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Abstract

One of the European gold standard measurement of vascular ageing, a risk factor for cardio-

vascular disease, is the carotid-femoral pulse wave velocity (cfPWV), which requires an

experienced operator to measure pulse waves at two sites. In this work, two machine learn-

ing pipelines were proposed to estimate cfPWV from the peripheral pulse wave measured at

a single site, the radial pressure wave measured by applanation tonometry. The study popu-

lations were the Twins UK cohort containing 3,082 subjects aged from 18 to 110 years, and

a database containing 4,374 virtual subjects aged from 25 to 75 years. The first pipeline

uses Gaussian process regression to estimate cfPWV from features extracted from the

radial pressure wave using pulse wave analysis. The mean difference and upper and lower

limits of agreement (LOA) of the estimation on the 924 hold-out test subjects from the Twins

UK cohort were 0.2 m/s, and 3.75 m/s & -3.34 m/s, respectively. The second pipeline uses a

recurrent neural network (RNN) to estimate cfPWV from the entire radial pressure wave.

The mean difference and upper and lower LOA of the estimation on the 924 hold-out test

subjects from the Twins UK cohort were 0.05 m/s, and 3.21 m/s & -3.11m/s, respectively.

The percentage error of the RNN estimates on the virtual subjects increased by less than

2% when adding 20% of random noise to the pressure waveform. These results show the

possibility of assessing the vascular ageing using a single peripheral pulse wave (e.g. the

radial pressure wave), instead of cfPWV. The proposed code for the machine learning pipe-

lines is available from the following online depository (https://github.com/WeiweiJin/

Estimate-Cardiovascular-Risk-from-Pulse-Wave-Signal).

Introduction

Vascular ageing is a result of the age-induced damage inflicted upon the vascular structure and

function, which leads to increased risk of chronic diseases, such as cardiovascular disease

(CVD), and type 2 diabetes [1, 2]. Reducing the risk factors related to vascular ageing (e.g.
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blood pressure, glycemia, and lipids) at an early stage could prevent further progression of the

disease [3]. Further studies have also shown that vascular ageing is associated with lifestyles [4]

and exercise [5]. Thus, detecting vascular ageing at an early stage can lead to early intervention

and prevention of the relevant diseases.

Studies have shown that arterial stiffening as a result of lacking compliance function, is one

of the main players in vascular ageing [6, 7]. It has been suggested that arterial stiffness can be

evaluated through the measurement of pulse wave velocity (PWV) [8, 9], for which the Euro-

pean standard assessment is the carotid-femoral PWV (cfPWV) [10]. Despite its wide use,

cfPWV requires measurements at two arterial sites, manually handling the probes, and esti-

mating the distance between the carotid and femoral arteries, which makes the measurement

operator dependent. A single-site and automated measurement could overcome the limita-

tions of the current clinical assessment of arterial stiffening.

Machine learning methods have been applied to solve a range of medical challenges, includ-

ing detecting CVD. The majority of the machine learning research involving medical signals is

based on either electrocardiogram (ECG) [11, 12] or photoplethysmogram (PPG) [13] data.

Those studies mainly focused on critical CVD that could lead to mortality, such as heart failure

[14, 15]. Whereas, the development of CVD is a long process, and early detection and inter-

vention can stop disease progression and avoid expensive medical cost and mortality [16].

Using machine learning methods to detect earlier signs of CVD would be beneficial in improv-

ing cardiovascular health. Although little effort has been carried out to assess the CVD risk via

machine learning methods, researchers have recently become engaged in the subject. For

instance, a recent study has proposed a potential algorithm to estimate the size of an abdomi-

nal aortic aneurysm from pressure waves measured at carotid, brachial and femoral arteries

using deep learning models [17]. In vascular ageing research, Tavallali et al. used an artificial

neural network to estimate cfPWV with an RMSE of 1.1244 m/s. However, their approach

required a central pressure wave, the carotid pressure wave, and also included other medical

record information, such as chronological age [18].

This study aims to estimate cfPWV (hereafter referred to as PWV) from only the pulse

wave measured at a single peripheral site (i.e. the radial artery) using machine learning algo-

rithms. The following three case studies are considered. Case Study 1 proposes a machine

learning pipeline that uses Gaussian process regression to estimate PWV from key features

(timing and magnitude of the fiducial points and the heart rate) extracted from the radial pres-

sure wave measured in the Twins UK cohort. Case Study 2 presents a second machine learn-

ing pipeline that uses a recurrent neural network (RNN) with long short-term memory

(LSTM) to estimate PWV from the entire radial pressure waveform, also on the Twins UK

cohort. Case Study 3 assesses the ability of the RNN model to estimate PWV from the radial

pressure waveform from a database of virtual subjects, with random noise added. Both

machine learning pipelines presented in this article are available from the following online

depository (https://github.com/WeiweiJin/Estimate-Cardiovascular-Risk-from-Pulse-Wave-

Signal).

Case Study 1: PWV estimation from radial pressure wave features

Methods

Study population. The study population in Case Study 1 consisted of 3,082 unselected

twins (99% are females) from the Twins UK cohort. The mean and standard deviation of the

biological characteristics of these subjects can be found in Table 1. The study was approved by

the St Thomas’ Hospital Research Ethics Committees, and all subjects signed the written

informed consent. Most of the measurement data from the Twins UK cohort are available for
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have the rights to share their data. The database of

virtual subjects can be found in the following

depository: https://github.com/peterhcharlton/

pwdb/wiki/Using-the-Pulse-Wave-Database. The

scripts for the machine learning pipelines proposed

in this study are also available on the following

online depository: https://github.com/WeiweiJin/

Estimate-Cardiovascular-Risk-from-Pulse-Wave-

Signal.
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external researchers via an application. More information about this cohort can be found on

its official website (https://twinsuk.ac.uk) and relevant publications [19, 20]. The data used in

this case study were the radial pressure waves measured by applanation tonometry and cfPWV

measured by SphygmoCor CvMS. The data were acquired by an experienced operator over the

period 2006 to 2017.

Wave feature extraction. The features of the radial pressure wave were extracted as the

timings and magnitudes of the fiducial points identified on the waveform and the heart rate

using the pulse wave analyser developed by Charlton et al. [21]. In total, 14 fiducial points on

each waveform were identified, which made the numbers of the features from one radial pres-

sure wave to be 29. More detailed descriptions of the fiducial points can be found in the previ-

ous studies by Charlton et al. [21, 22].

Preprocessing for Gaussian process regression. Before performing the Guassian process

regression, LASSO regression was performed to identify the key features from all extracted fea-

tures of the waveform. Then principal component analysis (PCA) was performed after LASSO

regression to exclude outliners in the analysed dataset, as the outliers could affect the accuracy

of machine learning algorithms [23]. The linear model module from the scikit-learn package

was used to perform the LASSO regression in Python. The hyperparameter in the model was

found by 5 fold cross-validation using the GridSearchCV library. Then, PCA was performed

on the key features that were identified by the LASSO regression using the PCA library from

the scikit-learn package. Finally, based on the distance of the data points away from the origin,

outliers were identified and excluded from the machine learning training and testing.

Gaussian process regression. Gaussian process regression was used to estimate PWV

based on the key features from the radial pressure wave identified by LASSO regression. The

advantages of using Gaussian process regression are i) it can provide uncertainty of the estima-

tion, which most machine learning regression methods are not able to; and ii) the hyperpara-

meters in the model can be identified by maximising the log likelihood, which is less time

consuming than cross-validation. The GaussianProcessRegressor library and kernel functions

from the scikit-learn package were used to perform Gaussian process regression in Python.

Three kernel functions: radial basis function (RBF), Matérn kernel with ν = 5/2, rational qua-

dratic kernel, and their sum combinations were tested (results shown in S1 Fig). Finally, the

rational quadratic kernel was chosen for this study based on the accuracy of its estimation.

Other machine learning methods. To confirm the accuracy of the PWV estimation by

Gaussian process regression, three other machine learning methods were also used to estimate

the PWV: support vector regression (SVR), and two tree-based methods (i.e. random forest

Table 1. Biological characteristics of the subjects from the Twins UK cohort (N = 3,082).

Mean ± SD

Height (cm) 163.2 ± 22.5

Weight (kg) 69.2 ± 27.1

BMI (kg/m2) 26.2 ± 18.1

Age (year) 57.8 ± 12.8

DBP (mmHg) 74.1 ± 8.9

SBP (mmHg) 126.5 ± 17.5

MAP (mmHg) 93.6 ± 11.9

PWV (m/s) 9.39 ± 2.18

SD: Standard Deviation; BMI: body mass index; DBP: diastolic blood pressure; SBP: systolic blood pressure; MAP:

mean arterial pressure; PWV: pulse wave velocity.

https://doi.org/10.1371/journal.pone.0245026.t001
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regression and gradient boosting regression). All machine learning algorithms were performed

using the libraries from the scikit-learn package. The hyperparameters in the SVR were tuned

by 5 fold cross-validation with 10 iterations using the optunity package. The hyperparameters

in the tree-based methods were tuned by 10 fold cross-validation with 100 iterations using ran-

dom search from the scikit-learn package. In addition, apart from the tree-based methods, the

features from the radial pressure wave were normalised using the StandardScaler library in the

scikit-learn package. The training and testing/developing data ratio for all machine learning

analyses was 7:3.

Error evaluation. The root mean square error (RMSE) was calculated to evaluate each

machine learning approach, which is defined as,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ð ^PWVi � PWViÞ

2

n

r

; ð1Þ

where n is the size of the test dataset; ^PWVi and PWVi are the ith estimated and measured

PWV, respectively. Then, a percentage error, �, was calculated based on the RMSE:

� ¼
RMSE
PWV

� 100%; ð2Þ

where PWV is the mean value of the PWV of the study population.

Results

The features from the radial pressure wave were reduced from 29 to 17 after performing the

LASSO regression. The fiducial points containing those key features are shown in Fig 1a.

Then, PCA was performed on the subjects using only those key features (Fig 1b). The results

show that 3 of the 3,082 subjects were outliers.

The Gaussian process regression was performed on the study population without the outli-

ers (3,079 data samples). The model was trained on 2,155 data samples. The estimation results

and errors when testing on the hold-out test data set containing 924 samples are shown in Fig

2a and 2c, and Table 2, respectively. Fig 2a shows a linear relationship between the estimated

and measured PWV, with a slope of 1.00 and an offset of 0.24 m/s. The coefficient of determi-

nation, r2 equals to 0.42, and the p-value is less than 0.0001. The Bland-Altman plot shows a

mean difference of 0.2 m/s, and upper and lower limits of agreement (LOA) of 3.75 m/s &

-3.34 m/s, respectively. (Fig 2c). Both plots suggest that the accuracy of the PWV estimates

deteriorated as the value of PWV increased. Table 2 illustrates that PWV could be estimated

from the radial pulse waveform with an RMSE of 1.82 m/s and a percentage error, �, of 19.4%

over the whole test data set. In addition, Gaussian process regression can also provide a statisti-

cally meaningful range (95% confidence interval) that shows the reliability of the estimation

(S2 Fig).

To confirm the accuracy of the estimation made by Gaussian process regression, three

other machine learning methods were applied to the same training and hold-out testing data

set to estimate PWV. Table 2 shows the error evaluations of all these methods. The other three

machine learning methods can provide a PWV estimation with smaller errors than Gaussian

process regression, with gradient boosting regression achieving the lowest RMSE (1.63 m/s)

and � (17.4%). However, the reduction of the errors was limited (less than 0.2 m/s for RMSE,

and less than 2% for �). Moreover, these alternative methods can not provide reliability of the

PWV estimation (i.e. 95% confidence interval), and take longer to train (� 1 minute vs� 30

minutes). In addition, the measured PWV ploted against estimated PWV and Bland-Altman

plots simulated using these three algorithms can be found in S3 Fig.
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The Pearson’s correlation coefficient, r, was used to investigate if the accuracy of the estima-

tions using Gaussian process regression could be related to the biological characteristics. The

following biological characteristics were studied: height, weight, body mass index (BMI), age

(chronological age), diastolic blood pressure (DBP), systolic blood pressure (SBP), and mean

arterial pressure (MAP). Fig 2e shows that the difference (between the estimated and measured

PWV) correlates with the age the most, r = 0.286.

Case Study 2: PWV estimation from the entire radial pressure wave

Methods

The study population in Case Study 2 is identical to the study population in Case Study 1. The

same error evaluation metrics were used to assess the accuracy of PWV estimation. This case

study used a RNN model which is described next.

Recurrent neural network. The schematics of the RNN structure used in this Case Study

is shown in Fig 3. The input data was an array of pressure values describing the radial pressure

waveform at discrete time points. As the cardiac cycle of different subjects varied, the time

duration of the radial pressure wave also differed from subject to subject. To overcome the

length difference in the input data, the waves with shorter durations were extended to the

duration of the longest wave by filling the array with dummy values (maximum floating point

number in this case) at the end. Then, a masking layer was applied to exclude the dummy

Fig 1. Data pre-processing for pulse wave velocity estimation from the features extracted from the radial pressure wave. (a) The fiducial points

containing key features identified by the LASSO regression. (b) Identified outliers in the database using principal component analysis (PCA). Red, blue and

green dots represent subject groups with pulse wave velocity (PWV) less than 7 m/s, 7–9 m/s, and greater than 9 m/s, respectively.

https://doi.org/10.1371/journal.pone.0245026.g001
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Fig 2. Estimation of pulse wave velocity (PWV) on a hold-out test set containing 924 subjects using Gaussian process

regression and recurrent neural network with long short-term memory. Panels (a) and (b) show estimated PWV

against measured PWV with the linear regression line in red, the coefficient of determination, r2, and the p-value. Panels

(c) and (d) show the Bland-Altman plots comparing the estimated and measured PWV. Panels (e) and (f) show Pearson

correlation coefficients (r) between the biological characteristics of the cohort and the “Difference” values shown on panels

(c) and (d), respectively. BMI: body mass index; DBP: diastolic blood pressure; SBP: systolic blood pressure; MAP: mean

arterial pressure.

https://doi.org/10.1371/journal.pone.0245026.g002
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values from being considered when estimating PWV. Afterwards, a bidirectional RNN with

LSTM was used to process the time-variant radial pressure waveform, as it has been proven

effective in forecasting time series data [24–26]. Finally, a dense layer with a linear activation

function was used to estimate PWV based on the results from the bidirectional RNN with

LSTM. Before carrying out the main simulation, hyperparameter tuning was undertaken and

the following parameters were chosen: number of units for LSTM = 16; batch size = 64; epoch

number = 1,500; optimizer = Adam. The RNN was constructed using open-source neural-net-

work library TensorFlow Core v.2.2.0, including a high-level application programming inter-

face Keras. The training and testing/developing data ratio for the RNN was also 7:3.

Results

The RNNs with LSTM were trained and tested on the same datasets as the one used in Case

Study 1. Fig 2b and 2d show the performance of the RNN. In comparison with the PWV esti-

mation using Gaussian process regression, the RNN led to a smaller offset on the regression

line (0.02 m/s vs 0.24 m/s) and a stronger correlation (r2: 0.49 vs 0.42). The Bland-Altman

plots show that both mean difference and the upper and lower LOA are smaller than the corre-

sponding values obtained by Gaussian process regression (Fig 2c and 2d) (0.05 m/s vs 0.2 m/s;

3.21 m/s & -3.11 m/s vs 3.75 m/s & -3.34 m/s). The RMSE and percentage error, �, of PWV

Table 2. Root mean square error (RMSE) and percentage error (�) on the estimated pulse wave velocity (PWV)

using different machine learning methods.

RMSE (m/s) � (%)

Gaussian Process Regression 1.82 19.4

Support Vector Regression 1.74 18.5

Random Forest Regression 1.64 17.4

Gradient Boosting Regression 1.63 17.4

RNN 1.59 16.9

https://doi.org/10.1371/journal.pone.0245026.t002

Fig 3. Schematic illustration of the recurrent neural network structure used to estimate pulse wave velocity from

the entire radial pressure wave. Pt−1, Pt and Pt+1 are the radial pressure values at the discrete time points t − 1, t, and t
+1, cfPWV is the carotid-femoral pulse wave velocity.

https://doi.org/10.1371/journal.pone.0245026.g003
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estimates using the RNN were similar to those obtained by the other machine learning meth-

ods used in Case Study 1 (see Table 2). Furthermore, Pearson’s correlation coefficients, r,

between biological characteristics and the difference of measured and estimated PWV calcu-

lated for the RNN model (Fig 2f) were similar to the ones obtained using Gaussian process

regression, with the age again showing the strongest correlation, r = 0.297.

Case Study 3: PWV estimation from the entire radial pressure wave

with added random noise

Methods

This case study used the RNN model described in Case Study 2, with the same training and

testing/developing data ratio. The same error evaluation metrics as in Case Studies 1 and 2

were used. The following two subsections describe the student population and random noise

generation.

Study population. To systematically investigate the effects of high-frequency noise on the

radial pressure wave, a database containing 4,374 virtual subjects representative of a sample of

“healthy” adults aged between 25 and 75 years old in ten-year increments was used as the

study population. The database can be downloaded from the following depository: https://

github.com/peterhcharlton/pwdb/wiki/Using-the-Pulse-Wave-Database. The data used in this

case study were the radial pressure waves and cfPWV. Further details of this database can be

found in a previous study [22]. The rational behind choosing a database of virtual subjects was

to eliminate the possible effects of measurement errors.

Noise generation. Different intensities of high-frequency Gaussian white noise were gen-

erated and added to the radial pressure waves to test the noise sensitivity of the PWV estima-

tion by RNN. The intensity of the noise was defined using the signal to noise ratio (SNR),

similar to the approach in [27], for which the SNR was calculated as,

SNR ¼
Psignal

Pnoise
; ð3Þ

where Psignal and Pnoise are the power (averaged amplitude) of the pressure signal and Gaussian

white noise, respectively. Six different SNRs were considered: 20, 16, 12, 10, 8 and 5. Fig 4

shows the effect of SNRs of 20, 10 and 5 on the original pressure signal.

Results

The radial pressure waves from the database of virtual subjects augmented with different levels

of random Gaussian white noise were used to test the noise sensitivity of the PWV estimation

produced by the RNN model. The measured PWV plot against estimated PWV and Bland-Alt-

man plots of the estimations from the original radial pressure wave and with SNRs of 20, 10

and 5 are shown in Fig 5. The coefficient of determination, r2 for all cases considered

were� 0.98. The mean difference did not increase, but the upper and lower LOA increased

from 0.14 m/s & -0.24 m/s to 0.5 m/s & -0.56 m/s when adding 20% noise to the original radial

pressure wave (SNR = 5). The RMSE increased from 0.10 m/s to 0.24 m/s, and the percentage

error, �, increased from 1.2% to 2.8%, when adding 20% noise to the original radial pressure

wave (Table 3). Besides, the errors of the PWV estimates using waveforms without added

noise from the database of virtual subjects were over 10 times smaller than those obtained

from the Twins UK cohort using the same RNN model (Table 2).
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Discussion

We have shown the feasibility of estimating PWV from the radial pressure wave using (i)

Gaussian process regression applied to features extracted from the waveform and (ii) a RNN

model applied to the entire waveform. The results show that the PWV can be estimated from

both pipelines, with the second pipeline presenting a slightly higher accuracy and a lower bias

in the estimated PWV. However, the improvement in accuracy for PWV estimation from the

second pipeline was limited, which indicated that the features extracted from the radial pres-

sure wave using the pulse wave analyser developed by Charlton et al. [22] may be sufficient to

describe the morphology of the entire radial pressure wave. Some of the key features identified

by LASSO regression and applied to the PWV estimation using Gaussian process regression

have been used to calculate pulse wave indices that are closely related to vascular ageing [28–

30]. For instance, the reflection index can be calculated from the feature ‘dia’; the augmenta-

tion index and augmentation pressure can be calculated from the features ‘p1in’ and ‘p2pk’;

and the modified ageing index is related to the features ‘a’, ‘b’, and ‘c’ calculated from the sec-

ond derivative of the waveform. Besides, Gaussian process regression can provide a statistically

meaningful range (95% confidence interval) that shows the reliability of the estimation, and

required less time to train (less than a minute using the data from the Twins UK cohort). On

the other hand, in order to use the pulse wave analyser to extract features from the wave, the

wave needs to be preprocessed to eliminate high and low frequency noises. This step, which

can result in losses of information is not required by the proposed RNN model, even when

using noisy pressure waves.

Fig 4. An example of an original signal, and the same signal with added white noise, with signal to noise ratios

(SNR) of 20, 10 and 5.

https://doi.org/10.1371/journal.pone.0245026.g004
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Fig 5. Estimation of PWV on a hold-out test set containing 1312 virtual subjects using the recurrent neural

network, with different levels of added white noise. Estimated against measured PWV with the linear regression line

in red, the coefficient of determination, r2, and the p-value (top). Corresponding Bland-Altman plots (bottom). SNR:

signal to noise ratio.

https://doi.org/10.1371/journal.pone.0245026.g005
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Comparing our resluts with those obtained by using other non-invasive devices (e.g. the

Pulse Pen [31]) and measurement methods (e.g. the oscillometric method [32]) that require

pulse wave measurements in two arterial measurement sites, the mean differences between the

estimated and measured PWV were similar or smaller (� 0.214 m/s for Pulse Pen, 0.4 m/s for

oscillometric method, vs� 0.2 m/s in this study). The upper and lower LOA, however, were

larger in this study (� 1.346 m/s &� -0.918 m/s for Pulse Pen,�2.9 m/s &� -2.0 m/s for

oscillometric method, vs� 3.75 m/s &�-3.34 m/s in this study). When comparing our results

to those obtained by using a non-invasive device that only requires a single pulse wave mea-

surement (e.g. the Arteriograph [33]), the mean difference was the same for the estimation

using Gaussian process regression (= 0.2 m/s), and the upper and lower LOA were smaller in

this study (� 4.5 m/s &� -4.01 m/s vs� 3.75 m/s &� -3.34 m/s). The root mean square error

(RMSE) of our PWV estimation was larger than that obtained in the machine learning study

by Tavallali et al. [18] (RMSE = 1.1244 m/s). This may be explained by the fact that the average

PWV in Tavallali et al.’s study was smaller than in this study, and that less patient information

(e.g. chronological age) and neither the information from central arteries (e.g. carotid artery)

were used in this study.

Based on the ARTERY Society guidelines for validation of non-invasive haemodynamic

measurement devices [34], the mean differences obtained by the proposed algorithms are both

“excellent”, whereas the “poor” standard deviations are due to the lack of data for subjects with

high PWV in the Twins UK cohort. We now discuss possible causes that led to the PWV esti-

mate errors in our study. Firstly, the reference PWV measurements may have been inaccurate.

Previous studies [35, 36] have pointed out that the accuracy of the PWV measurement can be

largely affected by inaccuracies in the distance between the carotid and femoral arteries, which

is measured on the patients’ body surface by tape when using the SphygmoCor CvMS device.

A further study showed that the accuracy of PWV measured by the SphygmoCor device

decreased at higher PWV values. A possible explanation could be the larger variability of mea-

sured pulse wave transit time compared with other methods [37]. Higher PWV values are asso-

ciated with small transit times, making the PWV values more sensitive to the variability in the

transit time (which appears in the denominator of the PWV calculation). The RMSE and per-

centage error for the PWV estimates by the RNA model applied to the database of virtual sub-

jects with noise-free data were considerably smaller (0.10 m/s vs 1.59 m/s and 1.2% vs 16.9%).

This suggests the existence of measurement errors in the reference PWV values from the

Twins UK cohort. However, further investigations on the accuracy of the PWV measurement

would be needed to test this hypothesis. Secondly, the errors of the PWV estimates increased

with the increasing PWV values, which could be due to the low number of high PWV samples

in the dataset. It is known that the accuracy of machine learning algorithms decreases with the

Table 3. Root mean square error (RMSE) and percentage error (�) for the pulse wave velocity (PWV) estimation

from the radial pressure wave by the recurrent neural network (RNN), with different intensities of added white

noise.

RMSE (m/s) � (%)

Baseline 0.10 1.2

SNR = 20 0.15 1.8

SNR = 16 0.16 1.9

SNR = 12 0.16 1.9

SNR = 10 0.20 2.4

SNR = 8 0.21 2.5

SNR = 5 0.24 2.8

https://doi.org/10.1371/journal.pone.0245026.t003
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decreasing sample size [38]. Two experiments were carried out to confirm this. First, we

increased the training dataset in Case Study 1 with high PWV values by resampling the origi-

nal training dataset with replacement (S4a Fig). As shown in S4b–S4f Fig, this experiment

reduced the bias in the estimation for high PWV values to some extent. However, the estima-

tion accuracy (upper and lower LOA) did not improve, since no new information was added

to the training process. In the second experiment, we reshuffled the whole dataset from Case

Study 1 and split the training and testing datasets with an increased number of subjects with

high PWV in the training dataset. This modification improved the estimation accuracy, which

brought the standard deviation produced by the RNN model to the “acceptable” level accord-

ing to the ARTERY Society guidelines [34] (S5 Fig). Therefore, both the bias and the accuracy

of the estimation could be improved by training the algorithms with a training database con-

taining more subjects with high PWV values. Lastly, the errors in the PWV estimation could

also be the result of confounding biological characteristics of the patients, as the radial pressure

wave was the only input used in our estimation pipelines. The Pearson’s correlation coeffi-

cients, r, between those biological characteristics and the difference of the estimated and mea-

sured PWV indicated that the chronological age was associated with the estimation error the

most. However, this was expected since PWV has a positive correlation with chronological age

and, as pointed out previously, the PWV estimation accuracy worsened for subjects with

higher PWV values due to low sample numbers in the training datasets. Nevertheless, Pear-

son’s correlation coefficients in both machine learning approaches were smaller than 0.3, indi-

cating a neglegible linear correlation [39]. Thus, the analysis suggested that the errors in the

estimations would not be largely dependent on the biological characteristics.

This study is also subject to a few limitations and requires further work. Firstly, the majority

of participants in the Twins UK cohort are females, which means the trained model in this

study is less likely to fit well when using unseen data from a wider population. However, this

should not affect the accuracy of the estimation within the analysis performed in this study

and the conclusions. Secondly, the peripheral pulse wave used in this study was the radial pres-

sure wave measured by applanation tonometry. Further studies using peripheral pulse waves,

such as the PPG signal measured at the digital artery using a fingertip probe or smart phone

camera, or the PPG signal measured around the wrist using the Apple Watch or Fitbit would

be needed to further test the pipelines proposed in this study. Lastly, the pulse wave data in

this study only contained a single cardiac cycle. Further investigations will be needed to assess

the effectiveness of the RNN model on estimating cardiovascular indices using a pulse wave

containing multiple cardiac cycles. The SyphygmoCor and a wearable devices such as the

Apple Watch can acquire pulse wave signals over multiple cardiac cycles.

The clinical significance of this study aligns with assessing the risk factors for CVD from

more accessible measurements. Firstly, the only input information to the proposed algorithms

is the radial pressure wave, which is a peripheral pulse wave that can be easily measured via

non-invasive devices. Importantly, this also makes the PWV estimation in this study totally

independent of chronological age, which has been taken as input in other studies [18]. As

chronological age does not necessarily correspond to the biological age [40], adding age as a

predictor to the algorithm could also bias the estimation results. Estimating PWV without

including chronological age also makes the prediction from the proposed algorithms in this

study more robust and adequate for assessing vascular ageing. Secondly, the machine learning

pipelines proposed in this study can also take other peripheral pulse waves, such as PPG sig-

nals, even the single lead ECG signals with more than one cardiac cycle as input to estimate

CVD risks. Thirdly, the machine learning pipelines proposed in this study can be easily

extended to take multiple peripheral pulse waves as input to further improve the accuracy of

estimation for CVD risks.

PLOS ONE Pulse wave velocity estimation by machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0245026 June 28, 2021 12 / 16

https://doi.org/10.1371/journal.pone.0245026


Conclusion

Three case studies have been carried out to investigate the possibility of estimating PWV (a

well-established biomarker) from the radial pressure wave (a peripheral pulse wave) using

machine learning methods. Results have shown that PWV can be estimated either from the

features extracted from the pulse wave (mean difference = 0.2 m/s, upper LOA = 3.75 m/s,

lower LOA = -3.34 m/s) or the entire waveform (mean difference = 0.05 m/s, upper

LOA = 3.21 m/s, lower LOA = -3.11 m/s) using a clinical database (Twins UK cohort). They

also suggested that the estimation of the PWV from the entire radial pressure wave using a

RNN model can still be achieved when up to 20% noise is added to the wave signal using a

database of virtual subjects. However, the proposed methods need to be tested for reproduc-

ibility using independent external samples. Still, the outcome of this study can potentially help

deliver vascular ageing assessment to a wider population and enable repetitive measurements

that could improve the accuracy of the assessment. Further application of the machine learning

pipelines proposed in this study would also help with remote patient monitoring and con-

nected health. Additionally, the scripts for the machine learning pipelines proposed in this

study are also available on the following online depository: https://github.com/WeiweiJin/

Estimate-Cardiovascular-Risk-from-Pulse-Wave-Signal.

Supporting information

S1 Fig. Estimation of pulse wave velocity (PWV) using Gaussian process regression with

different kernel functions and their sum combinations. RBF: radial basis function; Matérn:

Matérn kernel; RQ: rational quadratic kernel.

(TIF)

S2 Fig. Estimation of pulse wave velocity (PWV) with a 95% confidence interval using

Gaussian process regression on a hold-out test set containing 924 subjects. Panel (a) shows

the measured and estimated PWV plot on top of each other; panel (b) shows the first ten sam-

ples in panel (a).

(TIF)

S3 Fig. Comparison of measured and estimated pulse wave velocity (PWV) and Bland-Alt-

man plots using support vector regression, random forest regression and gradient boost-

ing regression on a hold-out test set containing 924 subjects.

(TIF)

S4 Fig. Original training and testing data and resampled training data distribution using

the Twins UK cohort data (a) and Bland-Altman plots for a hold-out test set containing

924 subjects with algorithms trained using resampled training data (b-f).

(TIF)

S5 Fig. Resampled training and testing data distribution using the Twins UK cohort data

(a) and Bland-Altman plots for a resampled hold-out test set containing 924 subjects with

algorithms trained using resampled training data (b-f).

(TIF)
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