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Abstract

Background

COVID-19 test sensitivity and specificity have been widely examined and discussed, yet

optimal use of these tests will depend on the goals of testing, the population or setting, and

the anticipated underlying disease prevalence. We model various combinations of key vari-

ables to identify and compare a range of effective and practical surveillance strategies for

schools and businesses.

Methods

We coupled a simulated data set incorporating actual community prevalence and test per-

formance characteristics to a susceptible, infectious, removed (SIR) compartmental model,

modeling the impact of base and tunable variables including test sensitivity, testing fre-

quency, results lag, sample pooling, disease prevalence, externally-acquired infections,

symptom checking, and test cost on outcomes including case reduction and false positives.

Findings

Increasing testing frequency was associated with a non-linear positive effect on cases

averted over 100 days. While precise reductions in cumulative number of infections

depended on community disease prevalence, testing every 3 days versus every 14 days

(even with a lower sensitivity test) reduces the disease burden substantially. Pooling pro-

vided cost savings and made a high-frequency approach practical; one high-performing

strategy, testing every 3 days, yielded per person per day costs as low as $1.32.

Interpretation

A range of practically viable testing strategies emerged for schools and businesses. Key

characteristics of these strategies include high frequency testing with a moderate or high
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sensitivity test and minimal results delay. Sample pooling allowed for operational efficiency

and cost savings with minimal loss of model performance.

Introduction

As schools and businesses re-open and attempt to stay open, promptly detecting people with

infectious COVID-19 is essential, especially as the risk of transmission may be expected to

increase as contact networks increase in size and complexity [1, 2]. Recommended actions to

attenuate spread include symptom checking, monitoring underlying community prevalence,

and responsive policy adjustment. In addition to robust public health measures, successful

return to normalcy will be accelerated and hopefully sustained by optimal COVID-19 testing

strategies. Despite being commonly recommended, little guidance suggests the right approach

to testing and how best to balance cost, test selection, results delays, the value of sample pool-

ing, and how changing local disease prevalence should inform strategy adjustments.

Throughout the pandemic the number and variety of tests for detecting active infection

have steadily increased [3]. Current tests include nucleic acid amplification tests (NAATs) such

as reverse-transcription or reverse transcription polymerase chain reaction (RT-PCR), template

mediated amplification (TMA), nicking enzyme amplification reaction (NEAR), loop-mediated

isothermal amplification (LAMP), nucleic acid hybridization, viral metagenomic sequencing,

and CRISPR-based assays. Most Food and Drug Administration (FDA) Emergency Use Autho-

rization (EUA) tests are approved for symptomatic patients, but not all are validated in an

asymptomatic population [4]. Despite these scientific advancements, there is scant guidance on

how to apply a specific technology in the context of the underlying population and the goal of

testing, such as diagnosis of an individual versus surveillance of a group. Cost, turnaround time,

accuracy, and convenience in sample collection all play a role in achieving a rate of testing that

achieves a goal of detecting and preventing transmission in a cohort. A testing strategy is not

feasible if the cost per test at the individual level is too high, or the time to obtain results is too

long, resulting in possible transmission while positive test results are in transit or missing an

opportunity to attend work or school if the result is negative. To increase test processing effi-

ciency and reduce cost, pooling of samples is a potential solution provided there is minimal deg-

radation in test performance due to dilution, but a strategy should be devised carefully.

Successful pooling strategies rely on a clear understanding of the test’s limit of detection (LOD),

sensitivity, specificity, and the prevalence of disease in the population being tested [5].

Testing in large cohort settings such as schools and businesses that require continued sur-

veillance can ensure that facilities remain open safely for the greatest number of people. We

model various scenarios of test sensitivity and specificity, testing frequency, cost, and pooling

to illustrate the range of practical and sustainable surveillance strategies.

Methods

To compare the effects of test sensitivity and specificity, test frequency, and the impact of pool-

ing we considered a classical epidemiological susceptible, infectious-asymptomatic, infectious-

symptomatic, removed (SIR) compartmental model for the tested population. That is, individ-

uals move from one compartment to another as they transition from susceptible to infectious

to removed. To account for the introduction of infections from the surrounding community,

we added a time-dependent term which represents the rate (in people/time) of infections from

outside interactions continuously in time. With frequent testing, this external forcing drives

the behavior of the model (Fig 1).
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We examine two scenarios for this forcing. The first is a relatively low and more-or-less

constant rate of introduced infections, with data from the 7-day rolling average of the case

count in Fayette County, Pennsylvania for the 100 days beginning March 26, 2020, as reported

in the New York Times [6]. This low-growth profile is reported as panel (a) in Figs 2–4. The

second scenario used for high-growth external community prevalence is the seven-day rolling

average of daily case counts in Miami-Dade County, Florida, for the 100 days beginning June

16, 2020. This profile is shown in panel (b) in Figs 2–4. In both profiles, we scaled the cases

given by the relative population in our model, which we chose to be 1,500. It should be noted

that the case counts in Miami-Dade County over this time period are outliers compared to

case counts in other counties across the US over the past ten months. These cases are chosen

for illustration to show the widest array of possible scenarios. To model symptom checking we

solve the forced SIR model each day, and, at the end of the day, we remove the appropriate

fraction of individuals from the infectious-symptomatic compartment. To model pooled test-

ing with symptom tracking, when τ divides the day, in addition to removal due to symptom

tracking from the infectious-symptomatic compartment, there is removal from both infectious

compartments due to positive tests. The initial test is on day zero. To account for possible

delays in receiving test results due to laboratory processing, we also allow for a delay parame-

ter, d. When pooling samples, we adjust for test sensitivity and applied a linear deduction for

pooling of 0.00323, consistent with minimal sample dilution or degradation in a nasal or naso-

pharyngeal sample [7]. Other deductions may be more appropriate in different settings, such

as saliva sampling [8]. Our model allows for a varied percent of those that are infected to

choose to comply with isolation protocols; in the scenarios presented, we set this tunable

assumption to be perfect compliance. We assume the basic reproduction number R0 is 2.5 and

the average period of infectiousness is 4.5 days [9–12].

We do not include an “exposed” category as is often done for compartmental models but

account for the shorter time a person is infectious rather than the longer period of time they

are infected. Our model includes symptomatic and asymptomatic infectious individuals with

daily symptom tracking. In the results that follow we assume 40% of infections are asymptom-

atic [13] and symptom tracking will catch 66% of symptomatic infections [14]. Individuals can

Fig 1. Schematic representation of the model. The model simulates testing for a common group of people who mix continuously in an institution (i.e., in a school or

office) and are subject to the introduction of infection from the surrounding unmonitored community. The framework couples regular testing, described by a handful of

tunable parameters, to a disease model. The disease model is dynamic in time, and infections may originate both from inside-the-institution mixing and from the

surrounding community at varying rates depending on prevalence.

https://doi.org/10.1371/journal.pone.0248783.g001
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move directly from asymptomatic to removed or from asymptomatic, to symptomatic to

removed.

The initial conditions are chosen from the average of population-scaled new confirmed

cases reported by the New York Times for September 23, 2020 in a sample of counties scaled by

average number of infectious days. This results in a starting value of 0.675 infections for a pop-

ulation of size 1,500. We take the conservative approach of assuming no one in the population

has immunity to the virus based on previous infection. In the tests that follow we vary the test-

ing frequency (τ), delay in the return of results (d), number of samples pooled (m), sensitivity

of the test on one sample, and specificity of the test. We computed the cost of each testing strat-

egy at the per person per day level, over 100 days. When pooling (m>1), we assumed a simple

2-stage Dorfman testing process in which each individual in a positive pool is retested individ-

ually using a high-sensitivity diagnostic test at $100 per test. We then calculated the expected

number of tests required to complete each round of testing. The complete scientific code is

available as S1 File. All analysis was done using Julia v1.5.1 [15].

Results

Fig 2 demonstrates scenarios of testing frequency at sensitivities of 98% with a two-day delay

in receiving results during which mixing continues (Fig 2C and 2D), 98% sensitivity with no

delay in receiving results (Fig 2E and 2F), and 60% sensitivity with no delay (Fig 2G and 2H)

to simulate testing by various technologies such as PCR with lags between sample collection

and centralized laboratory testing, antigen detection, and LAMP. As there are little data on the

performance of some tests in asymptomatic people, we used more conservative sensitivity esti-

mates aligning to published LOD for specific devices from the FDA [16]. The sawtooth pattern

is the result of removal of infected persons from the population.

Any testing strategy is better than none at all, and as expected, tests with increased sensitivities

perform better for a given time frequency. At the most lenient frequency considered, every 14

days, the number of infections is reduced approximately 21–56% (Table 1) compared to no testing

at all. Each scenario can be explored comparatively. For example, at a test sensitivity of 80%, test-

ing every day reduces the number of cumulative infections relative to no testing by 95.9–99.9%

while testing every 14 days reduced the number of cumulative infections at day 100 relative to no

testing by only 26.0–27.1%. Increased testing frequency results in a nonlinear decrease in cumula-

tive infections over time, with daily testing resulting in the fewest cumulative infections at 100

days after implementing the testing strategy at any of the sensitivities shown. Importantly, at sensi-

tivities of 98% our models predict that a two-day delay in results (by send-out PCR, for example)

will result in just a 31% reduction in infections experienced at a 14-day testing frequency; how-

ever, as the testing frequency is increased, even with the two-day delay, the number of missed

infections goes down rapidly to a 99% reduction from no testing at all at a daily testing frequency.

Next we looked at testing strategies that incorporate pooling. Fig 3 combines a weekly and

every 3 day testing strategy with 98% sensitive tests with varying time delay, and pooling tests

in samples of 2, 5, 10, and 30. Pooling potentially reduces the sensitivity of the tests, resulting

in more missed infections. This can be overcome by an increase in test frequency, allowed by

the cost savings of pooling. Fig 4 weighs cost against testing frequency and pooling size, both

with confirmatory and without confirmatory testing of positive pools. Without confirmatory

testing, the cost per person decreases dramatically.

Discussion

Our findings demonstrate that it is not only critical to choose the right test in terms of perfor-

mance in asymptomatic individuals, but to use the test in the defined population at the optimal
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Fig 2. Impact of testing frequency. Two scenarios for community prevalence corresponding, relatively, to low and

high rates of imported infections (Panels (a) and (b)). Testing with a test with 98% sensitivity with 0-day resulting delay

amidst high and low community prevalence (Panels (c) and (d)). Testing with a test with 98% sensitivity with 2-day

resulting delay amidst high and low community prevalence (Panels (e) and (f)). Testing with a test with 60% sensitivity

with 0-day resulting delay amidst high and low community prevalence (Panels (g) and (h)). Purple (dash-dot-dot)

corresponds to no testing, orange (solid) to testing every two weeks with daily symptom tracking, green for testing

every week with daily symptom tracking (dash-dot), blue (dash) for testing every 3 days with daily symptom tracking,

and red (dot) for daily testing and symptom tracking.

https://doi.org/10.1371/journal.pone.0248783.g002
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Table 1. Selected testing strategies ranked by reduction in cumulative infections, with and without confirmatory testing, for scenarios costing less than $10 per per-

son per day�. Daily symptom tracking assumed.

Community Prevalence: Low

Sensitivity Specificity Delay

(days)

Frequency

(days)

Pool

Size

Cumulative

Infections

Experienced

(over 100 days)

Cumulative

Infections

Caught (over

100 days)

Cumulative

False Positives

(over 100

days)

Per Person, Per

Day Cost

Without

Confirmatory

Testing ($)

Per Person, Per

Day Cost With

Confirmatory

Testing ($)

% Reduction in

Cumulative

Infections

Experienced

0.98 0.995 0 3 5 2 5 255 $ 7.92 $ 8.78 99.8%

0.98 0.995 0 3 10 3 5 255 $ 3.96 $ 5.65 99.8%

0.98 0.995 0 3 30 5 8 255 $ 1.32 $ 6.20 99.7%

0.98 0.995 0 7 2 35 68 112 $ 8.40 $ 8.63 97.4%

0.98 0.995 0 7 5 100 180 112 $ 3.36 $ 4.21 92.6%

0.98 0.995 0 7 10 241 388 111 $ 1.68 $ 4.23 82.0%

0.98 0.995 0 7 30 515 628 110 $ 0.56 $ 6.58 61.5%

0.6 0.9 0 3 1 560 536 5034 $ 6.60 $ 10.22 58.2%

0.98 0.995 0 14 1 588 649 58 $ 8.40 $ 8.73 56.1%

0.98 0.995 2 3 5 666 446 246 $ 6.60 $ 8.96 50.3%

0.98 0.995 2 3 30 706 467 246 $ 1.10 $ 9.87 47.3%

0.8 0.9 0 7 1 712 675 2195 $ 7.00 $ 8.76 46.9%

0.98 0.995 2 7 2 877 542 104 $ 7.00 $ 7.66 34.5%

0.98 0.995 2 7 5 880 542 104 $ 2.80 $ 4.18 34.3%

0.98 0.995 2 7 10 884 543 104 $ 1.40 $ 3.61 34.0%

0.98 0.995 2 7 30 899 545 104 $ 0.47 $ 4.52 32.9%

0.6 0.9 0 7 1 916 638 2198 $ 2.80 $ 4.47 31.6%

0.98 0.995 2 14 1 924 551 51 $ 7.00 $ 7.26 31.1%

0.8 0.9 0 14 1 977 631 1171 $ 3.50 $ 4.44 27.1%

0.6 0.9 0 14 1 1050 603 1171 $ 1.40 $ 2.30 21.6%

Community Prevalence: High

Sensitivity Specificity Delay

(days)

Frequency

(days)

Pool

Size

Cumulative

Infections

Experienced

(over 100 days)

Cumulative

Infections

Caught (over

100 days)

Cumulative

False Positives

(over 100

days)

Per Person, Per

Day Cost

Without

Confirmatory

Testing

Per Person, Per

Day Cost With

Confirmatory

Testing

% Reduction in

Cumulative

Infections

Experienced

0.98 0.995 0 3 5 97 267 254 $ 7.92 $ 9.56 93.2%

0.98 0.995 0 3 10 112 283 254 $ 3.96 $ 7.23 92.2%

0.98 0.995 0 3 30 187 366 253 $ 1.32 $ 11.01 87.0%

0.98 0.995 0 7 2 442 723 109 $ 8.40 $ 9.31 69.2%

0.98 0.995 0 7 5 480 749 109 $ 3.36 $ 5.50 66.5%

0.98 0.995 0 7 10 538 781 109 $ 1.68 $ 5.50 62.5%

0.98 0.995 0 7 30 704 823 109 $ 0.56 $ 7.51 50.9%

0.6 0.9 0 3 1 733 698 5015 $ 6.60 $ 10.28 48.9%

0.98 0.995 0 14 1 853 845 57 $ 8.40 $ 8.79 40.5%

0.8 0.9 0 7 1 859 799 2186 $ 7.00 $ 8.80 40.1%

0.98 0.995 2 3 5 863 578 246 $ 6.60 $ 9.43 39.9%

0.98 0.995 2 3 30 892 590 245 $ 1.10 $ 11.70 37.8%

0.98 0.995 2 7 2 1006 624 103 $ 7.00 $ 7.72 29.9%

0.98 0.995 2 7 5 1008 624 103 $ 2.80 $ 4.33 29.7%

0.98 0.995 2 7 10 1013 625 103 $ 1.40 $ 3.90 29.4%

0.98 0.995 2 7 30 1031 627 103 $ 0.47 $ 5.24 28.1%

0.6 0.9 0 7 1 1038 720 2191 $ 2.80 $ 4.50 27.7%

(Continued)
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frequency to reduce the risk of case escalation. Optimization is further enhanced at the popula-

tion level by understanding of underlying disease prevalence and utilization of pooling to

reduce cost and increase efficiency. The “ideal” test strategy must be balanced with the practi-

calities of cost per person to ensure sustainability. For example, daily testing with a 60% sensi-

tive test attenuates community spread, but at a cost of $30.11 per person per day with

confirmatory testing, or $20.00 without, may not be possible. Using a 60% sensitive test less

frequently reduces expense but sacrifices significant performance. A 98% sensitive test with no

delay in results administered every 3 days with pools of 30 people, and no confirmatory test

offered by the institution costs less than $1.50 per person per day, with high performance.

Even with a highly specific (99.5%) test such as a PCR, in a low prevalence community with

large pools, false positives may still become an issue. The previous example results in 253 false

positives over 100 days, highlighting the importance of confirmatory testing. The model dem-

onstrates that frequency of testing, test sensitivity, turn-around time, and the external commu-

nity prevalence are all important factors to consider, and there is often more than one testing

strategy to achieve the desired level of performance. The computational code is available as an

on line supplement, and an easy-to-use web-based simulator to test various scenarios is avail-

able at https://calculator.unitedinresearch.com/. The ability to test different strategies under a

variety of assumptions is especially important as we learn more about the performance of tests

in asymptomatic populations over time.

With these scenarios in hand, institutions can make an informed operational choice, devise

pods or cohorts to be tested by pooling and potentially isolated if positive, and create clear

communication about a surveillance rationale. Acknowledging a dynamic community preva-

lence, the model can be re-run, and the testing strategy can be optimized to maximize benefit

at the lost cost and least amount of disruption.

The frequency of test usage to minimize amplification of infection and allow schools and

worksites to remain open is an important factor. Given the cost of high frequency testing, we

demonstrate the value of pooling of samples to increase efficiency, particularly in areas with

lower population prevalence. As background prevalence increases, the value of pooling dimin-

ishes as the likelihood of a positive pool will rise, but even a pool of two to three samples results

in a dramatic reduction in the need for individual sample analysis. As noted above, with an

extremely low prevalence, even in the case of a 99.5% specific test, false positives are much

more likely than true positives and confirmatory testing may be necessary. A 90% specificity

test would result in an untenable number of false positives over the course of 100 days without

confirmatory testing. As shown in Fig 4, in order to achieve a minimal cost approach that

includes confirmatory testing, one must balance pool size with frequency. Without confirma-

tory testing, costs drop dramatically (Fig 4G and 4H). The Dorfman protocol for pooled test-

ing we use is suboptimal compared to a sequential split-pool strategy [17]. More sophisticated

confirmatory testing strategies exist that would further lower costs and reduce the likelihood

Table 1. (Continued)

0.8 0.9 0 14 1 1062 750 1158 $ 3.50 $ 4.50 26.0%

0.98 0.995 2 14 1 1080 645 51 $ 7.00 $ 7.26 24.7%

0.6 0.9 0 14 1 1134 681 1161 $ 1.40 $ 2.33 21.0%

� Cost calculation assumes a test with a 98% sensitivity and 0-day delay in returning results costs $120, a 98% sensitive test with a 2-day delay in results costs $100, an

80% sensitive test costs $50, and a 60% sensitive test costs $20. All (true and false) positive tests are confirmed using a $100 test. The distribution of positive tests among

pooled samples is uniform as is consistent with the homogeneous mixing assumptions of the SIR model, and we assume everyone in a pool that is positive will undergo a

confirmatory test.

https://doi.org/10.1371/journal.pone.0248783.t001
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Fig 3. Effect of pool size. Two scenarios for community prevalence corresponding, relatively, to low and high rates of

imported infections (Panels (a) and (b)). Testing weekly with a test with 98% sensitivity with 0-day resulting delay with

daily symptom tracking amidst high and low community prevalence (Panels (c) and (d)). Testing weekly with a test

with 98% sensitivity with 2-day resulting delay with daily symptom tracking amidst high and low community

prevalence (Panels (e) and (f)). Testing every 3 days with a test with 98% sensitivity with 2-day resulting delay with daily

symptom tracking amidst high and low community prevalence (Panels (g) and (h)). Orange lines (solid) correspond to

30 samples pooled, green (dash-dot) to ten samples pooled, blue (dash) to five samples pooled, and red (dot) to 2

samples pooled.

https://doi.org/10.1371/journal.pone.0248783.g003
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Fig 4. Cost comparison map for various pooling and frequency scenarios with and without confirmatory testing.

Use case of a test with 98% sensitivity and 99.5% specificity with a 2-day result delay costing $100 and a 98% sensitive

test with 99.5% specificity and a 0 day result delay costing $120 with free daily symptom tracking. In (c, d, g, h) every

person in a positive pool is retested for confirmation and in (e, f) no confirmatory testing is done. We assume all

confirmatory tests cost $100. Colors correspond to cost per person per day in dollars.

https://doi.org/10.1371/journal.pone.0248783.g004
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that uninfected individuals are sent home, such as sub-pooling of positive pools without indi-

vidual level testing, each with benefits and disadvantages [18, 19].

This study confirms and extends previous work. Paltiel et al. [20] considered a compart-

ment-based model simulating an abbreviated 80-day semester in a highly-residential college-

campus-type setting. Across all scenarios considered, test frequency was more associated with

cumulative infection than test sensitivity. That modeling exercise also suggested that symp-

tom-based screening alone is insufficient to contain an outbreak under any of the scenarios

considered. Using a model for viral loads in individuals, Larremore et al. [21] studied surveil-

lance effectiveness using an agent-based modeling framework which accounts for test sensitivi-

ties, frequency, and sample-to-answer reporting time. The results indicate that frequency of

testing and the speed of reporting are the principal contributors to surveillance effectiveness.

The results also suggest that the impact of high sensitivity on surveillance effectiveness is rela-

tively small.

Populations housed in long-term care facilities are especially vulnerable to COVID-19; sur-

veillance programs designed for these settings may have different goals and tolerances for

infection risk than those designed to maintain functionality for other institutions. Smith and

colleagues [7] built a complex modeling framework for long-term care facilities including sim-

ulations of the detailed inter-individual contact networks describing patient-staff interactions

in such settings. This work showed that symptom-based screening by itself had limited effec-

tiveness. Testing upon admission detected most asymptomatic cases upon entry but missed

potential introductions from staff. Random daily testing was determined to be, overall, an inef-

ficient use of resources. This points to the opportunity for pooled testing as an effective and

efficient COVID-19 surveillance strategy for long-term care facilities with limited resources.

Since our work focuses on screening and not performing diagnostic testing, the actual sen-

sitivity of the various available COVID tests for this purpose is not entirely clear. The original

testing approaches for COVID-19 focused on the high sensitivity required for diagnosis by cli-

nicians in all stages of the acute period of COVID-19 through detection of SARS-CoV-2 RNA

performed on patients with a high pretest probability of disease. This paradigm focused on

high sensitivity tests with the performance feature of very low NAAT detectable units/mL

(NDU/mL) with a goal of diagnosing patients even if past the contagious period. These tests

were not optimized nor validated in terms of sensitivity for the detection of infectious individ-

uals that might spread disease in schools, the workplace or other social situations.

Several studies looking at the ability to culture virus from samples collected from infected

individuals have established that RNA copy numbers of 1,000,000 RNA copies/ml or higher

are required for any consistent success in viral culture [22–26]. Based on contact tracing, this

defined window of elevated RNA copy numbers starting 2–3 days prior to onset of symptoms

and ending 5–9 days after symptom onset corresponds to most if not all cases of transmission.

Studies of asymptomatic spreading suggests a very similar window of transmissibility during

this period of time when RNA copy numbers are 1,000,000 copies/ml or higher [12, 27, 28].

Given that RT-PCR testing can have a sensitivity or LOD as low as<1,000 RNA copies/mL

(1,000 NDU), there should ample performance in testing technology to leverage high-volume,

high-frequency pooling, provided samples are not diluted by storage or buffering media

beyond the minimum LOD when employed to detected asymptomatic but infectious individu-

als [29].

Our work has a number of limitations. The SIR compartmental model provides a simplified

representation of the natural history of the disease. For example, it assumes uniform mixing of

the population being tested and a uniform distribution of likelihood of a positive test. The

model is formulated at a population level; it does not permit the tracking of individuals. For

example, we cannot incorporate the change in test sensitivity with time from infection [30]. In
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a low population prevalence, we expect a high number of false positives given assumed speci-

ficities of 99.5% and 90%. Individuals who recover from the disease are granted permanent

immunity in our model, although the risk of reinfection now appears possible [31–36]. Our

pooling model assumed nasal or naso-pharyngeal swab samples. Because of the nature of

saliva, the small sensitivity deduction assumption in our model may not be valid due to greater

sample dilution [37]. Finally, the model does not naturally incorporate phased, pulsed, or par-

tial testing (1st graders on Monday, 2nd graders on Tuesday, etc.). To account for this we sug-

gest users model the smaller groups and multiply results rather than attempt to run scenarios

on the full population.

Despite these limitations, sensitivity, pooling, and frequency modeling can guide institu-

tions on best-fit testing strategies that align to their practical constraints. Organizations can

apply this model to determine their best testing strategy given current community prevalence

and operational and financial resources that enable sustained testing to stay safely open during

the pandemic.
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11. Griffin J, Collins ÁB, Hunt K, Casey M, Evoy DM, Byrne AW, et al. A rapid review of available evidence

on the serial interval and generation time of COVID-19. medRxiv. 2020 May 11;2020.05.08.20095075.

https://doi.org/10.1136/bmjopen-2020-040263 PMID: 33234640

12. Ferretti L, Ledda A, Wymant C, Zhao L, Ledda V, Abeler-Dörner L, et al. The timing of COVID-19 trans-

mission. medRxiv. 2020 Sep 16;2020.09.04.20188516. https://doi.org/10.1101/2020.09.04.20188516

13. CDC. COVID-19 Pandemic Planning Scenarios. CDC. 2020. Available from: https://www.cdc.gov/

coronavirus/2019-ncov/hcp/planning-scenarios.html

14. Menni C, Valdes AM, Freidin MB, Sudre CH, Nguyen LH, Drew DA, et al. Real-time tracking of self-

reported symptoms to predict potential COVID-19. Nat Med. 2020 Jul; 26(7):1037–40. https://doi.org/

10.1038/s41591-020-0916-2 PMID: 32393804

15. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: a fresh approach to numerical computing. SIAM

Rev. 2017 Jan 1; 59(1):65–98. https://doi.org/10.1137/141000671

16. for D C.. and Health R.. SARS-CoV-2 Reference Panel Comparative Data. FDA. 2020. Available from:

https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/sars-cov-2-reference-

panel-comparative-data

17. Litvak E, Dentzer S, Pagano M. The right kind of pooled testing for the novel coronavirus: first, do no

harm. Am J Public Health. 2020 Sep 24; 110(12):1772–3. https://doi.org/10.2105/AJPH.2020.305945

PMID: 32970452

18. Bilder CR. Group Testing for Identification. In: Wiley StatsRef: Statistics Reference Online. John Wiley

& Sons, Ltd.; 2019. pp. 1–11.

19. Chan CL, Jaggi S, Saligrama V, Agnihotri S. Non-adaptive group testing: explicit bounds and novel

algorithms. IEEE Trans Inf Theory. 2014 May; 60(5):3019–35. https://doi.org/10.1109/TIT.2014.

2310477

20. Paltiel AD, Zheng A, Walensky RP. Assessment of SARS-CoV-2 screening strategies to permit the

safe reopening of college campuses in the United States. JAMA Netw Open. 2020 Jul 31; 3(7):

e2016818. https://doi.org/10.1001/jamanetworkopen.2020.16818 PMID: 32735339

21. Larremore DB, Wilder B, Lester E, Shehata S, Burke JM, Hay JA, et al. Test sensitivity is secondary to

frequency and turnaround time for COVID-19 surveillance. medRxiv [Internet]. 2020 Sep 8 [cited 2021

Feb 25]; Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325181/ https://doi.org/10.

1101/2020.04.15.20064931 PMID: 32511587

22. Bullard J, Dust K, Funk D, Strong JE, Alexander D, Garnett L, et al. Predicting infectious severe acute

respiratory syndrome coronavirus 2 from diagnostic samples. Clin Infect Dis. 2020 Nov 15; 71

(10):2663–6. https://doi.org/10.1093/cid/ciaa638 PMID: 32442256

23. He D, Zhao S, Lin Q, Zhuang Z, Cao P, Wang MH, et al. The relative transmissibility of asymptomatic

COVID-19 infections among close contacts. Int J Infect Dis. 2020 May 1; 94:145–7. https://doi.org/10.

1016/j.ijid.2020.04.034 PMID: 32315808

24. Huang C-G, Lee K-M, Hsiao M-J, Yang S-L, Huang P-N, Gong Y-N, et al. Culture-based virus isolation

to evaluate potential infectivity of clinical specimens tested for COVID-19. J Clin Microbiol. 2020 Jul 23;

58(8). https://doi.org/10.1128/JCM.01068-20 PMID: 32518072

PLOS ONE Identifying optimal COVID-19 testing strategies: Balancing testing frequency, test technology, and cost

PLOS ONE | https://doi.org/10.1371/journal.pone.0248783 March 25, 2021 12 / 13

https://doi.org/10.1016/j.rbmo.2020.06.001
http://www.ncbi.nlm.nih.gov/pubmed/32651106
https://doi.org/10.1093/ajcp/aqaa064
http://www.ncbi.nlm.nih.gov/pubmed/32304208
https://github.com/nytimes/covid-19-data
https://github.com/nytimes/covid-19-data
https://doi.org/10.1186/s12916-020-01866-6
http://www.ncbi.nlm.nih.gov/pubmed/33287821
https://doi.org/10.1101/2020.09.02.20183830
http://www.ncbi.nlm.nih.gov/pubmed/32909003
https://doi.org/10.1016/S0140-6736%2820%2930260-9
http://www.ncbi.nlm.nih.gov/pubmed/32014114
https://doi.org/10.1038/s41591-020-0869-5
http://www.ncbi.nlm.nih.gov/pubmed/32296168
https://doi.org/10.1136/bmjopen-2020-040263
http://www.ncbi.nlm.nih.gov/pubmed/33234640
https://doi.org/10.1101/2020.09.04.20188516
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://doi.org/10.1038/s41591-020-0916-2
https://doi.org/10.1038/s41591-020-0916-2
http://www.ncbi.nlm.nih.gov/pubmed/32393804
https://doi.org/10.1137/141000671
https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/sars-cov-2-reference-panel-comparative-data
https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/sars-cov-2-reference-panel-comparative-data
https://doi.org/10.2105/AJPH.2020.305945
http://www.ncbi.nlm.nih.gov/pubmed/32970452
https://doi.org/10.1109/TIT.2014.2310477
https://doi.org/10.1109/TIT.2014.2310477
https://doi.org/10.1001/jamanetworkopen.2020.16818
http://www.ncbi.nlm.nih.gov/pubmed/32735339
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325181/
https://doi.org/10.1101/2020.04.15.20064931
https://doi.org/10.1101/2020.04.15.20064931
http://www.ncbi.nlm.nih.gov/pubmed/32511587
https://doi.org/10.1093/cid/ciaa638
http://www.ncbi.nlm.nih.gov/pubmed/32442256
https://doi.org/10.1016/j.ijid.2020.04.034
https://doi.org/10.1016/j.ijid.2020.04.034
http://www.ncbi.nlm.nih.gov/pubmed/32315808
https://doi.org/10.1128/JCM.01068-20
http://www.ncbi.nlm.nih.gov/pubmed/32518072
https://doi.org/10.1371/journal.pone.0248783


25. Perera RAPM, Tso E, Tsang OTY, Tsang DNC, Fung K, Leung YWY, et al. SARS-CoV-2 virus culture

and subgenomic RNA for respiratory specimens from patients with mild coronavirus disease. Emerg

Infect Dis. 2020; 26(11). https://doi.org/10.3201/eid2611.203219 PMID: 32749957

26. Singanayagam A, Patel M, Charlett A, Bernal JL, Saliba V, Ellis J, et al. Duration of infectiousness and

correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020.

Eurosurveillance. 2020 Aug 13; 25(32):2001483. https://doi.org/10.2807/1560-7917.ES.2020.25.32.

2001483 PMID: 32794447

27. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus

disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020.

Eurosurveillance. 2020 Mar 12; 25(10):2000180. https://doi.org/10.2807/1560-7917.ES.2020.25.10.

2000180 PMID: 32183930

28. Savvides C, Siegel R. Asymptomatic and presymptomatic transmission of SARS-CoV-2: A systematic

review. medRxiv [Internet]. 2020 Jun 17 [cited 2021 Feb 25]; Available from: https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC7310638/ https://doi.org/10.1101/2020.04.15.20064931 PMID: 32511587

29. Zhen W, Manji R, Smith E, Berry GJ. Comparison of four molecular in vitro diagnostic assays for the

detection of SARS-CoV-2 in nasopharyngeal specimens. J Clin Microbiol. 2020 Jul 23; 58(8). https://

doi.org/10.1128/JCM.00743-20 PMID: 32341143

30. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse

transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann Intern

Med. 2020 May 13; 173(4):262–7. https://doi.org/10.7326/M20-1495 PMID: 32422057

31. Kirkcaldy RD, King BA, Brooks JT. COVID-19 and postinfection immunity: limited evidence, many

remaining questions. JAMA. 2020; 323(22):2245–2246. https://doi.org/10.1001/jama.2020.7869 PMID:

32391855

32. Xing Y, Mo P, Xiao Y, Zhao O, Zhang Y, Wang F. Post-discharge surveillance and positive virus detec-

tion in two medical staff recovered from coronavirus disease 2019 (COVID-19), China, January to Feb-

ruary 2020. Eurosurveillance. 2020 Mar 12; 25(10):2000191. https://doi.org/10.2807/1560-7917.ES.

2020.25.10.2000191 PMID: 32183934

33. Bao L, Deng W, Gao H, Xiao C, Liu J, Xue J, et al. Lack of reinfection in rhesus macaques infected with

SARS-CoV-2. bioRxiv. 2020 May 1;2020.03.13.990226. https://doi.org/10.1101/2020.03.13.990226

34. Xiao AT, Tong YX, Zhang S. False negative of RT-PCR and prolonged nucleic acid conversion in

COVID-19: Rather than recurrence. J Med Virol. 2020; 92(10):1755–6. https://doi.org/10.1002/jmv.

25855 PMID: 32270882

35. Lan L, Xu D, Ye G, Xia C, Wang S, Li Y, et al. Positive RT-PCR test results in patients recovered from

covid-19. JAMA. 2020 Apr 21; 323(15):1502. https://doi.org/10.1001/jama.2020.2783 PMID: 32105304

36. Wu J, Liu X, Liu J, Liao H, Long S, Zhou N, et al. Coronavirus disease 2019 test results after clinical

recovery and hospital discharge among patients in china. JAMA Netw Open. 2020 May 22; 3(5):

e209759. https://doi.org/10.1001/jamanetworkopen.2020.9759 PMID: 32442288

37. Watkins AE, Fenichel EP, Weinberger DM, Vogels CBF, Brackney DE, Casanovas-Massana A, et al.

Pooling saliva to increase SARS-CoV-2 testing capacity. medRxiv. 2020 Sep 3;2020.09.02.20183830.

https://doi.org/10.1101/2020.09.02.20183830 PMID: 32909003

PLOS ONE Identifying optimal COVID-19 testing strategies: Balancing testing frequency, test technology, and cost

PLOS ONE | https://doi.org/10.1371/journal.pone.0248783 March 25, 2021 13 / 13

https://doi.org/10.3201/eid2611.203219
http://www.ncbi.nlm.nih.gov/pubmed/32749957
https://doi.org/10.2807/1560-7917.ES.2020.25.32.2001483
https://doi.org/10.2807/1560-7917.ES.2020.25.32.2001483
http://www.ncbi.nlm.nih.gov/pubmed/32794447
https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180
https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180
http://www.ncbi.nlm.nih.gov/pubmed/32183930
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310638/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310638/
https://doi.org/10.1101/2020.04.15.20064931
http://www.ncbi.nlm.nih.gov/pubmed/32511587
https://doi.org/10.1128/JCM.00743-20
https://doi.org/10.1128/JCM.00743-20
http://www.ncbi.nlm.nih.gov/pubmed/32341143
https://doi.org/10.7326/M20-1495
http://www.ncbi.nlm.nih.gov/pubmed/32422057
https://doi.org/10.1001/jama.2020.7869
http://www.ncbi.nlm.nih.gov/pubmed/32391855
https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000191
https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000191
http://www.ncbi.nlm.nih.gov/pubmed/32183934
https://doi.org/10.1101/2020.03.13.990226
https://doi.org/10.1002/jmv.25855
https://doi.org/10.1002/jmv.25855
http://www.ncbi.nlm.nih.gov/pubmed/32270882
https://doi.org/10.1001/jama.2020.2783
http://www.ncbi.nlm.nih.gov/pubmed/32105304
https://doi.org/10.1001/jamanetworkopen.2020.9759
http://www.ncbi.nlm.nih.gov/pubmed/32442288
https://doi.org/10.1101/2020.09.02.20183830
http://www.ncbi.nlm.nih.gov/pubmed/32909003
https://doi.org/10.1371/journal.pone.0248783

