example, the first row

shows that weekly cases for the six counties who issued an order on March 17 grew from

March 10 to March 17 by 1.02 units on a log scale. For the 386 counties that would not at any

Fig 2. (a) Distribution of stay-at-home orders at the county level by date in the United States. There is substantial calendar date variation in the timing of these

orders over an approximately three-week period. (b) Mean county-level weekly growth in total confirmed COVID-19 cases in the United States by the number

of days before or after a stay-at-home order. Each point represents the weekly mean growth rate of cases for the counties with stay-at-home orders on a specific

day relative to the date of that county’s stay-at-home order issuance. Counties that never had a stay-at-home order are not included in this panel. As can be

seen, after stay-at-home orders, case growth declines substantially. However, without comparing to counties that never issued stay-at-home orders, this

apparent decline due to stay-at-home orders may be confounded by contemporaneous changes in individual behaviors, nationally.

https://doi.org/10.1371/journal.pone.0248849.g002

PLOS ONE Stay-at-home orders associate with subsequent decreases in COVID-19 cases and fatalities in the United States

PLOS ONE | https://doi.org/10.1371/journal.pone.0248849 June 10, 2021 5 / 15

https://doi.org/10.1371/journal.pone.0248849.g002
https://doi.org/10.1371/journal.pone.0248849


point in our time period issue such an order, weekly case growth from March 10 to March 17

averaged 1.39 units on a log scale. Twenty-one days after the order, case growth at stay-at-

home counties had declined to 0.71 and in control counties to 1.10.

We group counties by the day their order went into effect to control for the national infor-

mation environment. We assume individuals in all geographies respond to information about

the pandemic whether or not their county issues an order. What this grouping asks is if—con-

ditional on the national news environment on a specific calendar day—case and fatality growth

patterns differ by whether the county issued a local stay-at-home order.

Although Table 1 shows that growth slowed for all counties over each 21 day period, with

or without an order, the last column shows that it slowed faster for every single county group

with an order than for the counties that did not issue an order. This comparison shows that

while populations in all counties experienced a reduction in pandemic growth, counties that

issued a stay-at-home order had growth slow more quickly than counties that did not. This

explicit comparison between ‘treated’ and ‘control’ counties allows for a more explicit evalua-

tion of the effects of the orders and provides further—and differentiated—evidence that the

orders themselves correspond to changing infection patterns [24].

Fatalities follow the same pattern as cases (Table 2). Once again, growth slows for all coun-

ties, but the rightmost column shows that 1,931 of the 2,647 counties with orders are in groups

that decline faster than counties without orders.

Although these results suggest that stay-at-home orders worked, one must be cautious in

drawing causal inference from this approach. A number of factors might confound this associ-

ation in the raw data. For example, stay-at-home orders might closely follow earlier targeted

Fig 3. Weekly (a) newly-confirmed COVID-19 cases in the United States and (b) confirmed fatalities. Each line represents an aggregation of counties that

issued stay-at-home orders during the same two-day period (blue) or did not issue an order (orange). Raw observations are grouped to two-day pairs and

plotted along calendar dates to facilitate visualization of the potential for contemporaneous national trends between stay-at-home counties and counties with

no stay-at-home orders. Dotted vertical lines indicate the calendar date in which each county group implemented their stay-at-home policies.

https://doi.org/10.1371/journal.pone.0248849.g003
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mitigation measures at the national level (such as travel restrictions issued by the State Depart-

ment or recommendations by the CDC on mass gatherings). There might also exist spurious

correlation between local factors (such as the date of onset of the disease or the capacity of the

health system) and the timing of stay-at-home orders. To control for these factors, we apply a

two-way fixed-effects difference-in-differences model to the data (see Methods).

Table 3 shows results from three models for growth in weekly confirmed cases that estimate

the effect of stay-at-home orders 7 days, 14 days, and 21 days after the orders go into effect. A

fourth model shows an estimate of the association between orders and growth in weekly fatali-

ties after 21 days. All models also control for changes in the availability of testing (see Meth-

ods). The key estimates are in the top row of Table 3, and exponentiating these coefficients

(exp(β) − 1) allows us to interpret them as percentage changes in weekly cases. They suggest

that stay-at-home orders are associated with a 30.2 percent (10.5 to 45.6) reduction in weekly

incident cases after one week, a 40.0 percent (22.9 to 53.2) reduction after two weeks, and a

48.8 percent (35.8 to 62.5) reduction after three weeks. Stay-at-home orders are also associated

with a 59.8 percent (32.3 to 76.1) reduction in weekly fatalities after three weeks.

Fig 4 shows estimated coefficients from the difference-in-differences model for change in

case (panel a) and fatality (panel b) growth on each day before and after the day a stay-at-home

order goes into effect. The prior day estimates serve as a placebo test to see if counties that

Table 1. Comparison of weekly changes in log daily confirmed cases of COVID-19 between 2,647 counties with stay-at-home orders and 386 counties without

orders relative to the same date for each unique stay-at-home date.

One Week Change in Log Weekly Cases

Counties With Stay-

at-Home Order

Counties Without

Stay-at-Home Order

Date Stay-at-

Home Order

Went Into Effect

Number of

Counties

On Day

of Order

21 Days

After

Order

On Day

of Order

21 Days

After

Order

21-Day Difference in

Change, With Order

21-Day Difference in

Change, Without

Order

Difference in Difference,

Counties With Orders and

Without Orders

3/17/20 6 1.02 0.71 1.39 1.10 -0.31 -0.29 -0.02

3/19/20 52 2.00 1.00 1.34 0.89 -1.00 -0.45 -0.55

3/21/20 104 2.52 0.88 1.52 0.66 -1.64 -0.85 -0.79

3/22/20 23 2.87 0.99 1.59 0.66 -1.88 -0.92 -0.96

3/23/20 209 2.63 0.41 1.50 0.54 -2.22 -0.96 -1.26

3/24/20 258 2.20 0.57 1.61 0.50 -1.63 -1.10 -0.53

3/25/20 308 1.93 0.47 1.65 0.46 -1.46 -1.19 -0.27

3/26/20 77 1.67 0.22 1.42 0.39 -1.45 -1.02 -0.43

3/27/20 136 1.52 0.16 1.42 0.34 -1.36 -1.08 -0.28

3/28/20 174 1.40 0.33 1.35 0.33 -1.07 -1.02 -0.04

3/29/20 38 1.32 -0.10 1.23 0.25 -1.41 -0.98 -0.44

3/30/20 324 1.35 0.32 1.29 0.28 -1.03 -1.01 -0.02

3/31/20 31 1.54 0.58 1.10 0.28 -0.96 -0.82 -0.14

4/1/20 126 1.10 -0.13 0.93 0.31 -1.24 -0.62 -0.61

4/2/20 274 1.13 0.17 0.89 0.30 -0.97 -0.58 -0.38

4/3/20 290 0.83 0.08 0.78 0.32 -0.75 -0.46 -0.29

4/4/20 66 0.54 -0.04 0.66 0.38 -0.59 -0.29 -0.30

4/6/20 104 0.58 -0.17 0.54 0.40 -0.76 -0.14 -0.61

4/7/20 44 0.61 -0.05 0.50 0.46 -0.66 -0.04 -0.62

Although mean rates of change decline for all counties, the rightmost column shows that all of the 2,647 counties with orders are in groups that decline faster than

counties without orders.

https://doi.org/10.1371/journal.pone.0248849.t001
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issue orders have differential case growth relative to counties that do not issue an order in the

days prior to the order.

Unlike the raw data shown in Tables 2 and 3, the estimates here are adjusted for unobserved

factors that could influence the course of the disease that vary over time and between counties.

Notice that the point estimates in Fig 4 before the order goes into effect exhibit variability with

confidence intervals that span zero. This suggests that county-group-level differences in case

and fatality growth are not strongly related to the timing of stay-at-home orders, helping to

rule out the possibility that the later associations we see are driven by reverse-causality or dif-

ferential trends.

It is important to remember that one unit of a logarithm is an order of magnitude, and as

such these results suggest a large association between stay-at-home orders and alterations in

cases and fatalities. What were the policy consequences of these interventions? We use the

model estimates from Table 3 to estimate cases and deaths for each county group in an alterna-

tive world where no orders were issued. Our model estimates how much case growth may

have declined in counties that issued orders (see Methods). To estimate cases in a counterfac-

tual setting without orders, we assume that growth in the absence of a stay-at-home order

would have followed the trajectory estimated for no-stay-at-home counties by the model. That

is, imagine a simple model that estimated case growth was 10% lower in counties with orders.

To estimate counterfactual cases, we would take the observed case counts in each county on

Table 2. Comparison of weekly changes in log daily fatalities due to COVID-19 between 2,647 counties with stay-at-home orders and 386 counties without orders

relative to the same date for each unique stay-at-home date.

One Week Change in Log Weekly Fatalities

Counties With Stay-

at-Home Order

Counties Without

Stay-at-Home Order

Date Stay-at-

Home Order

Went Into Effect

Number of

Counties

On Day

of Order

21 Days

After

Order

On Day

of Order

21 Days

After

Order

21-Day Difference in

Change, With Order

21-Day Difference in

Change, Without

Order

Difference in Difference,

Counties With Orders and

Without Orders

3/17/20 6 1.10 0.12 -0.69 0.94 -0.98 1.63 -2.62

3/19/20 52 1.20 0.76 -0.69 0.43 -0.45 1.12 -1.57

3/21/20 104 2.56 0.82 -0.69 0.71 -1.74 1.40 -3.14

3/22/20 23 1.85 0.63 0.00 0.40 -1.21 0.40 -1.61

3/23/20 209 1.81 0.33 0.00 0.34 -1.48 0.34 -1.82

3/24/20 258 3.62 0.61 1.61 0.16 -3.01 -1.45 -1.56

3/25/20 308 2.01 0.43 1.61 0.33 -1.59 -1.28 -0.31

3/26/20 77 1.61 0.10 1.79 0.47 -1.51 -1.32 -0.19

3/27/20 136 1.10 -0.14 2.48 0.16 -1.24 -2.32 1.08

3/28/20 174 2.25 0.28 2.71 0.29 -1.98 -2.41 0.44

3/29/20 38 1.50 0.12 2.08 0.26 -1.39 -1.82 0.43

3/30/20 324 0.80 0.34 2.40 0.31 -0.46 -2.09 1.63

3/31/20 31 1.28 0.01 1.61 0.49 -1.27 -1.12 -0.14

4/1/20 126 1.72 0.05 1.89 0.32 -1.67 -1.57 -0.10

4/2/20 274 1.66 0.44 1.92 0.16 -1.22 -1.76 0.54

4/3/20 290 1.12 0.06 1.07 0.34 -1.06 -0.73 -0.33

4/4/20 66 1.86 0.27 0.96 0.18 -1.59 -0.77 -0.81

4/6/20 104 0.77 -0.13 0.92 0.23 -0.90 -0.69 -0.21

4/7/20 44 0.65 0.40 0.94 0.02 -0.26 -0.92 0.67

Although mean rates of change decline for all counties, the rightmost column shows that 1,931 of the 2,647 counties with orders are in groups that decline faster than

counties without orders.

https://doi.org/10.1371/journal.pone.0248849.t002
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the day of the order and apply a growth rate 10% lower than observed to estimate what cases

would have actually looked like. Our actual model is more complicated than this, estimating

different order effects for different county groups, but this represents the basic idea.

Using the coefficient estimates in Table 3, we calculate the expected value of cases for coun-

ties that did issue orders where the indicator variable set to zero (no order) rather than one.

This is the model-based estimate of the case progression absent an order. We use the upper

and lower bounds of the coefficient confidence intervals to calculate upper and lower bounds

on the expected counterfactual case counts. These results suggest that stay-at-home orders

reduced confirmed cases nationwide by 390,000 (170,000 to 680,000) and fatalities by 41,000

(27,000 to 59,000) within the first three weeks. These estimates suggest reductions in cases of

25% and in fatalities of 35%, respectively. As with all counterfactual projections, our estimates

here rely on the estimating assumptions built into our empirical analysis and should be inter-

preted accordingly.

Discussion

The results here provide additional evidence that stay-at-home orders in the United States may

be effective in limiting the spread of COVID-19 and indicate that physical distancing measures

may work to “flatten the curve.” The results also suggest that stay-at-home orders are associated

with a dramatic reduction in the number of cases and fatalities that result from the disease.

With that said, we note certain limitations in our analysis. Stay-at-home policies are ulti-

mately assigned endogenously so, as with any observational study, we cannot say for certain

that the associations we have measured are the result of a causal effect. Our tests of reverse

Table 3. Difference-in-difference weighted least squares regression results.

Dependent Variable: One Week Change in Log Weekly Confirmed Cases Dependent Variable:
One Week Change in
Log Weekly Fatalities

Model 1 Model 2 Model 3 Model 4
7 Days After 14 Days After 21 Days After 21 Days After
Estimate CI Estimate CI Estimate CI Estimate CI

Difference Between Counties With and Without and Order,
After the Order

-0.302 [-.105, -.456] -0.400 [-.229, -.532] -0.488 [-.358, -.625] -0.598 [-.323, -.761]

Mean Difference Between Counties With and Without an
Order

0.462 [.213, .763] 0.462 [.139, .877] 0.405 [.050, .880] 0.896 [.104, 2.256]

Mean Difference Before and After the Order -0.213 [-.320, -.090] -0.237 [-.441, .043] 0.209 [-.077, .585] -0.874 [-.874, -.874]

One Week Change in Log Weekly Tests Performed 0.234 [-.097, .685] 0.568 [.101, 1.233] 1.340 [.823, 2.003] -0.719 [-.911, -.117]

Adjusted R2 0.82 0.81 0.85 0.35

Estimates are reported in exponentiated form (exp(β) - 1), which means that they can be interpreted as percentage changes in weekly cases. For example, a coefficient of

-0.302 represents a 30.2% reduction. CI values represent 95% confidence intervals around the estimates. The first row shows the estimated difference-in-differences

treatment effect of stay-at-home orders on log weekly confirmed COVID-19 cases after 7 days (Model 1), 14 days (Model 2), and 21 days, and effect on log weekly

COVID-19 fatalities after 21 days (Model 4). The results in row one are the composition of two differences, across the treatment and control, and before and after the

treatment was deployed. The subsequent two rows of the table provide estimates for each of the two dimensions of differencing separately. The second row depicts the

mean difference between counties with and without an order (treatment vs. control). The third row depicts the mean difference before and after the order for both

treatment and control counties (pre vs. post). The fourth row depicts the coefficients associated with our control variable of change in the log of weekly tests performed.

Results for all models are for two observations each (one on the date of the order and one after the order) for 2,647 counties grouped by date of order (N = 22), and

paired with two observations each for 386 counties on the same dates where no order was issued. All 88 county-group observations are weighted by the number of

counties per group, fixed effects for county group and date are included in each model, and standard errors are clustered by group. These models control for all fixed

factors that vary between counties and factors that vary over time at the national level.

https://doi.org/10.1371/journal.pone.0248849.t003
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causality suggest that stay-at-home orders influence case growth and not the other way

around, but there is no way around the fact that these are observational data from which causal

estimates are notoriously difficult to obtain.

Our dependent variables—cases and fatalities—are based on incomplete data. It is well-

known that rates of testing in the United States were extremely low in the early part of the pan-

demic [2, 25], so measures of cumulative cases and fatalities over time probably increased

faster than the disease itself due to the addition of previously undetected infections. And many

cases and fatalities may have gone undetected entirely.

Our independent variable, stay-at-home order status, measures a policy intervention that

was often implemented simultaneously or within days of several other local interventions,

such as bans on mass gatherings and closures of schools, non-essential businesses, and/or pub-

lic areas. Given the uncertainty about how many days infected individuals are contagious both

before and after the onset of symptoms, efforts to generate a sharp estimate of the effects of

policies that were implemented within days of each other are difficult. Our analysis suggests

these other local interventions might also have an effect on cases and fatalities, as we observe

reductions in cases and fatalities just a few days subsequent to stay-at-home orders. In addi-

tion, we see significant reductions in the growth rate of cases and fatalities within days of the

order. This is in spite of the fact that case identification during the early part of our observa-

tions was based on tests that often took a week to be resolved.[2, 24]

With our current empirical approach we cannot perfectly separate the effects of other local

interventions from that of stay-at-home orders. This means that our estimates should properly

be interpreted as the effect of stay-at-home orders bundled with effects of correlated local

Fig 4. Estimated association between stay-at-home orders and one week change in log weekly confirmed COVID-19 cases (a) and COVID-19 fatalities (b), by

the number of full days since the orders were issued. Estimates are derived from fixed-effects regression models that control for county-group level and date

fixed effects and for correlated observations with cluster-robust standard errors at the county-group level (see Methods). Blue dotted lines represent 95%

confidence intervals.

https://doi.org/10.1371/journal.pone.0248849.g004
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interventions. Our controls are the set of counties that did not issue mandatory orders, but in

those localities residents may have voluntarily changed their social behaviors. As such, our esti-

mates are the difference between the effects of an average bundle of changes in counties that

issued orders relative to an average bundle of changes in counties that did not. Because stay-at-

home orders—and other policy interventions—were not assigned in a randomized factorial

design and were instead largely used as a bundled intervention, it may be ultimately impossible

to isolate empirically the individual effects of each specific intervention on cases and fatalities.

One final limitation is that we assume the effects of stay-at-home orders between localities

are independent, but it is likely that significant spillovers exist. Consider the effect of the epi-

demic in New York City on neighboring counties in New Jersey, Connecticut, and as far away

as Rhode Island. Or the effect of Mardi Gras in Louisiana or Spring Break in Florida on a vari-

ety of locales throughout the United States. This suggests significant spillover of infections. To

the extent stay-at-home orders likewise spill over to other localities—as seems reasonable to

assume—we have likely underestimated the effect of stay-at-home orders because control

counties are partially treated by connections to counties with orders.

It is important to note that COVID-19 cases and fatalities continue to be elevated in many

areas in the United States and the pandemic is ongoing at time of publication. Our data are

limited to the period under study here. There is much still to be done, and we are hopeful that

the work here will help our fellow scientists, policymakers, and the public-at-large to plan for

the next steps in managing this disease.

Methods

Data

The time and date of county-level “stay-at-home” or “shelter-in-place” orders for each state

and locality were aggregated and reported on a web page maintained by the New York Times
starting on March 24, 2020 [26]. As new orders went into effect, this page was updated. We

checked it once daily to update the data through May 7, 2020. In some cases a statewide order

was reported with reference to earlier city-level or county-level orders in the state without

specifying where they occurred. In those cases, we searched local news outlets to find refer-

ences to official city and county orders in the state that preceded the statewide order. For each

county in each state we recorded the earliest time and date that a city, county, or statewide

order came into effect.

County-level data on cumulative COVID-19 confirmed cases and fatalities were also aggre-

gated daily by the New York Times [27]. We discarded all observations where cases were not

assigned to a specific county (these account for 0.8% of total cases). We retained observations

where cumulative cases declined from one day to the next due to official revisions to the counts

(0.8% of cases).

Availability of tests for COVID-19 in the United States has not been uniform over the date

range of the study [25]. To mitigate the effect of changes in rates of testing on our measure of

both confirmed cases and fatalities, we also collected data on and control for the number of

tests administered each day. This information is not currently available for each county, but it

is available for each state by date from the COVID Tracking Project [28]. When we aggregated

observations into county groups we measured the weighted mean of these state-level tests,

where the weights are the number of counties from a county group in each state.

Estimation

In our data, we observe cases and fatalities y for each county, indexed by k and date, indexed

by t. We would like to compare counties with orders to those without, so we aggregate cases
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and fatalities into county groups c. Each county group includes all counties that implement

stay-at-home policies on the same calendar date. This includes 22 groups of counties that each

chose to issue a stay-at-home order on a unique date and one group that never issued a stay at

home order. Since both cases and fatalities grow exponentially in our data, we measure the

rate of change as the difference in log weekly counts and we add 1 to ensure the log is defined:

Dyct ¼ ln
�X

k2c;t2f� 6;0g
yct þ 1

�
� ln

�X

k2c;t2f� 13;� 7g
yct þ 1

�
: ð1Þ

Because the population is essentially fixed in each county during this short time period, our

measure of the dependent variable is equivalent to changes per capita.

For each of the 22 county groups where an order was enacted (xc = 1), we include in the

data observations from two periods, one on the date of the stay-at-home order (pct = 0) and

one on a date d days in the future (pct+d = 1). For comparison, we also include two observations

from the group that had no order (xc = 0) on the same dates t and t + d. We consider different

values of d as the timespan of infection is not known. This yields a total of 88 observations for

each scalar value d that we consider.

We model the effect of stay-at-home orders with a two-way fixed-effects weighted least

squares regression model: [29]

Dyct ¼ ac þ tt þ b1xc þ b2pct þ b3xctpct þ uct: ð2Þ

A strength of this model is that fixed effects αc control for all time-invariant features of each

county group that might drive rates of change in cases and fatalities [30]. For example, each

county has its own age profile, socioeconomic status, local health care system, base rate of pop-

ulation health, and date on which a first case of COVID-19 was observed. Additionally, time

fixed effects τt control for factors that vary over time [30]. For example, case rates could be

affected by changes in the availability of testing nationally, in social behaviors influenced by

daily events reported in the media, and national-level policies that vary from one day to the

next.

Including β1xc allows us to control for the overall difference between counties that ever had

an order and those that did not. Similarly, β2pct allows us to control for the overall difference

between period 1 and period 0. Including the interaction of these two variables xctpct allows us

to estimate β3, the difference in the differences between counties that had an order and those

that did not. This estimate captures the causal effect of stay-at-home orders on cases and fatali-

ties under one assumption. The assumption is that counties that implement orders on a spe-

cific date would have had similar changes in cases as counties that did implement orders if the

implementing counties had not issued the order. This is the standard parallel trends assump-

tion of difference-in-difference models.

Finally, we weight each county group observation by the number of counties and we cluster

standard errors uct at the county group level. County groups with more counties have more

weight than those with fewer counties. This adjusts the estimated standard errors for unob-

servable factors correlated within county groups and allows interpretation of the marginal

effects at the county level.

We can examine the temporal dynamics of stay-at-home orders by repeating the regression

model for different values of d days between the date of the order and the later post-treatment

period. We can also let d be negative to see if there are systematic differences in cases and fatal-

ities between counties with and without orders prior to the date orders go into effect. This

allows us to test whether differences in cases and fatalities might cause changes in the date an

order is enacted, rather than the other way around. Due to data availability constraints, the full
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range of possible days that we can model is d � {−14, 26}. Estimates for these models for both

cases and fatalities are shown in Fig 4.

We also use the regression results to estimate a counterfactual number of cases and fatalities

possibly prevented by stay-at-home orders. Since β3 is the estimated difference in change in

log weekly counts, the counterfactual difference in unlogged counts is simply [exp(β3)−1]

times the observed weekly count. We calculate this separately for each county group for week

1 using the model where d = 7 and we repeat for week 2 (model d = 14) and week 3 (model

d = 21), summing over all 22 county groups and all 3 weeks. We incorporate the confidence

intervals surrounding β3 in order to produce upper and lower bound for our counterfactual

estimates, respectively.
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