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Abstract

Physical distancing, as a measure to contain the spreading of Covid-19, is defining a “new

normal”. Unless belonging to a family, pedestrians in shared spaces are asked to observe a

minimal (country-dependent) pairwise distance. Coherently, managers of public spaces

may be tasked with the enforcement or monitoring of this constraint. As privacy-respectful

real-time tracking of pedestrian dynamics in public spaces is a growing reality, it is natural to

leverage on these tools to analyze the adherence to physical distancing and compare the

effectiveness of crowd management measurements. Typical questions are: “in which condi-

tions non-family members infringed social distancing?”, “Are there repeated offenders?”,

and “How are new crowd management measures performing?”. Notably, dealing with large

crowds, e.g. in train stations, gets rapidly computationally challenging. In this work we have

a two-fold aim: first, we propose an efficient and scalable analysis framework to process, off-

line or in real-time, pedestrian tracking data via a sparse graph. The framework tackles effi-

ciently all the questions mentioned above, representing pedestrian-pedestrian interactions

via vector-weighted graph connections. On this basis, we can disentangle distance offend-

ers and family members in a privacy-compliant way. Second, we present a thorough analy-

sis of mutual distances and exposure-times in a Dutch train platform, comparing pre-Covid

and current data via physics observables as Radial Distribution Functions. The versatility

and simplicity of this approach, developed to analyze crowd management measures in pub-

lic transport facilities, enable to tackle issues beyond physical distancing, for instance the

privacy-respectful detection of groups and the analysis of their motion patterns.

1 Introduction

Crowd management is a challenging scientific topic directly impacting on the functioning of

trafficked urban infrastructures such as, e.g., train or metro stations. Even more so, in time of

Covid-19 pandemic, after an initial lock-down period, communities are still wondering how to

resume a “new normal” life, while the virus is still circulating among the population. One of

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0240963 October 29, 2020 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Pouw CAS, Toschi F, van Schadewijk F,

Corbetta A (2020) Monitoring physical distancing

for crowd management: Real-time trajectory and

group analysis. PLoS ONE 15(10): e0240963.

https://doi.org/10.1371/journal.pone.0240963

Editor: Dante R. Chialvo, Consejo Nacional de

Investigaciones Cientificas y Tecnicas, ARGENTINA

Received: July 30, 2020

Accepted: August 27, 2020

Published: October 29, 2020

Copyright: © 2020 Pouw et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Considering the

extreme sensitivity of the data and its implications

in public safety and security, ProRail can share

data only after establishing an official NDA

agreement, as it was in the case of the authors.

This is essential to comply with GDPR regulations

which require that the anonymity of the data is not

compromised by crossing it with other sources of

information. Grounded requests aimed at validating

the research findings will be honored after a well-

motivated request for data access that complies

with the GDPR is sent to c.a.s.pouw@prorail.nl.

https://orcid.org/0000-0001-5935-2332
https://orcid.org/0000-0001-6979-3414
https://doi.org/10.1371/journal.pone.0240963
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240963&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240963&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240963&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240963&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240963&domain=pdf&date_stamp=2020-10-29
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240963&domain=pdf&date_stamp=2020-10-29
https://doi.org/10.1371/journal.pone.0240963
http://creativecommons.org/licenses/by/4.0/
mailto:c.a.s.pouw@prorail.nl


the key control measures has been to maintain a minimal physical distance (often also called

“social distance”) between any two individuals not belonging to the same family [1]. This dis-

tance is country-specific and it ranges from 1m (e.g. China and France), as recommended by

WHO, up to 2m (e.g. UK and Canada), being 1.5m in the Netherlands and in some countries

it is even adjusted over time. As there is a rather widespread suspicion that we may have to live

with such requirements of physical distancing for months to come, it is therefore natural that

this is becoming a design requirement for public infrastructures (e.g. [2–5]).

There are however several challenges associated to the automated monitoring of physical

distancing in crowds. First, in order to respect individual privacy one needs to employ sensors

and techniques that ensure privacy by design while, at the same time, providing accurate

space-time information on individual positions with sub-meter accuracy.

Secondarily, one needs to develop algorithms that, while preserving privacy, are capable to

autonomously discern, with a good degree of accuracy, families and family members from

strangers. This identification should be performed in real-time, raising a number of non-trivial

technical challenges.

Additionally, in recent months a number of countries have developed contact tracing apps

that allow to receive an alert when somebody has been in “close” contact with somebody that,

later on, will turn out to be positive to the Covid-19 [6]. Countries are developing apps based

on different alert thresholds, typically a combination of having been closer than a given dis-

tance, for a time longer than an established reference. These thresholds, again, are country spe-

cific. In Italy and Germany the national apps alert for contacts longer than 15 minutes at a

distance below 2 meters. The proper balance of these two aspects, distance and time, is key to

avoid too many false positives or false negatives due to e.g. to low or high risk exposures as

well as to the inaccuracy of distance estimation via the intensity of Bluetooth signals. It is there-

fore extremely interesting to be able to analyze, in a number of key urban settings, the combi-

nation of contact times for given distances between two persons. This knowledge may provide

key information for the calibration of contact tracing apps in different context.

In this paper we employ data from commercial pedestrian tracking sensors placed overhead

at Platform 3 in Utrecht central train station (The Netherlands), in order to develop an effi-

cient algorithm, capable of running in real-time, and able to distinguish infringements of the

physical distancing rule from the behaviour of family members, that are allowed not to respect

such a rule. We introduce the concept of “Corona event”, to indicate events when two people,

not belonging to the same family, get closer than a threshold distance D.

We focus on contact times and mutual distances considering statistical observables as the

radial distribution functions (RDFs), which can conveniently be employed to quantify average

exposure times. This enables a two-fold task: automatizing the definition of families and

groups (from now on named family-groups) and characterizing the statistical distribution of

violations, which we compare with analogous pre-Covid measurements. Based on the space-

time dynamics of groups, we try to identify family members as those individuals that consis-

tently stay closer than a given threshold distance for sufficiently long time. This, in turn, allows

us to define physical distance violators as those individuals that only occasionally (i.e. inconsis-

tently) yield Corona events infringing the minimal distance rule.

This paper is structured as follows: in Section 2, we survey the pedestrian dynamics litera-

ture and computer science methods in connection with group-dynamics and mutual distances.

We outline both fundamental outstanding questions and existent analysis methods. In Section

3, we describe the location and measurement setup at Utrecht Central train station used to

acquire the analyzed pedestrian data. In Section 4 we review the concept and basic properties

of Radial Distribution Functions, extensively leveraged on by our method. In Section 5 we
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present our method and possible variations, that we employ to analyze mutual distancing data

in Section 6. A final discussion in Section 7 closes the paper.

2 Related works: (Social) distance in pedestrian dynamics

The analysis of pairwise distances and the automated identification of family-groups triggered

by the Covid-19 pandemics connect with outstanding technological and fundamental issues in

the broader field of crowd dynamics. Crowd dynamics is a multidisciplinary research area aim-

ing at understanding and modeling the motion of pedestrians in crowds (see, e.g., [7–9], for

introductory references). Outstanding questions specifically connected to mutual distances

and groups are, e.g.: “what is the impact of the group on the individual dynamics observables

such as position and velocity?” “How do people in social groups interact?”, “How does infor-

mation propagates throughout groups?” (see e.g. [10–14] and e.g. [15] for a group-psychology

review). Although these questions are longstanding, and have been investigated via models or

in laboratory settings extensively, first quantitative studies in pedestrian dynamics driven by

real-life big experimental datasets are relatively recent (see, e.g., [16–19]). Large-volumes of

experimental data, in the order of hundred of thousands real-life trajectories, are indeed essen-

tial in order to analyze quantitatively and systematically the physics of pedestrian motion,

disentangling the high variations in individual behaviors from average patterns, and character-

izing typical fluctuations and universal features [19, 20]. This relative delay in performing

high-statistics based analyses of pedestrian motion (especially in comparison with other “active

matter” physical systems [21]), is most likely due to the complex technical challenge of achiev-

ing accurate, privacy-preserving, individual tracking in real-life conditions (see, e.g., [20, 22,

23], or [24] for approaches targeting even higher resolution). Market solutions, as the one con-

sidered in this paper, are also becoming accessible, offering various trade-offs between accu-

racy and costs (see, e.g., [25]).

On top of automated tracking, higher-level automated understanding of individual behav-

iors—a concept also known in computer science as trajectory pattern mining [26, 27]—

remains also outstanding in many aspects. The automated identification of pedestrian groups,

or pedestrian “group mining”, is a notable example in this context. On one side, in current

pedestrian dynamics research, the definition and classification of groups and social structures

in experimental data has been manual, i.e. based on labor-intensive visual inspection (e.g.

[28]). While this ensures high-quality validated measurements, it limits the possibility to estab-

lish vast statistical datasets towards data-driven characterizations of averages and fluctuations

in the dynamics. On the other side, automatic strategies to identify groups have been proposed

by the data mining community. These approaches primarily hinge on analyzing (instanta-

neous) spatial clusters of pedestrians and the consistency with which these adhere over time to

some group semantics (flocking, convoying, aggregation/ desegregation, see [27, 29–31] and

references within).

Here we pursue distance analyses and family-group identification via discretized mutual

pairwise distance distributions—represented in physics terms via Radial Distribution Func-

tions among relevant pedestrian pairs (the concept of RDF is further reviewed in Section 4).

We accumulate information on a “social” interaction graph with vector edge weights. This

data structure holds all the relevant contact times and distance statistics; besides, family-groups

emerge as incremental features queryable by a space-time distance semantics. Graphs are clas-

sic tools in discrete mathematics to represent networks of interactions, or connections between

entities (e.g. [32]). Formally speaking, a graph H is a set of nodes, H = {pi}, endowed with

edges, say e = (pi, pj), connecting node pairs. Providing a weight function, w(e), defined on the

edges, makes the graph “weighted”. In our case, nodes are in 1:1 correspondence with observed
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pedestrians, whereas edges underlie distance-based interactions, that are characterized by a

weight function with values in a real vector space of pre-fixed dimension. Graphs have been

often used for data-driven studies on social behavior both of humans, e.g. to analyze social net-

works [33], GPS-data [34], but also of social animals (e.g. [35, 36]). In [19, 37], graphs have

also been used to address big-data analyses and representation of pedestrian dynamics aiming

at efficient data searches.

3 Pedestrian tracking setup at Utrecht Central station

We benchmark our approach considering pedestrian tracking data acquired on platform 3 at

Utrecht Central station, The Netherlands (cf. Fig 1). Utrecht Central, with roughly 57 million

annual users, is the nation-wide busiest railway station. Since 2017, platform 3 has been

equipped with 19 commercial pedestrian tracking sensors, each of which captures 3D stereo

images at f = 10 frames per second and processes them to deliver individual tracking data in a

privacy-friendly manner (cf. sketch in Fig 1). The sensor view-cones are in partial overlap,

which enables the sensor network to stitch together trajectory pieces acquired by the single

devices. The total area covered by the set of sensors consist of the full platform width (about

3m) for 120 linear meters next to track 5, plus the area underneath escalators and staircases

connecting the platform to the central hall. This yields a covered area of approximately 450m2.

Track 5 is among Utrecht’s busiest tracks and is primarily utilized by trains heading to Amster-

dam Central Station and Schiphol Airport. The complex and multi-directional crowd flows on

the platform are recorded with high space- and time-resolution 24/7 since March 2017 (locali-

zation precision: O(5–10)cm, similar technology to what employed in [25]). In normal opera-

tion conditions, the system would capture about 100.000 trajectories per day while, on

average, only 16.000 trajectories per day were observed in the two months after the Covid-19

outbreak (see pre- and during- Covid-19 crowd distribution example in Fig 1 and crowd den-

sity histograms in Fig 2). This unique measurement setup gives us not only the possibility of

developing and testing our approach in meaningful real-life conditions, but also to compare

relevant statistical observables of the pairwise distance (RDFs), before and during the Covid-

19 measures.

Fig 1. (a) Floorplan of platform 3 at Utrecht Central Station (NL). The area monitored by the sensors is highlighted in grey. (b) Sample of 75

passengers waiting for a train to arrive on the 10th of May 2020, during the Covid-19 pandemic. Pedestrians which respect the 1.5m physical distance

regulations are colored in green, people who are part of a family-group are colored in blue, distance offenders are colored in red. This classification is

performed via the method proposed in Section 5. In this situation only 3 out of the 75 people violate the physical distancing rules. (c) Same number of

people distributed over the platform on the 27th of May 2019, one year prior to the Covid-19 outbreak, here about one-third of the people stand closer

than 1.5m to someone else.

https://doi.org/10.1371/journal.pone.0240963.g001
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Ethics statement

This study has been approved by the Ethical Review Board of Eindhoven University of Tech-

nology (ref. ERB2020AP1, 21st, Feb. 2020). During this study we acquired passengers trajectory

data (Utrecht station, Platform 3) via anonymous-by-design commercial sensors. The dataset

considered includes thus individual trajectories and no additional personal feature has been

available and/or stored.

4 Pedestrian radial distribution functions

In theoretical physics and molecular dynamics, the radial distribution function, g(r) (RDF),

and the radial cumulative distribution function (RCDF), G(r), are established tools to charac-

terize the distribution of pairwise distances between particles (see e.g. [38]), i.e., in our case,

pedestrians.

By definition of RCDF, for a crowd with uniform spatial density ρ, on average, i.e. in the

mean-field of many realizations, the number of people, Nρ(r), at a distance up to r from a

generic individual satisfies

NrðrÞ ¼ rGðrÞ ¼ r
Z r

0

gðzÞ dz; ð1Þ

therefore, g(r) = @r G(r) holds. Thus, the functions g(r), G(r) (and derived quantities) do not

carry any space/time specific information, rather they relate to average properties, depending

only on mutual distances.

For instance, in unconfined space, G(r) grows as the circle area, i.e.

Nunconf
r
ðrÞ ¼ pr2r: ð2Þ

In our train platform, such a�r2 growth ratio is possible only when r is sufficiently smaller

Fig 2. Histogram of observed crowd density levels comparing a day before the Covid-19 outbreak (27th of May

2019, blue dots) and for a day during the Covid-19 pandemic (27th of May 2020, red triangles). Prior to the Covid-

19 outbreak, densities in excess of 1ped/m2 occurred daily. One year later, during the Covid-19 pandemic, the

maximum crowd density recorded is only about 0.3ped/m2. We compare measurements acquired at similar density

levels, i.e. where the average available space per person is comparable. We focus on two density levels: 40-50 passengers

(purple band, cf. Figs 3(a), 3(c) and 6(a)) and 70-80 passengers (green band, cf. Figs 1, 3(b), 3(d) and 6(b)).

https://doi.org/10.1371/journal.pone.0240963.g002
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than the platform width. Else, we expect a�r1 (linear) trend, as the area growth is bound to

the platform length only. This holds until platform finite size effects come into play. In Fig 3

we compare the RDF and RCDF for the two density levels highlighted in Fig 2. We notice a

depletion in the radial distribution functions at short distances when comparing with the situa-

tion pre-outbreak. As a partial anticipation of the results of this paper, in the figure we report

also the RDF discounted of short-distance family-group interactions (such interactions are

allowed by present regulations). As expected, this yields a further depletion of the RDF in the

region r ≲ 1.5 m. In the figure, we additionally report the aforementioned analytic trends and

the R(C)DF functions obtained through Monte Carlo numerical simulations in a rectangular

domain with the same size as the platform. We specifically consider an ensemble of simulated

crowds of N pedestrians; individuals have a random spatial distribution satisfying a minimal

mutual distance of 0.2m. The figure reports ensemble-averaged RDFs and RCDFs which thus

Fig 3. (a, b) Radial cumulative distribution functions (RCDF), g(r), and (c, d) radial distribution functions (RDF), G(r), for density levels on a typical

working day. On the left (a, c) for density level 1, with 40-50 pedestrians on the platform, (green domain in Fig 2) and on the right (b, d) for density

level 2, with 70-80 pedestrians on the platform (purple domain in Fig 2). Vertical dashed lines at 1.5m, 2.2m and 2.5m indicate, respectively, the Dutch

social distancing regulations (r< D), the usable width of the platform (without danger zone) and the critical threshold D0. The solid black line at small r
values highlights the�r2 growth ratio up to 2.2 m and a blue line for the�r1 trend at larger mutual distances. In (b,d) the normalization constant c is

chosen such that
R1

0
cgðzÞ dz ¼ N, where N is the number of people on the platform. Similar plots for a weekend day are reported in Fig 6. We compare

the pre-Covid situation with the present, and with a Monte Carlo model of a random distribution of passengers across a region identical to the

platform. We report the RDF and RCDF of the current situation including and excluding family-groups contributions, as made possible by the method

introduced in Section 5.

https://doi.org/10.1371/journal.pone.0240963.g003
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include small-range quadratic growth, platform-width-bound linear growth and finite size

effect. Measurements well-conform with simulations.

Short mutual distances over extended time duration are known to increase the contagion

probability: RDF and RCDF can be used to evaluate the average exposure time. A pedestrian

that was on the platform for a time interval ΔT, was exposed, on average, for a time

Trc ¼ DTrGðrcÞ; ð3Þ

with rc being a critical distance threshold (e.g. rc can be the nation-wide physical distancing

requirement). Similarly, the function

tðrÞ ¼ DTrgðrÞ; ð4Þ

quantifies the contribution to the total average exposure time given by peer pedestrians at dis-

tance r.

5 Distance-interaction network

In this section, we describe our scalable framework to characterize pedestrians pairwise dis-

tances, identify family-groups and distance offenders. Our approach is a substantial evolution

of the graph approach presented by some of the authors in [19, 37], which not only does enable

to tackle, in real-time, relevant questions connected to Covid-19 safety measures, but unlocks

the automation of relevant pedestrian dynamics aspects as the detection of groups. Relevant

differences with the previous works [19, 37] are postponed after the approach description.

Our measurements come in the form of time-stamped trajectories. As no further informa-

tion is available, such as body orientation or gaze direction [39] or body size/approximate age,

our identification of family-groups relies only on mutual proximity and its time-consistency.

Whenever two or more pedestrians maintain a mutual short distance consistently throughout

a sufficient fraction of their trajectory, they should automatically emerge as belonging to the

same family-group. Additionally, we deem implementation simplicity, while maintaining effi-

ciency and sufficient accuracy in identifying family-groups relations, possibly in real-time, and

without complex/costly data-searches. Hence, our approach is “additive” (or “incremental”)

and RDF-like information is increased, on the go, in a graph data structure (at minimal mem-

ory costs), and, without computationally-costly searches in stored records, family-groups and

offenders remain identified immediately. In other words, by additivity, we stress that our data

structure is built online and usable after only one time-forward pass of the trajectory data.

5.1 Graph data structure construction

In conceptual terms, we represent the pedestrian trajectories as individual nodes of a graph H.

Each node includes information specific to the trajectories, such as overall observation time, τ,

source and destination. These three quantities are incremental as, respectively, τ scales with

the number of frames a pedestrian is observed, the source point is the initial point of a trajec-

tory while the destination gets constantly updated with the current position until a pedestrian

leaves the measurement area. Whenever two pedestrians, say p1 and p2, are observed simulta-

neously (i.e. in the same frame) and their Euclidean distance, r = d(p1, p2), is below a critical

threshold D0 > D, we memorize (properties of) this event within the weight, ~wðeÞ, of the edge e
= (p1, p2), that connects the two pedestrian-nodes p1, p2. Specifically, the weight ~wðeÞ aims at a

discrete counterpart of the RDF (g(r), cf. Eq (1)) restricted to pedestrians p1, p2 and with sup-

port 0� r� D0. Similarly to the RDF, also the graph H does not hold detailed microscopic

information in space/time, such as instantaneous positions. To focus on the identification of

Corona events and disentanglement of family-groups, we set D0 = 2.5 m, i.e. one meter more
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than the social distance required by Dutch regulations, D = 1.5 m< D0. This aims at exploring

the distance dynamics in the neighborhood of the current regulations and leaves flexibility

should the regulations become stricter and require additional mutual separation.

The vector weight ~wðeÞ keeps record of the number of occurrences of distance events, r,

after a given radial quantization (binning). In the following, we consider five evenly-sized bins

with sides at

r ¼ fr0; . . . ; rd; . . .g ¼ f0; 0:5; 1:0; 1:5; 2:0; 2:5gm; ð5Þ

for the sake of readability, we also indicate, the individual components of ~wðeÞ, ~wdðeÞ, as

~w0ðeÞ ¼ ~wðeÞ½0:0 : 0:5�;

~w1ðeÞ ¼ ~wðeÞ½0:5 : 1:0�;

and so on. Hence, for each time instant in which d(p1, p2)< 0.5, the counter ~wðeÞ½0 : 0:5� is

incremented of one unit. Similarly, whenever 0.5 < d(p1, p2)< 1.0, the weight ~wðeÞ½0:5 : 1:0�

gets incremented, etc. Note that updating the data structure requires only all the pairwise dis-

tances (smaller than D0) at each frame. The choice of bin size, which regulates the quality of the

approximation of the RDF of p1 and p2, is clearly arbitrary and needs to be a trade-off between

the required resolution on the RDF and memory allowance.

Consistently with Eq (4), scaling the counts ~wðeÞ by the (inverse of the) sensors sampling

frequency, f, yields the time duration, in seconds, pedestrians p1 and p2 maintain a given

(quantized) distance (i.e. f � 1~wðeÞ½0:5 : 1:0� is the amount of seconds p1 and p2 had a distance

between 0.5 and 1.0 meters). Hence, statistical moments of r, weighted by f � 1~wðeÞ enable to

calculate the total contact time of p1 and p2, their average distance and fluctuations. In all

cases, the statistics are restricted to r� D0 (insights on the relevant statistical properties of the

graph are left to the next subsection). Operationally, we build the graph as reported in Algo-

rithm 1. Additionally, in Fig 4a, we provide a visual description of the graph in the case of a

subsection of our train platform, while in Fig 4b we show examples of typical graphs built in

time windows about 10 minute-long around the train arrivals.

Fig 4. (a) Conceptual sketch representing the accumulation of information on the graph H. Whenever two pedestrians, say p1, p2 stand at a distance d
smaller than D0, this gets recorded in the histogram weight of the edge between nodes p1 and p2 as an additive contribution to the bin approximating d.

In the sketch we report a section of the platform: edge appear between nodes according to the distance; the histogram weights are reported atop and

beneath the sketch with the same color coding of the edges and scaled with the sampling time (thus they translate to the contact time conditioned by the

distance). Nodes are reported in red if they have performed at least one Corona event (thus they have an edge with non-zero contributions at distances

below D0), else they are in green. (b) Examples of graphs acquired in windows of about ten minutes around each train arrival (determining the peaks in

the counts at the bottom). We report a magnified version of one among these graphs. Nodes are colored by the node degree, i.e. by the number of first

neighbors, ranging from yellow to red. Edge thickness scaled by the contact time, Td
e , Eq (7). The higher the degree of a node, the larger the number of

distance offenses performed by the associated pedestrian.

https://doi.org/10.1371/journal.pone.0240963.g004

PLOS ONE Monitoring physical distancing for crowd management: Real-time trajectory and group analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0240963 October 29, 2020 8 / 18

https://doi.org/10.1371/journal.pone.0240963.g004
https://doi.org/10.1371/journal.pone.0240963


Algorithm 1: Graph construction algorithm in pseudo-code. The data structure is built

streaming the trajectory data once. The function q = q(d) returns the distance bin to which d
belongs. Hence, given the quantization in Eq (5), it holds q(0< d< 0.5m) = 0, q(0.5m<

d< 1.0m) = 1, etc.
Data: Trajectories dataset, possibly live-streaming
Result: Distance-interaction graph H
H = empty graph;
for t in time do
add any trajectory, pi, starting at time t as a node in H, store

origin;
update persistence time tpi

, destination of all observed trajectory-
nodes pi;
for 0 < i < j � # trajectories at time t do
if d(pi, pj) < D0 then
~wðpi; pjÞ½qðdðpi; pjÞÞ�þ ¼ 1

end
end

end
Extensions and variations. In settings as train platforms, not all the areas come with the

same importance or criticality. The so-called “danger zone”, the last 80cm-wide buffer region

on the platform that is stepped on just before boarding a train, is an example. For our use case

it is imperative to have the capability of discriminating between events happening inside and

outside such an area. To achieve this, we consider two separate sets of weights on each edge:

~wdzðeÞ and ~wcðeÞ, which count, respectively, the time instants a given distance below D0 occurs

when the centroid between the two pedestrians lies in the danger zone, and otherwise. Accord-

ing to our previous definition, ~wðeÞ ¼ ~wdzðeÞ þ ~wcðeÞ holds. Fig 4a reflects this aspect by rep-

resenting ~wdzðeÞ and ~wcðeÞ stacked (and with different color shade).

5.2 Approximation of the short-range RDF as edge average

The graph is a collection of RDFs functions restricted to pairs of pedestrians. As such, within

the limits of the quantization, it is richer in information than the “global” RDF (Eq (1)). The

latter, in fact, can be recovered by averaging the edge weights over the entire graph, i.e. by

combining each pairwise contribution. Restricting to a graph describing conditions with equal

density, the global RDF can be approximated as

Z rdþ1

rd

gðrÞ dr � c
~wdðeÞP

j~wjðeÞ

* +

e

; 8d; ð6Þ

where c is a constant scaling depending on the normalization considered for g. In words, the

integral of the RDF in the bin [rd, rd+1] can be approximated by the d-th (enseble-averaged)

edge weight. Averaging over a graph including non-homogeneous density levels, yields the

RDF averaged among such densities.

5.3 Interaction classification

In this subsection we leverage on the graph topology and edge data to deduce relevant infor-

mation about pairwise distance, family-group relations, exposure times, and physical distance

offenders.

Pairwise exposure time and pairwise distance statistics. Pedestrians p1 and p2, whose

distance satisfied r = d(p1, p2)� D0 at least in one frame, have their interaction recorded on the

graph edge e = (p1, p2). The weight ~wðeÞ allows us to characterize their distance properties
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restricted to the instants in which r< D0. In particular, the contact time Te between p1 and p2

satisfies

Td
e ¼ f � 1

Xd

j¼0

~wjðeÞ; ½Contact time� ð7Þ

where the index d selects the farthest relevant distance bin. According to our quantization in

Eq (5), d = 2 would restrict to interactions with r� 1.5 m and thus quantify the “exposure

time” according to the Dutch regulations, whereas d = dmax = 4 includes all stored interactions

for the pair e, i.e. r� D0. Similarly, the average pairwise distance reads

hride ¼
f � 1
Pd

j¼0
rjþ1

2
~wjðeÞ

Td
e

; ½Avg: pairwise dist:� ð8Þ

where rjþ1
2

identifies the mid point between bin j and j + 1 in Eq (5). Higher order moments of

r weighted by ~wðeÞ can be used to estimate the fluctuation (variance) of the distance in time.

In particular, if the variance s2ðrÞ ¼ hr2i
d
e � ðhri

d
e Þ

2
is small, then the pedestrians kept an

almost fixed distance during their trajectories. Notably, small or possibly zero r variance, σ2(r),

are necessary condition for non-positive (Finite Time) Lyapunov Exponent of the distance

between p1 and p2 [40].

Total individual exposure time. The total time an individual p has been exposed to con-

tacts can be computed by summing the pairwise contact times Td
e (Eq (7)) for all pedestrians,

pj, that entered into contact with p, i.e. for all the edges e = (p, pj) that converge to p, in formu-

las

Td
p ¼

X

pj2NðpÞ

Td
ðp;pjÞ

; ½Individ: expos: time�
ð9Þ

where N(p) is the list of the first-neighbor of p (nodes connected to p through at least a single

edge). Eq (9) provides a counterpart to Eq (3) in which we consider a specific pedestrian, p,

rather than averaging over all pedestrians. Notice that the index d is the discrete analogue of

the cutting threshold rc.

Family-group relations. We determine whether two pedestrians, p1, p2, belong to the

same family-group on the basis of their contact time Td
ðp1 ;p2Þ

and their persistence time in the

tracking area, tp1
and tp2

. In particular, if the symmetric relation henceforth indicated as p1�

p2 holds

p1 � p2 , ½Fam � group condition�

min
Tð1Þe

tp1

;
Tð1Þe

tp2

 !

> l
ð1Þ and min

Tð2Þe

tp1

;
Tð2Þe

tp2

 !

> l
ð2Þ
;

ð10Þ

we consider p1 and p2 as belonging to the same family-group. We set λ(1) = 40%, λ(2) = 90%

which, in words, translates to people who have a pairwise distance of less than 1.5m for 90%

percent of the time and are within 1m for 40% percent of the time. The rationale being that

pedestrians who followed the same trajectory, thereby being in mutual close proximity for the

major part of their persistence time, and who are comfortable for extended periods in each

other’s private space (r� 1m) most likely belong to the same family-group. Family-groups

with more than two individuals are expected to appear in the graph as completely connected

sub-graphs, or cliques, in which all the nodes are in Relation (10) between each other.
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We can now define a second total individual exposure time which is equal to Td
p (Eq (11))

after discounting family-group contacts:

Td
p;f ¼

X

pj2NðpÞ
pj≁p

Td
ðp;pjÞ

: ½Individ: expos: time w=o families�
ð11Þ

Analogously, we can consider a RCDF discounted of family-group contributions, say Gf(r) (cf.

Eqs (1) and (3)), such that

Trc
f ¼ DTrGf ðrcÞ ð12Þ

is the total exposure time with non-family individuals and up to a spatial threshold rc. By dif-

ferentiation (as in Eq (1)), we can similarly define the RDF gf(r) discounted by family-groups.

Family sub-graph transitive closure. The relation “�” can be non-transitive, i.e. p1� p2,

p2� p3 do not imply p1� p3. One may thus consider the transitive closure of “�”, say “�”

which is defined as p1 and p3 belong to the same family-group (p1�p3) either if p1� p3 or if they

have common family-group members.

In the data we analyze in Section 6, we do not consider such transitive closure. In other

words, family-group relations are exclusively defined by Relation (10). On one hand, we deem

rare the event that a family remains not represented by a clique. Even in this case, we expect

contributions to the overall RDF statistics be minimal. On the other hand, in real-life data col-

lected with sensors similar to ours, short/broken trajectories may appear. We observed that

these, in combination with Relation (10) would unrealistically increase the probability of

observing large family-groups. Hence, to avoid excessive and unjustified complications in the

heuristics we restrict to Relation (10).

Relevant interactions, family-discounted graph and offenders. Combining the previous

elements we can now identify distance offenders as those pedestrians that violate physical dis-

tancing while not being part of a family. We consider the sub-graph H0 �H obtained after

pruning H of family-group edges. The connections left in H0 must indicate sporadic (i.e. not

time-consistent) distance infringements.

As exposure time is deemed a critical parameter for contagion [41], we apply a further time

requirement to discriminate actual offenders. Specifically, we introduce the set P0
a

defined as

P0
a
¼ fp 2 H0: Td

p;f > ag; ð13Þ

in words, elements of P0
a

are pedestrians who violated physical distancing with non-family

members for an overall time longer than α. The number of first neighbors of a node in P0
a

iden-

tifies how many contacts such pedestrian had: we label as repeated offenders those with more

than 10 first neighbors (i.e. pedestrians that violated physical distancing with more than 10

different people and for an overall time larger than α). We remark that this classification can

be run in real-time as all the aforementioned requirements can be constructed in additive

manner.

5.4 Differences with previous works by some of the authors

In [19, 37] some of the authors leveraged on a similar interaction network to build a scalable

representation and search tool for high-statistics real-life pedestrian tracking data. The aim

there was to tackle fundamental issues about the physics of pedestrian dynamics (e.g., mechan-

ics of pairwise avoidance, statistical observables of undisturbed pedestrian motion), which

requires extracting pertinent data from databases with few million real-life trajectories. This

was made possible and efficient by representing every target experimental scenario with a sub-
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graph topology. Matches of this topology within the experimental data correspond to the

desired trajectory data. The graph structure hereby proposed focuses, instead, on processing

streaming data for RDF and exposure time statistics. As a by-product, we automate detection

of groups, in our case mostly families, and related properties.

6 Physical distancing at Utrecht Central station, platform 3

In this section we employ the graph H to analyze trajectory data collected in Utrecht station

(see Section 3) and we compare statistics from before and during the Covid-19 pandemic.

Typical graphs and qualitative aspects

In Fig 4b, we report examples of the graphs acquired during a typical morning (time interval

4AM—8.30AM). Train arrivals are the most critical conditions when it comes to respecting

physical distancing, thus we create a new graph two minutes after each train departure, when

the platform is almost empty (this step is not strictly necessary, but increases computational

efficiency). In the figure, nodes size and color follows the node degree, i.e. the number of first

neighbors and, thus, the distance offenses committed by that node.

As a qualitative example of the capability of the method to extract relevant data, we show-

case two antipodal conditions in Fig 5. In the first case (left panel), we report two pedestrians

in a family-group relation that remain together throughout their entire trajectories: from the

escalators to the boarding. In the second case, we have a repeated offender: the associated node

exhibits 28 first-neighbor connections. Interestingly, a significant part of the offenses happens

while the pedestrian waits in proximity of the escalator. This, therefore, rather marks a waiting

area to be disallowed, than a willing offender.

Family-group discounted RDFs

In Figs 3 and 6 we report RDFs prior and after excluding family-group interactions. The RDFs

for r< D are non-vanishing, even after discounting the contributions of family-groups, most

significant in the weekends (when the presence of workers and commuters is lower; cf. short-

distance “bump” in Fig 6). We expect these remaining contributions at r< D to be to Corona

events by distance offenders. Notably, once removed of family-groups contributions, the RDFs

at small r values recover a linear growth rate, as expected by a random spatial distribution of

passengers (scaling as the derivative of Eq (2)).

Fig 5. (a) Detected clique consisting of two nodes representing two people traveling together. Both entering the platform through the stairs, waiting

together for the next train to arrive and finally boarding the train through the same door. The hue of the trajectories is proportional to the time spent on

the platform. Lighter hue when the people enter and a darker hue when they leave. Jump in hue indicating the place where the travelers were waiting.

(b) Detected node with degree higher than 10, i.e. a repeated offender who violates physical distancing with more than 10 other people. The trajectory of

the repeated offender is reported in shades scaled to the exposure time, while the trajectories of other people that were met violating physical distancing

are in gray. The considered offender entered the platform via the escalators and waited underneath the escalators for their train.

https://doi.org/10.1371/journal.pone.0240963.g005
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Exposure time, node degree and evolution through the pandemics

In Fig 7a we report, week-by-week, the average edge weight as introduced in Eq (6), pruned of

family-group contributions and scaled by the sampling frequency. This provides an approxi-

mation of how the (family-discounted) average individual exposure time has been changing

over time (weeks 17 to 26 in 2020). As the usage of the platform grew after a drop at the begin-

ning of the outbreak, so did the exposure time for distances between 0.5m and 2.5m, especially

until week 22. On the opposite, the amount of time, per person, spent with a peer within 0.5m

has remained constant and within fractions of a second. A new operation schedule at week 23,

Fig 6. Radial distribution functions (RDF), g(r), for a typical weekend day in case of (a) 40-50 pedestrians on the platform, (green domain in Fig 2) and

(b) 70-80 pedestrians on the platform (purple domain in Fig 2). The same conventions of Fig 2 hold. The presence of family-groups determine a peak in

the RDFs around r� 0.5m, which is much more pronounced than in the working day case. Discounting these contributions via the graph analysis

notably restores a�r1 growth rate at small r values.

https://doi.org/10.1371/journal.pone.0240963.g006

Fig 7. (a) Average individual exposure time without family contributions (Eq (9); weeks 17-26, working days only. Corona lockdown measures in The

Netherlands started around week 13). Each line reports average data from bins ~w~0ðeÞ; ~w~1ðeÞ, etc. The inset on the left shows the average daily passenger

count, Ndaily. The inset on the right reports the same individual exposure time data for week 21 in histogram form. A change in the train schedule on the

2nd of June (week 23, indicated with a vertical black dashed line) increased the train frequency by a factor γ� 1.7 (Eq 14). This improved the

distribution of pedestrians over the day thereby temporarily decreasing the individual exposure time. To make the data comparable over time and

compensate for the train increment, we multiply the exposure times by γ, Eq (14) (dashed green line, bin ~w~2ðeÞ only, i.e. r 2 [1.0, 1.5] m� D). We

notice that the compensated exposure time grows steadily in time gaining a factor 3.5×. This is a combined effect of the passenger growth and a

reduction in attention and/or difficulty in adhering to physical distancing regulations. In panel (b) we scale the exposure time by the number of

passengers, i.e. we report gTd
p;f =N (d = 2). This ratio, which we further scale to its value at week 18, displays a�100% growth between week 18 and 26, to

confirm that the increment of passengers contributes only for 150% of the overall exposure time growth.

https://doi.org/10.1371/journal.pone.0240963.g007
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with increased train frequency throughout the day, allowed a temporary reduction of the load

on the platform, making easier to respect physical distancing. From week 24 onward, individ-

ual exposure times showed again a growing trend. To render the data comparable, we consider

also exposure times compensated for the new train schedule (Fig 7a, only for the case r� D),

i.e. corrected by a factor

g ¼
# daily trains with new schedule
# daily trains with old schedule

� 1:7: ð14Þ

This shows a more stable growth pattern and an increase of factor 3.5 between weeks 17 and

26 (the factor γ is an estimate, considering the presence of trains of different kind and lengths).

Scaling the corrected exposure times with the number of passengers, which is itself growing,

we additionally notice, that the former is growing faster (i.e. exposure time grow super-linearly

with respect to the passengers). This suggests a possible relaxation or an increased difficulty in

following physical distancing regulations.

We report in Fig 8a an in-depth breakdown of the distribution of node degrees, i.e. the

number of first neighbors of each node and thus the number of contacts with different individ-

uals the node had (including both offenses and families). Consistently with our previous obser-

vations, the fraction of high degree nodes (5+ or 10+), i.e. repeated offenders, has also been

growing steadily, but a temporary drop following the train schedule change. In Fig 8b we dis-

play the distribution of individual exposure times pruned of family contributions, and up to

the distance thresholds rd (Eq (5)), i.e. the pdfs of Td
p;f (cf. Eq (11)). Similarly to what discussed

in [42], and consistently with the model in [43], we observe a power-law distribution in the

exposure times (exponent p< −2), which emerges as a robust feature of random encounter

dynamics. Additionally, we notice that the distance threshold plays a strong multiplicative

effect and, possibly, it also weakly influences the exponent. It is worth remarking that our larg-

est observation times are bound by the fact that we limit our graphs to time intervals of about

10-15 minutes around each train arrival. This reduces our resolution at large time scales and

thus yields the exponential-like drop in the distribution tails.

Fig 8. (a) Distribution of node-pedestrian degree per day as a percentage of the total number of passengers. The degree of a node counts the number of

people encountered with a mutual distance smaller than 1.5m (hence, degree 0 means that a person did not have any Corona event). We observe that

high-degree nodes, i.e. repeated distance offenders, increased steadily until the train schedule change (e.g. nodes with 10+ contacts grew from�1% to

�10%). The schedule change yielded a temporary drop in the offender percentage after which it started increasing again. This can be a sign of warning

towards the relaxation in the compliance of physical distancing rules. (b) Probability density function of the individual exposure time discounted of

families, Td
p;f considering different maximum distances (Eq (9)). Exposure times show a power-law behavior. The PDF depletion after T = 5minutes is

most likely due to the time windowing that we operate around each train arrival (cf. Fig 4b). This yields a data cut-off for large times.

https://doi.org/10.1371/journal.pone.0240963.g008
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Crowd density: Incidence of family-groups and effective offenders

The passenger density on the platform has an influence on the offenses: the higher the density

the easier it gets to violate physical distancing. In Fig 9a we report for a sample day (12th of

June 2020), how the percentage of “family” nodes and offenders scales with the density within

the global density interval [0, 0.5]ped/m2. As in Eq (13), we also include minimum contact

time thresholds, α, for tagging offenders. We observe that the percentage of nodes belonging

to family-groups remains stationary (value�11%, a detailed breakdown of the clique size is in

Fig 9b). Up to 80% of the pedestrians at the maximum density level committed offenses assum-

ing no minimum time threshold (α = 0). This percentage slightly diminishes to 60% restricting

to a minimum contact time α = 5s. Interestingly, the percentage shows a non-linear depen-

dency on the density when α = 30s. In particular, such percentage remains stationary (value�

11%) until 0.2ped/m2 and then suddenly increases. This can suggest an increase in difficulty in

following distancing rules around this density level. We report the coefficients of the linear fit-

ting of such data in Table 1.

Fig 9. (a) Percentage of pedestrian nodes exposed to contacts as a function of the global density on the platform (density calculated as number of

people in a frame divided by the total sensor area, 450m2, discounted of the danger zone, 96m2). Exposed nodes that have at least one contact, of any

duration, with another pedestrian (within or outside their family-group or not) are in blue. This percentage if further broken down into nodes part of a

family group (red) and actual distance offenders (green). The purple and orange lines restrict, respectively, to nodes with a minimum exposure time of

10s and 30s. Linear fitting parameters are reported in Table 1. (b) Distribution of individuals and cliques day-by-day as a percentage of the total number

of nodes. Between 80% and 85% of the nodes do not belong to cliques, i.e. they travel alone and their contacts are all distance infringements. Family-

groups of two people cover about 12%–15% of the remaining nodes; family-groups of three and more provide a minimal�3% contribution.

https://doi.org/10.1371/journal.pone.0240963.g009

Table 1. Linear fit parameters for the node classification (percentage data) in Fig 9a.

δ � 0 Slope

Ped.-nodes with any contact 28.5% 13.4%/δ

Ped.-nodes exposed 17.1% 12.9%/δ

Ped.-nodes with exposure α> 10s 9.56% 12.4%/δ

Ped.-nodes part of a family-group 11.5% 0.48%/δ

As a measurement unit for the pedestrian density we employ tenths of pedestrians per square meter: δ = 10−1ped/m2.

Thus the fitting intercept is at δ = 0 while the increments (slopes) are reported as percent variations per δ unit. As an

example, pedestrians that do not belong to a family-group and are in contact with someone else grow about 13%

when the density increases between 0.2 and 0.3ped/m2 and similarly between 0.3 and 0.4 and so on. We do not report

linear fitting parameters for the case α = 30s as the growth is non-linear.

https://doi.org/10.1371/journal.pone.0240963.t001
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7 Discussion

We have presented an highly efficient and accurate approach to the problem of studying, in

real-time, the distance-time encounter patterns in a crowd of individuals. Our approach allows

us to identify social groups, such as families, by imposing thresholds on the distance-time con-

tact patterns. In the context of the currently ongoing Covid-19 pandemic, we demonstrate this

as an effective and promising tool to monitor, in a full privacy respectful way, the observation

of physical distancing. The outcome of the analysis can provide early warnings in respect to an

average relaxation towards the compliance of physical distance rules, can allow to identify

spots where physical distancing most frequently is violated and it may, as well, allow to identify

in real-time the presence of distance offenders. We observed, besides, a super-linear depen-

dence between contact times and passenger number. This can be caused both by a reduction

of attention towards social distancing rules but also to an intrinsic increase in difficulty in

complying to regulations. The investigation of this aspect is left to future research.

The proposed algorithm is simple and can be easily implemented using existent graph code

libraries. In our case, we could process a day of data in few minutes using the python Net-

workX library [44]. Libraries sporting higher performance and/or scalability exist in case of

even more demanding situations.

It is worth mentioning that the approach here proposed can be applied to any type of trac-

ing trajectories and possibly to study the collective dynamics of large groups of active or pas-

sive particles making it a tool capable of going well beyond the application to crowd dynamics

and physical distancing discussed here.
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