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Abstract

Curiosity-driven, basic biological research “. . .performed without thought of practical

ends. . .” establishes fundamental conceptual frameworks for future technological and medi-

cal breakthroughs. Traditionally, curiosity-driven research in biological sciences has utilized

experimental organisms chosen for their tractability and suitability for studying the question

of interest. This approach leverages the diversity of life to uncover working solutions (adap-

tations) to problems encountered by living things, and evolutionary context as to the extent

to which these solutions may be generalized to other species. Despite the well-documented

success of this approach, funding portfolios of United States granting agencies are increas-

ingly filled with studies on a few species for which cutting-edge molecular tools are available

(genetic model organisms). While this narrow focus may be justified for biomedically-

focused funding bodies such as the National Institutes of Health, it is critical that robust fed-

eral support for curiosity-driven research using diverse experimental organisms be main-

tained by agencies such as the National Science Foundation. Using the disciplines of

neurobiology and behavioral research as an example, this study finds that NSF grant

awards have declined in association with a decrease in the proportion of grants funded for

experimental, rather than genetic model organism research. The decline in use of experi-

mental organisms in the literature mirrors but predates the shift grant funding. Today’s domi-

nance of genetic model organisms was thus initiated by researchers themselves and/or by

publication peer review and editorial preferences, and was further reinforced by pressure

from granting agencies, academic employers, and the scientific community.

Introduction

In his historic report to President Franklin D. Roosevelt titled “Science the Endless Frontier,”

Vannevar Bush wrote persuasively of the necessity of basic, curiosity -driven research for

establishing the foundation of scientific progress [1]. Bush defined basic research as that “. . .

performed without thought of practical ends. . .. (resulting) in general knowledge and an

understanding of nature and its laws” characterized by “. . .free, untrammeled study of nature,

in the directions and by the methods suggested by (the researcher’s) interests, curiosity, and
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imagination.” Bush argued that such research is essential for the national welfare as “It creates

the fund from which the practical applications of knowledge must be drawn. . .new products

and processes. . .are founded on new principles and conceptions, which in turn are painstak-

ingly developed by research in the purest realms of science.” He concluded that basic research

was so important for the continued welfare and security of the United States that it merited

federal financial support. “Science, the Endless Frontier” fueled an ongoing debate over the

role of government in supporting scientific research, culminating in the establishment of the

National Science Foundation (NSF) in 1950 whose mission is, in part, “. . .to initiate and sup-

port basic scientific research. . . [2, 3].”

Bush [1] cited Alexander Fleming’s discovery of penicillin in a fungal contaminant of bacte-

rial colonies as an example of the process by which an unanticipated, serendipitous observa-

tion can initiate a cascade of curiosity-driven then applied research culminating in a medical

breakthrough. Curiosity-driven biological research continues to drive advances in technology

and medicine [4–7], and the impact of this approach and the need for federal support is appre-

ciated by the majority of the American public [8].

The history of antibiotic development, including Fleming’s Nobel Prize-winning research,

also illustrates the invaluable role that the diversity of life plays in generating novel discoveries

that drive innovation. The penicillin-producing mold discovered by Fleming, Penicillium nota-
tum, did not produce enough of the antibiotic for clinical use, but another serendipitous dis-

covery revealed that a close relative, P. chrysogeum, was able to produce much larger amounts

of the drug [9]. Subsequently, development of a screening assay based on the observation that

soil bacteria could inhibit growth of other microbes allowed identification of several antibiotic

compounds that are still in clinical use [10].

As these examples illustrate, species-specific adaptations are evolutionary solutions to a

problem (competition with bacteria) that can be applied to similar problems in other organ-

isms (bacterial infection). In other cases, the common ancestry of life on earth allows biological

processes and mechanisms uncovered in diverse but experimentally tractable species to be

generalized to other, more difficult to study organisms, including humans. For example, early

research in organisms chosen for their relatively simple neural circuits and behaviors (such the

sea slug Aplysia californica), uncovered fundamental and universal properties of learning and

memory (reviewed in [11]).

Modern neuroscience rests on a foundation of discoveries made in evolutionarily and phy-

logenetically diverse species. The immense value of this approach is reflected by the diversity

of animal models in Nobel Prize-winning neuroscience research. These breakthroughs include

Ramon y Cajal’s and Sherringtons’s comparative neuroanatomy and physiology [12, 13]; the

work of Adrian, Eccles, Hodgkin and Huxley on the electrical activity of neurons in frog,

earthworm and squid [14–16]; that of Keffer Hartline on early visual processing in the horse-

shoe crab [17]; and the above-mentioned work of Eric Kandel on the neural basis of learning

and memory in the sea slug Aplysia.

A robust example of the value of experimental organism diversity in biological sciences in

general and neuroscience specifically is observed in the field of neuroethology (the study of the

neural basis of natural behavior). Neuroethology leverages experimental organism choice so as

“. . .to take advantage of evolutionary solutions to biological problems to identify both behav-

ioral adaptations and genetic mechanisms [18].” Like “traditional” neuroscience, neuroetholo-

gical model organisms are chosen for their experimental tractability and suitability for

studying the question of interest, but additionally for their natural behaviors that are particu-

larly well adapted to solve the problem of interest [19, 20]. When combined with comparative

neuroanatomy, fundamental principles of nervous system structure and function emerge,

while species diversity illuminates the roles of novelty and constraint on adaptive solutions to
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problems encountered by animals in their environment [21]. Following the terminology of

Ankeny [22], species chosen for research in this manner are hereafter referred to as “experi-

mental organisms” (EOs).

In contrast to its historical breadth, modern neuroscience research is heavily focused on a

small number of species that are considered models for biological processes that are consid-

ered generalizable across taxa. Again following the terminology of Ankeny [22], these species

are here referred to as “model organisms” (MOs). These species were initially adopted due to

their suitability for laboratory rearing and use in research requiring rapid life cycles, high

fecundity, and environmental and genetic homogeneity (e.g. development and genetics). The

basic biology of these species was characterized by communities of scientists building knowl-

edge bases and research infrastructure that promoted development of molecular genetic exper-

imental tools [22–25]. Later, the development of gene transformation technology in four of

these species (the mouse Mus musculus, zebrafish Danio rerio, fruit fly Drosophila melanoga-
ster, and nematode Caenorhabditis elegans, hereby referred to as genetic model organisms, or

GMOs, positioned researchers to exploit the insight generated by the Human Genome Project

[26, 27]. In 1999, the National Institutes of Health (NIH; the primary biomedical funding

agency in the United States) published a “canonical list” of model organisms including the

aforementioned four species and three additional species, the African clawed frog Xenopus lae-
vis/tropicalis, the domestic chicken Gallus gallus, and the rat Rattus norvegicus (the original

1999 online publication “Non-mammalian models workshop” is no longer available online,

but the list of organisms cited can be found in studies by Ankeny [23] and Dietrich et al [28].

Shortly afterwards, the announcement of the NIH Roadmap [29, 30] emphasizing translational

(“bench to bedside”) research ushered in the current era of genetic model organism domi-

nance in biomedical research. The newly realized scope of genome conservation across ani-

mals meant that mechanistic studies in these species, especially those with genetic

transformation tools, meant that a plausible case could be made for the potential of genetic

model organism research to translate to human health, thus attracting funding from the

National Institutes of Health.

The highly focused GMO approach has been enormously successful: in the field of neuro-

science, and nervous system structure and function has been dissected at unprecedented reso-

lution [31–33]. However, there is increasing concern that the flood of GMO research driven

by ever-advancing molecular genetic methods has come at the expense of curiosity-driven

basic research including that using EOs [23, 28, 34–44]. These concerns are supported by stud-

ies showing shifts in species usage in NIH-funded grants and publications [28, 42], and pres-

sure (either real or perceived) for prospective NIH grantees to focus on GMO research with

plausible applicability to human health [45–53]. Whatever the cause, a substantial decline in

curiosity driven EO research that has been such an essential component of scientific break-

throughs is likely to have dire consequences for scientific progress.

As previously described, the National Science Foundation (NSF) is a critically important

source of dedicated funding for curiosity-driven research, “the fund from which the practical

applications of knowledge must be drawn [1].” Regardless of the state of NIH funding, the

explicit mission of the NSF should maintain robust support for research without obvious

applications, utilizing both EOs and GMOs where appropriate. This study seeks to determine

whether the NSF is indeed fulfilling this role by analyzing funding and publications for curios-

ity-driven research in both GMOs and EOs. Due to the large amount of available funding data,

this analysis is focused fields of neuroscience and behavior (NBR) which includes all types of

neuroscience from highly applied to basic research exemplified by the discipline of neuroethol-

ogy. The latter particularly serves the purpose of this study as is has a long history of robust

NSF support and publication in the primary literature, and characteristically employs a wide
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range of species including GMOs. NIH funding for EO and GMO NBR is also calculated for

comparison with NSF funding during the same time period.

Materials and methods

Neurobiological and behavioral research funding

The NSF Award Search advanced search engine (https://www.nsf.gov/awardsearch/

advancedSearch.jsp) was used to gather award data from the BIO Directorate, the Division of

Integrative Biology and Neuroscience (IBN; 1987–2004), Division of Integrative and Organis-

mal Biology (IOB; 2004–2007), and the Division of Integrative Organismal Systems (IOS;

2007-present) every other fiscal year (Oct 1- Sept 30) from 1987–2017. From FY 1987–2004,

the IBN Neuroscience cluster was composed of the Behavioral Neuroscience, Computational

Neuroscience, Developmental Neuroscience, Neuroendocrinology, Neuronal and Glial Mech-

anisms, and Sensory Systems programs. The Animal Behavior program was contained within

the Physiology and Ethology cluster. From 2004–2007, neuroscience-focused programs at NSF

were combined to form the Environmental & Structural Systems and Functional and Regula-

tory Systems clusters. The Animal Behavior program was placed within the Behavioral Systems

Cluster where it has remained through the present. In 2007, a single Neural Systems cluster

was established and subdivided into the Organization, Activation, and Modulation programs

which remain today. It should be noted that the transition between IBN, IOB, and IOS clusters

overlapped; for example, an award granted in 2007 might be made through both the older

Environmental and Structural Systems Cluster and the Activation program (part of the newer

Neural Systems Cluster). Documentation of the organization of these divisions and clusters

was obtained from the NSF Document Library (https://www.nsf.gov/publications/). Training,

conference, and travel awards were removed from the total award data so that only research

awards were considered in subsequent analyses. In addition, each research project was counted

as an award; for example, multi-PI grants and those designated as “Collaborative Research”

were each counted as a single “award” as funding was for the same research project.

Neurobiological and behavioral research (NBR) award amounts were converted to 2018

United States dollars ($) using the CPI Inflation Calculator (United States Bureau of Labor Sta-

tistics (https://data.bls.gov/cgi-bin/cpicalc.pl)). Calculations of award dollars per PI on collabo-

rative awards were calculated from the total dollars disbursed via multi-PI and “Collaborative

Research” awards divided by the total number of PIs on these grants. The NSF grant database

provides dollar amounts awarded to date; total funds awarded are available only for expired

awards. Thus, grant funding could only be considered through 2011, the last year for which all

awards had been completed at the time data was collected. Total numbers of grants awarded

and PIs funded could be analyzed up to 2017. The number of proposals and preliminary pro-

posals submitted to and funded by NBR clusters were not available, even upon FOIA request.

However, this data was available for IOS from 2001–2018 at https://dellweb.bfa.nsf.gov/ and

https://catalog.data.gov/dataset/nsf-research-grant-funding-rate-history. The number of pre-

liminary proposals submitted to IOS from 2013–2015 was obtained from [54].

Model organisms used in funded NSF NBR grants were quantified via a curated search of

abstracts for each funded NBR award and, if not stated, from a PubMed search (https://www.

ncbi.nlm.nih.gov/pubmed) of publications by the PI at the time of the award. Model organisms

are subdivided into two categories. The first, genetic model organisms (GMOs), are defined as

animals for which molecular tools exist for germ-line transformation and modification of gene

expression. These animals are included on the list of “canonical” model organisms created by

the National Institutes of Health in a 1999 online publication titled “Non-mammalian models

workshop.” This document is no longer available online, but studies by Ankeny and Dietrich
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et al [23, 28] provide the list of organisms. Organisms considered GMOs are the roundworm

Caenorhabditis elegans, the fruit fly Drosophila melanogaster, the mouse Mus musculus, and

the zebrafish Danio rerio. All other animal species used in funded research, as well as computa-

tional research, were grouped as experimental (non-genetic) organisms (EOs). Note that EOs

include some species on the 1999 canonical model organisms list that lack molecular tools (the

chicken Gallus gallus, the African clawed frog Xenopus laevis or X. tropicalis, and the rat Rattus
rattus).

The NIH RePORT search engine (https://report.nih.gov/index.aspx) was used to collect

data on research project grants (RPGs) awarded by NIH neuroscience programs every other

year from 1995–2017. Institutes participating in the NIH BRAIN Initiative were included in

the search [55]. Awards were searched by the 7 model organisms listed in the previous

paragraph.

Neurobiological and behavioral research publications

A Web of Science advanced search (https://apps.webofknowledge.com) was used to identify

journal articles published in the Neurosciences subject area by year, model organism, and

United States authorship. First, curated Web of Science topic searches were performed from

1990–2017 for comparisons of taxonomically related GMO:EO pairs, the fruit fly Drosophila
melanogaster vs. insects (all other insect species) and the zebrafish Danio rerio vs. fish (all

other fish species). A second publication search of model organisms on the NIH “canonical

model” list (from 1995–2017 to match the time period for which NIH award data was col-

lected) was tabulated using only article titles. Title searches were chosen for this analysis as

topic searches for these popular model species produced hundreds or thousands of “hits” that

preclude curation of results. Title searches underreport model species usage as the species is

not always stated in the article title. However, topic searches over-report model species usage

(for example when related findings in mouse are described in the abstract of a study performed

using rats). To demonstrate the degree to which overcounting and undercounting occur in

topic and title searches, the first 100 hits of the topic search for the mouse model species in the

years 2005, 2011, and 2017 were curated. Both over and undercounting occurred, but at similar

levels in all three years (13, 14, and 17 overcounts and 36, 38, and 39 undercounts for 2005,

2011, and 2017 respectively). Since both errors appeared consistent across the three dates, title

search provides a stable representation of publication trends by model species.

Data analysis

Data was plotted using Microsoft1 Excel1 for Mac 2011 (Microsoft Corporation, Redmond

WA, USA) and fit of regression lines was determined via ANOVA using the GraphPad Quick-

Calcs browser application (GraphPad Software, San Diego CA, USA) (https://www.graphpad.

com/quickcalcs/). Figures were constructed using Microsoft1 Powerpoint1 for Mac 2011

(Microsoft Corporation, Redmond WA, USA).

Results and discussion

Neurobiological and behavioral research funding by the National Science

Foundation

Neuroscience and behavior research (NBR) is funded by the NSF under the Division of Inte-

grative and Organismal Systems (IOS; previously designated the Division of Integrative Biol-

ogy and Neuroscience or the Division of Integrative and Organismal Biology) that is in turn

contained within the BIO directorate. Funding through these bodies was determined via an
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advanced award search for every other fiscal year from 1987–2011, after which total funds dis-

bursed was not available for ongoing awards. When converted to 2018 US dollars, BIO funding

(Fig 1A; F(1, 11) = 35.78, p<0.0001, R2 = 0.7648) and IOS funding (Fig 1A; F(1,11) = 19.05,

p = 0.0011, R2 = 0.6340) is observed to have increased significantly. From 1987–2017 the total

number of awards made by both the BIO directorate (Fig 1B; F(1, 14) = 0.4856, p = 0.4973,

R2 = 0.0335) and the IOS division (Fig 1B; F(1, 14) = 1.113, p = 0.3094, R2 = 0.0736) remained

Fig 1. Grant funding by NSF BIO and IOS. A. Total 2018 US$ awarded every other year from FY1987- FY2011 by the BIO directorate

(squares) and IOS division (circles). B. Total award numbers made every other year from FY1987- FY2017 by the BIO directorate (squares) and

IOS division (circles). Asterisks in A indicate significant increase in funded grant dollars for both BIO and IOS.

https://doi.org/10.1371/journal.pone.0243088.g001
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constant. Thus, on average, the dollar amount per award increased from 1987–2011 for grants

made through the BIO directorate and the IOS division.

Beginning in 1998, grants funded through the Plant Genome Project (PGP) were added to

the IOS Division [56]. When PGP grants are subtracted from IOS (IOS-PGP), the amount of

funding disbursed via IOS was unchanged from 1987–2011 (Fig 2A; F(1, 11) = 2.635,

p = 0.1328, R2 = 0.1933) and the number of awards made decreased (Fig 2B; F(1, 14) = 5.736,

p = 0.0312, R2 = 0.2906). NBR funding mirrored that for IOS-PGP (Fig 2A; F(1, 11) = 0.1099,

p = 0.7465, R2 = 0.0099; Fig 2B; F(1, 14) = 28.29, p = 0.0001, R2 = 0.6690). As observed for BIO

and IOS, IOS-PGP and NBR awards were fewer and larger; but resulted from a decline in

award number under a flat budget.

Do decreasing numbers of awards funded reflect a decrease in proposals submitted? While

proposal submission data for NBR or IOS-PGP was not available, data for IOS revealed a

steady increase in proposal submissions from 2001–2011 (open squares, Fig 2C; F(1, 9) =

49.87, p<0.0001, R2 = 0.8471), while the number of grants awarded remained unchanged

(open circles, Fig 2C; F(1, 16) = 0.3850, p = 0.5437, R2 = 0.0235), which would result in a

decline in funding success rate. In 2012 IOS adopted a preliminary proposal requirement [57],

from which a portion were chosen for full proposal submission. Katz et al [54] reports that

from 2013–2015 a total of 5802 preproposals were submitted to IOS; divided equally across the

three-year period, the number of preproposals submitted per year during this period was simi-

lar to the number of proposals submitted in 2012 (light grey squares, Fig 2C). Katz et al [54]

and two NSF funding databases (see Materials and methods) report the number or prepropo-

sals selected for invited submission as full proposals (black squares). Under the preproposal

system, the absolute number of grants funded (open circles) did not differ from that prior to

implementation of the preproposal requirement. Although the data in Fig 2C is for the entirety

of IOS and not just NBR programs, it suggests that the observed decrease in IOS-PGP and

NBR grants funded is unlikely to have resulted from a decrease in submitted proposals.

Declining awards for NBR particularly impacted those for sole PI research (excluding con-

ference, travel, and dissertation grants; Fig 3A; F(1, 14) = 98.01, p<0.0001, R2 = 0.8750). The

number of sole PI awards was relatively constant from 1987–1999, peaking at 160 funded

grants in 1993. After 1999, sole PI awards dropped precipitously such that only 30 were

granted in 2017, a decline of over 80%. In contrast, no change was observed in the number of

collaborative projects funded from 1987–2017. These included grants specifically designated

as “Collaborative Research” and disbursed as separate funds to each PI, and multi-PI projects

awarded as lump sums (Fig 3A; F(1, 14) = 1.120, p = 0.3078, R2 = 0.0741 Although the number

of collaborative grants made remained constant, an increasing proportion of researchers were

funded by these awards (Fig 3B). On average, PIs on collaborative grants (determined by divid-

ing total funding disbursed by these awards by the total number of collaborative PIs) received

smaller dollar amounts than did sole PIs (Fig 3C). To summarize, when compared with fund-

ing data from 30 years the today’s NSF NBR programs fund fewer PIs with smaller awards on

average.

Model organism usage in NBR NSF and NIH awards and publications

Declining NSF NBR grant funding particularly impacted the number of grants awarded for

research using EOs (Fig 4A; F(1, 9) = 49.13, p<0.0001, R2 = 0.8452). In contrast, award num-

bers for GMO research remained low but constant from 1997–2017 (Fig 4A; F(1, 9) = 3.286,

p = 0.1033, R2 = 0.2675). This resulted in proportionally larger numbers of grants awarded for

GMO research; almost 28% of NBR research awards in 2017 compared with 17% in 1997.
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Fig 2. Grant funding by NSF IOS and by neurobiology and behavior programs, and grant success rates for IOS. A.

Total 2018 US$ awarded every other year from FY1987- FY2011 by the IOS division (Plant Genome Project awards

subtracted (IOS-PGP); squares), and neurobiological and behavioral (NBR) programs contained within IOS (circles).

B. Total award numbers made every other year from FY1987- FY2017 by IOS-PGP (squares) and NBR programs

(circles). C. Full proposals submitted to IOS from 2001–2011 (open squares), estimated preproposals submitted from

2013–2015 (light grey squares), invited full proposals submitted from 2012–2018 (black squares) and total grants

funded from 2000–2018 (open circles). Asterisks in B indicate significant decrease in IOS-PGP and NBR award

numbers. Asterisk in C indicates significant increase in IOS proposals submitted.

https://doi.org/10.1371/journal.pone.0243088.g002
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Fig 3. Grant funding by NSF NBR programs for collaborative and sole PI projects. A. Sole PI (squares) and

collaborative (circles) NBR awards funded from FY1987- FY2017. B. Total PIs funded (grey), sole PIs (white) and

individual PIs funded on collaborative grants (black). C. Mean award amounts for sole PIs (white) and PIs on

collaborative grants (black). Collaborative project dollars per PI were calculated as the total amount of dollars awarded

by collaborative grants divided by the total number of PIs funded by those grants. Asterisk in A indicates significant

decrease in funded sole PI grants.

https://doi.org/10.1371/journal.pone.0243088.g003
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Fig 4. Publications for GMO and EO species within the insects and fish (Chondrichthyes + Osteichthyes). A. NSF

neuroethology awards for non-genetic model species research (EOs, squares) and genetic model species research

(GMOs, circles) from 1997–2017. B. Curated publications by United States authors using the Drosophila melanogaster
model species (squares) and other insect model species (circles). C. Curated publications by US authors using the

zebrafish model species (squares), and other fish model species (circles), Asterisks in B indicate significant increase in

Drosophila publications (top) and decrease in other insect publications. Asterisks in C indicate significant increase in

zebrafish publications (top) and decrease in other fish publications.

https://doi.org/10.1371/journal.pone.0243088.g004
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Declining numbers of NBR publications using EOs is associated with but predates decreas-

ing grant funding for EO research (by both the NSF and NIH, as shown below). Two curated

Web of Science topic searches of US authored NBR publications compared large phylogenetic

taxa (insects and fish) with genetic model organisms contained within those taxa (Drosophila
melanogaster and Danio rerio, respectively). Research articles for EO insect or fish species have

significantly declined (Fig 4B insects, F(1,12) = 13.04, p = 0.0036, R2 = 0.5209; Fig 4C fish, F(1,

12) = 46.77, p<0.0001, R2 = 0.7958) while publications for GMOs within those groups have

significantly increased (Fig 4B Drosophila, F(1, 12) = 54.00, p<0.0001, R2 = 0.8182; Fig 4C

Danio, F(1, 12) = 98.76, p<0.0001, R2 = 0.8917).

NIH RePORTER was used to search for NIH research awards using the canonical model

species (both genetic (GMOs) and non-genetic model organisms (MOs)) by NBR-focused

institutes. While awards for both GMO and MO research appeared to be roughly even prior to

1999, those for GMOs increased steadily from 1995–2003 (prior to and including the time

period between release of the canonical organism list and the NIH Roadmap, as indicated by

the grey box in Fig 5A). Awards for MO remained were steady from 1997–2003, after which

they began to decline (Fig 5A). After 2003, MO NBR awards declined overall while those for

GMOs steadily increased. Web of Science publication searches by date, model organism, and

US authorship (Fig 5B and 5C) revealed increasing numbers of publications for GMOs on the

canonical organisms list (mouse, F(1,10) = 56.27, p<0.0001, R2 = 0.8491; C. elegans, F(1, 10) =

5.283, p = 0.0444, R2 = 0.3457; Drosophila melanogaster, F(1,10) = 5.242, p = 0.0450, R2 =

0.3439; and Danio rerio, F(1,10) = 33.87, p<0.0002, R2 = 0.7721) and decreasing numbers of

publications for non-genetic model species (rat, F(1,10) = 395.2, p<0.0001, R2 = 0.9753; Xeno-
pus, F(1,10) = 45.26, p<0.0001, R2 = 0.8190; and chick, F(1,10) = 31.78, p<0.0002, R2 =

0.7606). As with the curated search, these trends began prior to the 1999–2003 time period

(grey box, Fig 5) during which the NIH canonical model organisms list and NIH Roadmap

were released.

The steady decline of curiosity-driven research in the US, particularly that with the broad

organismal and evolutionary scope facilitated by use of EOs, has been decried by many authors

[23, 28, 34–44]. The present study sought to empirically characterize the 30-year course of

curiosity-driven neuroscience and behavioral research (NBR), particularly that using EOs, as

measured by grant funding and publications. NBR funding by the NSF, whose mission pre-

scribes support for curiosity-driven research, was compared with that by the NIH, which

invests in research relevant to human health and disease. It was expected that in the face of

growing emphasis on “translational” research at the NIH, facilitated by use of GMOs, the NSF

would continue to serve as a bastion of crucial support for EO, curiosity driven NBR. Instead,

the NSF award data presented above describes a clear and alarming decline in the number of

grants funded for NBR and organismal biology as a whole (IOS; excepting that allocated for

the Plant Genome Project). From a peak total of 200 NBR grants awarded in 1997 (not includ-

ing training, meeting, and travel awards, and those awarded from the 2009 ARRA), only 70

grants were funded in 2017, a 65% decrease (Fig 2B). The number of PIs funded for NBR also

declined from a peak of 250 in 1997 to 113 in 2017, a 55% decrease (Fig 3B). Data available for

IOS from 2001–2015 demonstrates that proposal submissions have increased while the num-

ber of grants funded has remained unchanged, suggesting that a decline in NBR grant success

rate may underly the deterioration of NBR support (Fig 2C). The casualties of declining NBR

grant funding have overwhelmingly been awards to sole PIs and for NBR utilizing EOs (Figs

3A and 4A), such that awarded grants fund proportionally more genetic model organism

research and more PIs on collaborative grants (Fig 3B). It is important to note that collabora-

tive grants per PI are on average significantly smaller than those for sole PIs: in 2017, the mean

award amount for sole PI NBR grants was $551, 861 over 2–5 years, while that for a PI on a
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Fig 5. NIH grant funding and publications for GMOs and MOs on the 1999 canonical model species list. A. NIH

neuroscience awards for canonical animal model organisms with (squares; GMOs) and without (circles; MOs)

molecular genetic tools. B. Title search for publications using the canonical rodent model species rat (squares; MO)

and mouse (circles; GMO). C. Title search for publications using canonical GMOs (Drosophila (open squares),

zebrafish (open circles), C. elegans (open triangles)) and canonical MOs (chick (closed squares), Xenopus (closed

circles)). Shaded area indicates time period between release of the NIH canonical model species list and the NIH

Roadmap. Asterisks indicate significant increase in publications using Drosophila, zebrafish, and C. elegans, and

significant decrease in publications using chick and Xenopus.

https://doi.org/10.1371/journal.pone.0243088.g005
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collaborative grant was on average $308, 593 over 2–4 years, just 56% of that for sole PIs (in

2018 dollars; Fig 3C). It is also important to consider that these amounts represent total dollars

awarded. The NIH “bread and butter” R01 grant lasts up to 5 years and is funded for up to

$250,000 in direct costs per year (if the proposal uses a simplified modular budget; far larger

budgets are allowable with additional justification [58]) Finally, as observed for NSF funding

of EO NBR, NIH funding for NBR using EOs on the “canonical model organism” list has

declined, although in contrast to the NSF, NIH awards for GMO NBR have increased (Fig 4A).

Dwindling funding support for EO NBR is mirrored by declining publications for such

research. Analysis of NBR publications reveals that research on EOs, is essentially being

replaced by that utilizing a handful of GMOs. In 2017, NBR publications for single GMOs (e.g.

Drosophila or zebrafish) greatly outnumbered those for the entire taxa those species belong to

(e.g. insects or fish; Fig 4B and 4C). As an example, 28 NBR studies were published by US labs

on insects excluding Drosophila in 1997 and 16 were published in 2017. In contrast, Drosophila
publications numbered 53 in 1997 (65% of total papers on insect NBR) and 106 in 2017 (87%

of insect NBR papers). Species included in the 1999 NIH canonical list of species that lack the

advanced technology for genetic manipulation and are thus similar to EOs (e.g. rat, Xenopus,
chick) have also declined in representation in the literature (Fig 5B and 5C). These once popu-

lar and well-supported model systems have also fallen out of favor with NBR scientists as

GMOs have risen to dominance.

Similar publication trends for GMOs and EOs on the NIH canonical species list were

observed for countries outside of the US; GMO publications increased, while EO publications

decreased (S1 Dataset). This further supports the hypothesis that US funding bodies are not

entirely responsible for the shift towards GMO NBR. Interestingly, curated topic searches

revealed that while non-GMO fish and non-GMO insect research publications declined in the

US, no significant decline was observed in other countries (other countries, non-GMO fish,

F(1,12) = 4.142, p = 0.0645, R2 = 0.2566; other countries, non-GMO insects, F(1,12) = 0.6635,

p = 0.4312, R2 = 0.0524; S1 Dataset, S1 Fig). Although it is difficult to determine why this is the

case, it would be interesting to consider whether funding bodies in other countries are cur-

rently more amenable to curiosity-driven, non-GMO research, or whether other pressures to

focus on more applied, GMO NBR differ outside of the United States.

It is important to note that decreased representation of EOs in US-authored NBR publica-

tions predates the shift in funding by both the NSF and the NIH. Changing funding priorities

did not drive the initial movement of the scientific community to GMOs but rather appears to

have been initiated by researchers themselves. Why did this occur, when the traditionally

diverse model species approach had been so successful? The 1980s-1990s was a period of rapid

development and refinement of key molecular tools such as targeted recombination, germ line

transformation, and exogenous control of gene expression for three established laboratory

organisms (Drosophila, C. elegans, and mouse), and the introduction of the zebrafish as verte-

brate developmental model system ([59–68]; see [24] for review). Later, publication of genome

sequences for these GMOs associated with the Human Genome Project cemented these spe-

cies’ importance as biological research models [26]. Published in top-tier scientific journals,

these technologies generated tremendous excitement as they heralded breakthrough

approaches and insights. The extent of gene conservation across taxa revealed by genome

sequences and the ability to unravel gene functions at unprecedented resolution made GMOs

attractive to new and established researchers [23, 44]. In particular, gene conservation with

humans made a convincing case for the applicability of GMO research to human health and

disease and thus access to research dollars from the largest science funding agency in the

United States. NIH administration has consistently maintained that despite the emphasis on

translational research, curiosity-driven research using EOs is valued and supported [46–53].
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However, these statements are at odds with the experiences of researchers suggesting that the

peer review process appears to favor proposals focused on plausible translational outcomes

using cutting edge molecular genetic tools available in GMOs [41, 44, 45, 49–51, 69–71].

Under the pressure of a highly competitive grant funding and academic employment climate,

researchers will eschew curiosity-driven and EO research in favor of GMOs and projects that

can be tailored to current funding trends and publication peer-review and editorial prefer-

ences. Alternately, they may shape their research interests around the capabilities of a GMO

rather than choosing the model organism most suitable for the intended research. Under each

of these scenarios, questions that cannot be adapted to study in GMOs may simply not be pur-

sued [18, 22, 25, 39, 41, 44, 72].

The forces driving declining support for EO NBR by the NSF are less clear but have resulted

in an overall reduction in funded PIs and projects despite total expenditures per year remain-

ing unchanged. As observed for NIH grants, the proportions of NSF awards for GMO vs EO

NBR began to shift around the year 2000 but were due entirely to reduced support for EO pro-

posals without a concomitant increase in support for GMO grants. In contrast, this shift

should not have been influenced by changes in NIH funding priorities such as the designation

of canonical model organisms or emphasis on translational research. While it appears that a

dramatic change in NBR funding strategy occurred at the NSF concomitant with a similar

shift at the NIH, official administrative policy statements to that effect are lacking.

The case for maintaining robust support for curiosity-driven research was well stated by

Vannevar Bush and has been reiterated by many authors since. [1, 6, 34, 73]. The contributions

of EOs to scientific progress are also clear. EOs enable discovery and study of processes that

may not be experimentally tractable or even present in GMOs, often in organismal, ecological,

and evolutionary contexts that are critical for determining the degree of generalization of find-

ings [18, 35, 41, 74]. It is important to note that GMO research has also been undeniably suc-

cessful, enabling important breakthroughs in both curiosity-driven and applied contexts. But

the increasing dominance of an exceedingly small number of GMOs in NBR and other areas

risks producing a misleading picture of biological processes that complicates generalization.

Many authors have cautioned against over-generalizing findings of GMO research to other

species, including humans [18, 22, 23, 25, 35, 39, 41, 43, 44, 72, 75–80]; in short, despite gene

conservation, GMOs may not model fundamental biological processes as faithfully as they are

purported to. To begin with, GMOs were initially selected for their derived life histories that

facilitate laboratory rearing and research (small size, rapid life cycle and development) under-

pinned by molecular and cellular adaptations that may not be generalizable to species that did

not undergo selection for these characteristics [25, 72, 81]. Furthermore, GMO laboratory

lines have been “standardized” by years of inbreeding and strict environmental control to

remove variation. While this approach facilitates study of biological mechanisms, it is not rep-

resentative of how these mechanisms operate in a animal living in the natural world, where

genetic, phenotypic, and environmental variation is the norm [82–85].

Another limitation to generalization is the fact that genetic homology does not always

equate to structural or functional homology; the role of a gene in mouse is not always the same

as that in a human. Millions of years of independent selection and adaptation in GMOs scat-

tered across animal phylogeny influences gene expression and function [44, 72, 86]. New func-

tions acquired by ancient genes as a result of regulatory and coding sequence divergence have

been extensively documented [87–89] such that genes with conserved coding sequences may

have very different functions [90, 91]. Furthermore, convergent traits in different species may

appear to be homologous, even though they arose independently and may rely on entirely dif-

ferent genetic mechanisms (reviewed in [72]). Without comparative studies incorporating a
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range of EOs, it is impossible to know the extent of conservation of a biological process eluci-

dated in GMOs that are a vanishingly small representation of all life on earth.

As may be expected, it is increasingly evident that GMOs are not universally suitable mod-

els for all aspects of human health and disease [41, 43, 74, 78, 92]. A particularly clear example

of this issue is the failure of hundreds of clinical trials for Alzheimer’s disease treatments that

were efficacious in mice (reviewed by [93]). Disease phenotypes are induced in GMOs by

manipulation expression of a candidate gene in an otherwise homogenous genotypic and

environmental background. As such these laboratory-generated disease models may not con-

sider factors important for the onset and progression of human disease. Attempts to model

the neural bases of behavior are similarly limited by the focused precision afforded by GMOs:

does the activity of a select population of neurons during a simple behavioral assay in a

homogeneous population of a single derived species provide broad insight into general prin-

ciples of brain function [72, 78–80]? How does a behavior chosen for ease of quantification in

the laboratory relate to the natural behavior of the animal in a complex, changing environ-

ment? Is the activity of cells and circuits that evolved to enable these adaptive behaviors

faithfully recapitulated under laboratory conditions? Once again, the relevance and generaliz-

ability of GMO research cannot be fully appreciated outside of a comparative context and

without a detailed understanding of how laboratory conditions relate to the natural behavior

of the GMO [94–97].

Finally, there is concern that the most attractive aspect of GMO research, the continually

developing array of molecular genetic tools, encourages a deeply reductionist approach result-

ing in an exceedingly narrow view of biological processes [25, 37, 38, 79, 80]. Bolker [39] aptly

states: “The extraordinary resolving power of core models comes with the same trade-off as a

high-magnification lens: a much-reduced field of view.” While allowing profound insight into

genetic and cellular mechanisms, their relevance to the whole organism in its environment

and as a member of the animal kingdom can only be conjectured.

Continued scientific progress demands that mechanistic GMO research with prospective

applications must be brought back into balance with curiosity-driven research, including that

using EOs. A critical step towards restoring balance is to bring the experimental capabilities of

selected EOs in line with those of GMOs by providing robust financial support for the develop-

ment of molecular tools and infrastructure [41, 98]. Federal support for such purposes was

instrumental to building GMO scientific communities [22, 23, 25, 78]. Initial efforts in build-

ing EO infrastructure might be directed towards refining and standardizing existing molecular

genetic tools that are most likely to work in a wide range of species (e.g. CRISPR-Cas9). EOs

or groups of EOs should initially be selected based on their phylogenetic position and suitabil-

ity for studying particular evolutionary or biological processes, by scientific communities

united by research interest (e.g. the neuroethology community in the case of NBR [86, 91, 98–

101]). Once chosen, it is critical that curiosity-driven investigation of EO biology be coupled

with the comparable molecular genetic tools, establishing these species as truly holistic model

organisms. Once established, support for EO research and infrastructure must be maintained

in the long term as it has been for GMOs, funding proposals targeted towards continued devel-

opment of EOs and curiosity-driven research using both EOs and GMOs.

The current highly competitive funding climate promotes a fatalistic attitude towards the

possibility of disrupting the status quo. As is the case for all government funding decisions the

allocation of grant dollars is decided based on data, communication, and pressure from multi-

ple stakeholders. Reprioritization of basic research and substantial, sustained changes in

funding must be convincingly justified in the eyes of scientific peers, the public, academic

institutions, K-12 educators, industry, and elected officials at all levels, perhaps by adopting

strategies successfully employed by patient advocacy groups (e.g. American Cancer Society,
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American Heart Association). Such a strong, coordinated effort is necessary to effect the broad

change in attitude about the value of curiosity driven research using diverse model organisms,

and the necessity of reprioritizing basic research support so that it is equal to GMO research

subserving applied outcomes.

Conclusions

Basic research as envisioned by Vannevar Bush, the “. . .free, untrammeled study of nature, in

the directions and by the methods suggested by (the researcher’s) interests, curiosity, and

imagination,” comprises a rapidly dwindling proportion of today’s neurobiological and behav-

ioral research literature and funding agency portfolios. Modern NBR is dominated by highly

reductionist studies using a miniscule number of species with cutting-edge genetic tools

(GMOs), for which a plausible case for biomedical and other human benefits can be made.

While the initial surge in GMO research was driven by the community, resources, and novel

lines of inquiry delivered by these species, the “runaway selection” observed today is driven by

pressure from multiple sources including peers, academic employers, and funding agencies.

Founded on the premise of supporting curiosity driven research, the NSF should continue to

support basic NBR using EOs (diverse species lacking genetic tools). However, this study finds

that EO NBR funding by the NSF is dwindling at an alarming rate. Coupled with declining

representation of EOs in the NBR literature, the neuroscience community faces a widening

gap in generational knowledge transfer in productive and impactful areas of curiosity driven

NBR research using EOs. The reprioritization of curiosity-driven research must not be

regarded as an impossibility, but as a necessity.
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