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Abstract

The Coronavirus Disease 2019 (COVID-19) has proved a globally prevalent outbreak since

December 2019. As a focused country to alleviate the epidemic impact, China implemented

a range of public health interventions to prevent the disease from further transmission,

including the pandemic lockdown in Wuhan and other cities. This paper establishes China’s

mobility network by a flight dataset and proposes a model without epidemiological parame-

ters to indicate the spread risks through the network, which is termed as epidemic strength.

By simply adjusting an intervention parameter, traffic volumes under different travel-restric-

tion levels can be simulated to analyze how the containment strategy can mitigate the virus

dissemination through traffic. This approach is successfully applied to a network of Chinese

provinces and the epidemic strength is smoothly interpreted by flow maps. Through this

node-to-node interpretation of transmission risks, both overall and detailed epidemic haz-

ards are properly analyzed, which can provide valuable intervention advice during public

health emergencies.

1. Introduction

The COVID-19 disease has spread worldwide and severely damaged the global economy and

public health. Globalization has brought huge traffic volume hence stronger connectivity,

which poses serious challenges in the face of such infectious disease with high epidemic poten-

tial. Since the first detection and rapid spread of COVID-19 in Wuhan, Hubei province, China

has imposed mobility restrictions on Wuhan in January 23, 2020, and sequentially 15 other cit-

ies in Hubei province. This lockdown strategy is considered as a key measure to keep the dis-

ease from more serious spread. In understanding the dynamics and features of COVID-19,

quite a few researchers have focused on the epidemiological factors, such as reproductive num-

ber [1, 2], age structure [3, 4] and sex factors [5, 6]. Some other works have concentrated on

the estimation of epidemic growth or peak values [7–9]. Additionally, human mobility makes

a great difference in discovering transmission dynamics [10]. Brockmann et al. [11] first pro-

posed the concept of effective distance to explore the hidden spatiotemporal patterns in conta-

gion phenomena such as infectious disease. This concept considers the passenger exchange
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volume between nodes rather can any epidemiological factors, which serves as a robust signal

for network-driven dynamic processes of epidemics. Following this idea, Nah et al. [12]

regarded arrival time and reciprocal effective distance as the indicator for MERS risk predic-

tion. Similar analysis was conducted on Zika importation risk estimation [13]. Haider et al.

[14] suggested a comparable indicator, risk index, that consider passenger import volume and

infection rate from other infected nodes. Besides, a range of research works sought to uncover

correlations between human mobility and COVID-19 epidemics. For example, Jin et al. [15]

studied the relation between migration population from Wuhan and detected coronavirus

cases. Kraemer et al. [6] analyzed that China’s movement restrictions can reduce the syn-

chrony between incidence in Wuhan and all other provinces. These works were based on the

Baidu migration index, which indicates relative migration flows between Chinese cities other

than real traffic volume. To understand how the intervention strategies can affect epidemiolog-

ical risks of COVID-19 disease, three key issues should be addressed:

1. To establish a human mobility network which represents traveler exchange.

2. To estimate the human mobility in various context during an epidemic or pandemic

period.

3. To quantitatively analyze the potential transmission risk involved in the passenger flows.

In this regard, this paper does not discover epidemic patterns by directly analyzing Corona-

virus historical data. Instead, our approach estimates the traffic flows during an epidemic

period and seeks to measure the epidemic strength, an metric we proposed to indicate the dis-

semination risk involved in passenger flows.

2. Data and methods

2.1 Data and mobility network

In this work, we consider a mobility network according to OpenFlights airport database [16].

We extracted the airport and route data in cities across China that covers 185 airports and

1515 routes to construct a human mobility network, where each node denotes an airport and

each edge denotes flight routes (S1 Fig). We referred to Mao et al.’s airline passenger model

[17, 18] and extracted their monthly data as the normal passenger estimation. The real flight

statistics is obtained from monthly reports by Civil Aviation Administration of China (CAAC)

[19]. All the coronavirus statistics data are based on Johns Hopkins University (JHU) cases

dataset [20] and WHO situation reports [21], of which the recorded period covers from Janu-

ary 22, 2020 to April 16, 2020. We collected population data from World Bank Open Data [22]

and the National Bureau of Statistics of China (NBS) [23], whose statistical unit meets provin-

cial grade. We employ subnational administrative boundaries data from the Humanitarian

Data Exchange [24] and Earth at Night satellite images from NASA Earth Observatory [25] for

map production.

2.2 Mobility simulator for pandemic periods

Air traffic estimation involves complexity from many factors, such as historical passenger vol-

ume, airport location, local population, economic factors, etc. Due to COVID-19 pandemic

situation, the airline traffic can be dramatically damaged thus the simulation incorporates

more components. According to Air China Limited’s operational report [26], compared with

the market performance last year, the number of monthly carried passengers from February,

2020 to April, 2020 all fell by more than 60%; especially in February, the traffic dropped by

82.9%. Further, in response to the epidemic issue, many scholars and governors suggest cutting
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down the traffic volume. In this context, we formulate an adjustable model for proper air traf-

fic simulation during epidemic periods, where two fundamental factors are considered: impor-

tation risk and intervention impact.

During the early stage of COVID-19, due to the most confirmed cases in China, Haider

et al.’s work only considered imported cases from China and weighted their risk estimation

with the infected cases in China [14]. The proposed risk index Rn of a destination node n can

be derived as follows:

Rn ¼
XM

m¼1

Vmn

Vm
�
Im
Pm

ð1Þ

where m2M indicates the origin node, Vmn is the traffic volume from node m to node n, Vm is

the total export volume from node m, Im denotes the infected cases in node m, and Pm denotes

the total population of node m. The metric indicates the importation risk of a certain node to

some extent. In a similar but more comprehensive way, we extend this concept to a global

model that considers effect from every node in the network, so that the improved model can

depict transmission risks in a more generic and robust manner.

Assuming that the mobility network consists of i nodes, we compute an i-sized set of risk

index Rn for each node n and compose a shrinkage matrix A for traffic volume restriction.

During a period of time t, this shrinkage matrix is derived as:

A ¼ diag
j � c
jþ c

e� R
� �

ð2Þ

where diag(�) denotes a diagonal matrix created by the target vector input, j indicates an i-
sized vector of ones, R = {R1,R2,. . .,Ri}2[0,+1) is a set of risk index for each node. Corre-

sponding to each node, ci in c = {c1,c2,. . .,ci}2[0,1] is an adjustable coefficient that we define as

intervention index, of which a higher value implies stricter mobility control. This adjustment

is weighted with the mobility reduction affected by the intervention strategies imposed. Practi-

cally, this metric can be configured by an intervention function, where time t, infection num-

bers I or risk index R serves as an independent variable (Table 1). We assume an i×i traffic

volume matrix V derived by Mao et al.’s prediction [18] as the passenger estimation in normal

cases, whose elements Vmn quantifies the normal traffic volume from node m to node n. The

traffic matrix V̂ is estimated by:

V̂ ¼ AVA ð3Þ

Table 1. Comparison of various intervention strategies for mobility simulation.

No. Strategy Intervention index configuration Average traffic volume Average EPS

(1) None c = 0 1548.394 2.972

(2) Constant cðHubeiÞ ¼ 0:99;

cðBeijing; Shanghai;GuangzhouÞ ¼ 0:25;

cðothersÞ ¼ 0:125

8
>><

>>:

758.766 1.760

(3) t-Function cðHubeiÞ ¼ 0:99;

cðothersÞ ¼ max�
1

8500
ðt � 45Þ

2
þ 0:25; 0g

8
<

:

759.353 1.669

(4) I-Function c ¼ min 8:25� 104 I
P ; 1g

�
763.821 1.081

https://doi.org/10.1371/journal.pone.0242761.t001
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Through this control, both the export volume and import volume are reduced. For exam-

ple, given 10 nodes n1,n2,. . .,n10 to construct a 10×10 origin-destination matrix, each traffic

value from one node to another is 1, and the risk index on each node is 0. If we configure the

intervention index by setup S, where node n1 is configured as 0.5, n9 as 0.25, n10 as 1, and other

nodes as 0, we learn how a restriction strategy on these nodes can globally effect the traffic con-

dition (Fig 1A). If we configure intervention index to 0 and risk index by S, the global traffic

impact of risk index is illustrated (Fig 1B).

2.3 Epidemic strength estimation based on effective distance

In terms of evaluating the intervention effect, we propose a concept of Epidemic Strength

(EPS) to depict the transmission hazard involved in the mobility network, especially in the

edges. The core notion of EPS is to estimate the spread threat from one node to another by

measuring the effect through a certain dominant path. To describe the connective strength

between each node, we first compute the effective distance dmn from node m to its connected

node n as follows:

dmn ¼ 1 � log
V̂mn

V̂m

ð4Þ

where V̂mn denotes the predicted traffic volume travelled from node m to node n, V̂m denotes

the total volume travelled from node n. If nodes m, n are not directly connected, for example,

assuming that Γ = {γ1,γ2,. . .,γL} is a range of possible paths from node m to n, λ(γ) is the total

effective length along path γ, the effective distance Dmn from node m to n can be computed as:

Dmn ¼ min
g2G

lðgÞ ð5Þ

Fig 1. Toy example of how the mobility simulation results are affected by (a) intervention index and (b) risk index. The initial relative flow volume through each pair of

nodes is 1.0 (dark blue pixels). After the mobility restriction or risk impact, the traffic densities from or towards the target nodes are reduced and the reduction effect of

origin and destination is superimposed (light blue pixels). If an intervention index is fixed to 1, all traffic values export from and import to this node are cut down to 0

(white pixels on node n10 in Fig 1A), which indicates a complete lockdown.

https://doi.org/10.1371/journal.pone.0242761.g001
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Here we use Dmn to denote effective distance from node m to n if m, n are not directly con-

nected. It should be noted that dmn6¼dnm and Dmn6¼Dnm, which means the effective distances

between two nodes are directionally biased (S2 Fig). After measuring the effective distances

between each pair of nodes, we can estimate the matrix of epidemic strength F as follows:

F ¼ log
diagðI=PÞ � V̂

D
þ J

� �

ð6Þ

where I is a vector of infected numbers of i nodes, P indicates a range of populations of corre-

sponding nodes, V̂ is the aforementioned i×i traffic matrix, D denotes an i×i matrix with ele-

ments Dmn indicating effective distance from node m to node n, J represents a i×i matrix of

ones. F is an i×i matrix of epidemic strength φ. The EPS serves as a strong signal for analyzing

spread potentials within a mobility network, where higher φ values indicate greater dissemina-

tion risks along the routes. This score integrates epidemiological statistics with mobility fea-

tures to enable an insightful epidemic comprehension. By configuring the intervention index

in Eq (2), we can analyze the coronavirus EPS values across the China mobility network and

predict the intervention effects under different levels of strategies.

3. Results and discussion

To match the spatial granularity of the statistical dataset of COVID-19 and population, we first

aggregate the airline data into a mobility network of provinces. Fig 2 shows the derived network

that covers 33 nodes and 264 edges, where the total traveler numbers of normal estimation

(without epidemic effects) is depicted by edge thickness. It is clearly observed that China’s geos-

patial mobility exhibits a southeast-northwest pattern—broadly, the flights across southeast

China contain more passenger volume. This suggests that the southern and eastern cities should

raise more cautions to counter the virus impact. Besides, the normal passenger data and actual

passenger data are collected at monthly granularity. To ensure all the input data meet daily

granularity and simulate our results at daily level, we first perform interpolation on these data.

From the comparative plot (S3 Fig), we observe that regardless of the coronavirus impact, the

normal prediction results exhibit generally higher traffic (blue lines). On the contrary, consider-

ing the effect of risk index, our simulation results (green lines) fit better to the actual traffic

observation (grey line), which indicates the virus impact on the transportation industry.

According to our mobility simulator, we estimate the daily traffic amount with different

intervention parameters and then compute the corresponding EPS values. All matrices of traf-

fic volume and risk index are estimated at daily granularity, and the population in each node is

assumed to be constant. We formulate four mobility intervention strategies for a comparative

analysis. Strategy 1 exerts absolutely no intervention on each node, while strategies 2, 3 and 4

restrict human mobility following different schemes—constant, function of time and function

of infection number. We adjust the traffic volume mean obtained by strategies 2, 3, 4 to be

approximately equal (Table 1). With no intervention, Strategy 1 has noticed a peak value of

EPS on February 11, which indicates a probable maximum number of infections. Comparing

to no-response strategy, all the intervention strategies exhibit certain effect against the epi-

demic transmission (Fig 3B). During the entire epidemic period, Strategy 2 suppresses the

flights with a constant intensity, and the passenger volume shows a similar pattern to Strategy

1. Strategy 3 controls the traffic following a parabolic function of time t, where the intervention

index reaches its peak at the 45th day (March 7). The EPS levels derived from strategies 2 and

3 are roughly the same (Fig 3B). The mobility restriction in Strategy 4 completely follows the

ratio of the infection number to the population on each node, which leads to the lowest

amount of EPS (Table 1). It is noticed that when the epidemic worsens, the traffic curve under
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this strategy drops significantly, thus successfully curbing the transmission risk during the crit-

ical period. These observations strongly suggests that, when dealing with highly infectious dis-

eases, it would be rational to take more restrictive interventions in severely infected cities or

during critical periods and discretionarily loosen the reins when the situation improves. This

also provides advice on how to control the virus spread while preserving as much communica-

tion as possible.

With regard to effective distance, the effective distances and geographic distances between

each pair of nodes are rendered in a color-coded image view (S2 Fig), and the correlation

between the two distance indicators and disease arrival time (the date of the first confirmed

case in each node) are analyzed (S5 Fig). For in-depth insights, we further compute the EPS of

each pair of nodes in the context of the four intervention strategies in Table 1. The estimated

results cover the period from January 22 to April 16. To create a comprehensive visualization

effect, we depict the directional measurements in a flow map, where EPS is rendered as color

and traffic volume as line width. We also implement force-directed edge bundling for a clearer

display [27]. For each of the intervention strategies, we choose four representative snapshots to

display: January 22, February 11, March 17 and April 16 (Fig 4), which correspond to four

periods of epidemic evolution—emergence, peak, alleviation and calm.

From a temporal aspect, the overall EPS exhibits a clear, undulating pattern that corre-

sponds to the depiction in Fig 3B. The emergence period observes the lowest EPS of the four

Fig 2. Aggregated mobility network of Chinese provinces. The nodes denote provincial-level administrative divisions and the edges denote aggregated traffic flows

between each pair of nodes. The width of each link indicates passenger volume predicted by historical data.

https://doi.org/10.1371/journal.pone.0242761.g002
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periods, where some nodes notice relatively higher EPS values, such as Hubei (highest infec-

tion number), Beijing, Shanghai and Guangdong (huge traffic amount). The second period

shows the highest EPS values and lowest traffic volumes, especially in Hubei, which suggests

that the transmission risk has soared and damaged the traffic condition. The periods of allevia-

tion and calm indicate that the public health is progressively improving and the traffic amount

is recovering. During the alleviation period, higher EPS values are observed on Hubei and Bei-

jing. As the epidemic was effectively weakened and certain traffic resumed, the calm period

shows a subtle growth in EPS. From a spatial perspective, most of the hazardous nodes and

links are located across the southeast. The edges connecting high-risk nodes (Hubei, Beijing,

etc.) present high EPS values, especially edges that directly links Hubei. From an intervention

point of view, by imposing strong mobility restrictions on key nodes or critical periods, a

robust mitigation effect is demonstrated. During the emergence period, Strategy 2 shows the

lowest traffic amount but not very notably reduced EPS due to the small number of infections

(Fig 4B, snapshot 1). Although fiercest virus spread is observed during the peak period, Strat-

egy 4 has strongly restricted the human mobility and successfully controlled the epidemic

strength (Fig 4D, snapshot 2). Comparing Strategy 1 with the others, when certain constraint

is imposed on a single node (e.g., Hubei), the transmission threat on all paths that connects

this node is considerably reduced, while the global traffic is slightly weakened. Generally

speaking, during the entire epidemic, Strategy 4 provides a superior configuration and

achieves the healthiest outcome overall (Fig 4D). These results may lend insight into the signif-

icance of restricting the mobility of highly hazardous nodes.

4. Conclusion

This research proposed a mobility-based approach for analyzing the positive effect of interven-

tion strategies when facing highly prevalent pandemics like COVID-19. Due to the complexity

of communication, accurate epidemic dynamics are usually unpredictable. Our method

Fig 3. Overview of mobility intervention impacts on COVID-19 transmission control. (a) Total traffic volume (V) estimation under different intervention index (c)
configuration. The overall traffic drops due to the early outbreak and progressively recovers as the increasingly effective intervention yielded lower infection cases. The

prediction results with 95% confidence intervals is plotted in S4 Fig. (b) Total epidemic strength (φ) estimation under different control strategies, where the EPS values

clearly indicate the outbreak severity and mitigation effect.

https://doi.org/10.1371/journal.pone.0242761.g003
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tackled the problem from a human-mobility perspective and developed a simulation analytics.

In the case study of China mobility network, our quantitative estimation of epidemic strength

demonstrated that during the early stage of COVID-19, travel restriction strategies can effec-

tively reduce the transmission risks through the mobility network. Our study only considered

air traffic mobility data, while some other modes of transportation (such as rail or road) also

transport passengers between domestic cities. In this concern, more extensive research that

covers various types of mobility data is expected in future studies. From the analysis, China’s

major transmission threat is noticed at the southeast region, which seems to be correlated with

a range of economic, technological or social factors. More future works are expected in evalu-

ating the impact of these factors. Further, combined with bidirectional graph, this approach is

expected to solve more meaningful problems, which we hope can provide insights for future

researchers.

Supporting information

S1 Fig. China airline network for human mobility representation.

(TIF)

Fig 4. Flow map visualization of epidemic strength evolution following four intervention strategies—(a) Strategy 1, (b) Strategy 2, (c) Strategy 3, and (d) Strategy 4

(Table 1). The edge color indicates epidemic strength and the edge width indicates traffic amount. For better illustration and comparison, each column of snapshots (on

the same date) shares the same legend and representation. Without public intervention, Strategy 1 shows the significantly highest risk throughout the period. In other

strategies, mobility restrictions result in reduced traffic and hence lower risk of epidemics. Also, constraints on crucial nodes help efficiently reduce the disease damage

(interventions on Hubei). Overall, Strategy 4 shows a better epidemic mitigation effect. For a clear and detailed image, please refer to the online version of this paper.

https://doi.org/10.1371/journal.pone.0242761.g004
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S2 Fig. Understanding effective distance through an image visualization, where the Y-axis

indicates origin nodes and the X-axis indicates destination nodes. (a) Province-to-province

effective distance view. Lower values of effective path (e.g., Beijing and Shanghai) suggest

higher potential risks. Differences can be observed between same nodes but different direc-

tions. (b) Province-to-province geographic distance view.

(TIF)

S3 Fig. Comparison of total passenger numbers estimated by various approaches. The grey

line indicates the real traffic observation, the blue lines represent Mao et al.’s prediction results

and prediction bands, and the green lines and green-shaded region indicate our simulation

results and confidence bands without intervention (i.e., Strategy 1 in Table 1, R2 = 0.925). Due

to possible missing data, the simulation results do not include every flight data and may not

perfectly match the observation curve. Nevertheless, compared with the normal prediction

results, the simulation results exhibit a more similar temporal pattern to the observation results

(MSE(St.1) = 0.013, MSE(Mao0s) = 0.072).

(PDF)

S4 Fig. Total traffic volume (V) estimation results in Fig 3A with 95% confidence intervals.

(PDF)

S5 Fig. Understanding the effective distance as a signal for contagious events. (a) Arrival

time versus effective distance for each of the 33 nodes in the mobility network (Fig 2). The size

of each dot indicates the total airline routes through the node. (b) Arrival time versus geo-

graphic distance for each node. The effective distance exhibits a much higher correlation with

arrival time (R2 = 0.705) than geographic distance (R2 = 0.375).

(TIF)
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