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Abstract

It is well recognized that isolated cardiac muscle cells beat in a periodic manner. Recently,

evidence indicates that other, non-muscle cells, also perform periodic motions that are

either imperceptible under conventional lab microscope lens or practically not easily amena-

ble for analysis of oscillation amplitude, frequency, phase of movement and its direction.

Here, we create a real-time video analysis tool to visually magnify and explore sub-micron

rhythmic movements performed by biological cells and the induced movements in their sur-

roundings. Using this tool, we suggest that fibroblast cells perform small fluctuating move-

ments with a dominant frequency that is dependent on their surrounding substrate and its

stiffness.

1. Introduction

Periodic movements of cells have been observed in different biological situations. For example,

isolated heart cells cyclically beat at a frequency of about 1 Hz, when cultured on Petri dishes

or embedded in 3D hydrogels [1, 2]. Other types of cells, such as flagellated spermatozoa [3]

and motile ciliary cells [4] were reported to beat at a higher frequency in the range of 1–40 Hz

and 15–25 Hz, respectively. Moreover, it was suggested that non-cardiac cells may also per-

form active rhythmic contractile and dynamic shape changes when cultured on 2D substrates

or embedded in 3D matrices. Examples include fibroblasts [5–9], neutrophils [10, 11], mast

cells [12, 13], epithelial cells [14], neural stem cells [15]; all were shown to perform various

kinds of oscillatory motions in the range of 0.001–0.1 Hz. Interestingly, even unicellular organ-

isms, such as Saccharomyces cerevisiae and Dictyostelium discoideum exhibit shape dynamics

[16]. For example, S. cerevisiae may show fluctuating nanometric movements (cell wall) in the

range of 800–1600 Hz as measured by AFM [17], however, this movement is clearly not visible

to current video microscopy.

On the organism level, one may mention as an example, the early phase of dorsal closure

that is an important morphogenetic process during the embryonic development of Drosophila

(fruit fly). There, apical cell-shape oscillations were observed in amnioserosa epithelial cells

[18]. This pulsed—actomyosin-based—constriction frequency band lies between 2.4 and 9.0
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mHz (periods of 110–500 s), and center at ~4.2 mHz fluctuations (~4 min period). The

mechanics of cell oscillation is driven by biochemical signaling through an intracellular nega-

tive feedback loop where the dynamics of the PAR proteins that interact with each other ulti-

mately regulate the apicomedial actomyosin assembly and disassembly with a period of ~4

min [19]. Laser microsurgery techniques were used to investigate observed dynamic oscilla-

tions in amnioserosa cells [20]. These oscillations are mostly out of phase in neighboring cells.

Both the contraction and expansion phases of this cycle are largely cell autonomous [20]. Inter-

estingly, actomyosin-based oscillations also have been observed in other biological systems at

low-Reynolds number. For example, shape oscillations were observed in purified preparations

of actin and myosin that exhibit spontaneous oscillations [21].

Cells show a variety of periodic shape changes, such as cortical shape oscillations and cell

membrane protrusion—retraction cycles. Specifically, cells generate sub-micron-size fluctua-

tions of focal adhesions (i.e., molecular contact sites between cells and their environment) that

allow them to sense the rigidity of their local surrounding environment [22, 23]. Indeed, even

suspended fibroblast cells between two optically trapped beads generate myosin dependent

force fluctuations in a wide bandwidth (0.1 to 10 Hz) that result in fluctuating cell shapes [24].

Also, shape oscillations of non-adhering (i.e., not attached to a substrate, free floating) fibro-

blast cells were observed to occur at a frequency of ~0.03 Hz [12, 25, 26].

The inner machinery of cells is the underlying engine that powers the observed periodic

movements and shape fluctuations. This includes the coupling between mechanochemical

cycles (actin polymerization waves), contractile actin-myosin cycles through periods of assem-

bly, activity and disassembly, and asynchronous activations of multiple motor protein clusters

causing unbalanced tractions [27–32].

Not only cells have the inner machinery to perform oscillatory movement, they are also sen-

sitive and responsive to rhythmic mechanical cues [33–40]. Even when shape changes are not

directly observed, one may detect sensitivity of circadian clock rhythms to extracellular matrix

stiffness, for example in the case of keratinocytes and epithelial cells [41].

On the technological side, fluorescent microscopy technology is advancing in terms of

lower photodamage, higher resolution and frame acquisition speed. Recently, for example, a

new microscopic tool was developed that allows high-resolution and high-speed volumetric

imaging, providing enhanced capabilities into real-time observation of cell dynamics [42, 43].

Our goal was to develop a video analysis tool to detect small (nano/sub-micron up to microm-

eter-scale) movements that are virtually unnoticeable under the microscope lens.

Video motion magnification methods have been developed in recent years [44] and have

found applications in variety of fields, from machine damage control (quality assurance of

mechanical systems) to patient monitoring (medical), as well as facial micro-expression recog-

nition (security). In this study, we aim to develop a new tool, based on the knowledge of motion

magnification, to the field of confocal optical microscopy. In this respect, Wu et el. [44] sug-

gested an Eulerian approach for movement magnification in video sequence that does not

require object or pattern detection, and thus avoids finding the motion before magnifying it.

Specifically, Eulerian video magnification (EVM) has been used to reveal temporal variations in

videos that are difficult or impossible to see with the naked eye, such as breathing chest move-

ment of an infant or flow of blood as it fills superficial arterioles on the face. Wadhwa et al. [45–

48] further improved the EVM method by making it faster, more accurate and less sensitive to

noise. Using Fourier decomposition, the motions were amplified in the phase domain while

avoiding amplification of the noise amplitude. Thus, EVM can also serve as a noise filter.

EVM amplifies movements only in a predefined frequency. In the case of biological cells,

the frequency of rhythmic motions is usually unknown beforehand and the cells may pulsate

in a wide bandwidth of frequencies. In addition, motion amplification of barely visible objects
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can help in revealing object shape. For example, a video of two overlapping structural elements

that slightly move at different frequencies. For this scenario, in some cases, time domain

motion signals may not suffice as image elements may have almost identical movements. How-

ever, the difference could be significant in the frequency domain and therefore allow their dis-

tinction [49]. To answer this need, our EVM-based tool allows the user to automatically detect

dominant movement frequencies in video microcopy image series and then allows to specify a

chosen frequency value for motion magnification. A single frequency is chosen by the user

based on a spectrum estimation method [50]. In addition, our tool allows the user to change

the video processing parameters (e.g., amplification factor or frequency to be amplified) in the

graphical user interface (GUI), see S1 Fig. Our tool also contains in the GUI optional prepro-

cessing steps for better visualization, such as image deconvolution due to the optical point

spread function (PSF) of the image [51, 52]). In this study, we present the video processing

methods, and discuss the validations and limitations of our tool. Finally, as an implementation

example, we analyze the periodic movements of fibroblast cells cultured on glass dishes (2D

culture) and cells fully embedded in a 3D hydrogel environment. As control, we analyze the

movements of non-viable cells (chemically fixated). We detected dominant frequency in live

cells that is significantly higher than non-viable cells. Furthermore, the standard deviation of

the spectrum signal is typically higher for live cells, indicating more biological activity. We sug-

gest that fibroblast cells on 2D glass substrate may perform slower periodic movements than

cells embedded in a 3D gel environment. Finally, we analyzed movies of mda-mb-231 cells

grown on top of a micropillar substrate, and noticed pillars periodically pulled by cells.

2. Methods

The developed tool combines several signal-processing methods to enable detection and esti-

mation of small periodic movements in a video sequence collected by a microscope in biologi-

cal laboratories. Specifically, we use confocal fluorescent microscopy to acquire volume-stack

images of single fibroblast cells embedded in fibrin gels. This gel is commonly used to grow

cells in 3D soft matrix, which reflects tissue environment [53, 54]. The process is schematically

illustrated in Fig 1.

2.1 Biological sample preparation

2.1.1 Cell culture. Actin-GFP 3T3 fibroblast cells (a gift from Prof. Scott E. Fraser, USC,

Los Angeles, CA) were cultured in DMEM supplemented with 10% fetal bovine serum, nones-

sential amino acids, sodium pyruvate, l-glutamine, 100 units/ml penicillin, 100 μg/ml strepto-

mycin, and 100 μg/ml neomycin (all the materials supplied by Biological Industries, Kibbutz

Beit Haemek, Israel), in a 37˚C humid incubator.

2.1.2 3D fibrin gel preparation. Actin-GFP 3T3 fibroblast cells (5 × 103 cells) were mixed

with 10 μl of a 20 U/ml Thrombin solution (Omrix Biopharmaceuticals). Then, 10 μl of a 10

mg/ml fluorescently labeled fibrinogen (Omrix Biopharmaceuticals) suspension—labeled with

Alexa Fluor 546 as we described previously [54]—was placed on a #1.5 coverslip in a 35-mm

dish (MatTek Life Sciences) and mixed with the cells+Thrombin suspension. The resulting

fibrin gel was placed in the incubator for 20 min to polymerize, after which, warm medium

was added to cover the gel.

2.1.3 2D rigid substrate sample preparation. Actin-GFP 3T3 fibroblast cells were

sparsely distributed on glass bottom dishes, culture treated, uncoated (14 mm glass diameter,

#1.5 Coverslip, MatTek, Ashland, MA). We used paraformaldehyde (PFA)-fixated cells as a

control group (at least 9 sample repetitions for each group). The cells adhered directly to the

glass dishes.
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2.1.4 2D cells on top flexible micropillars. Live MDA-MB-231 epithelial cells (human

breast adenocarcinoma source) were obtained from Prof. Yuval Shaked (Technion, Israel).

These cells were cultured at 37˚C in a 5% CO2 incubator in DMEM supplemented with 10%

fetal bovine serum, 100 IU/ml penicillin–streptomycin, 2 μM L-glutamine and 2 μM HEPES.

One day before spreading experiments, cells were sparsely plated on a culture dish to minimize

cell–cell interactions before re-plating on the pillars. The following day, cells were trypsinized

using TrypLE (Biological Industries), centrifuged with growth medium, and then resuspended

and pre-incubated in in HBSS buffer supplemented with 20 mM Hepes for 30 min before the

experiment. Cells were then plated on top of the micropillars substrate, as previously reported

by Wolfenson et al. [23, 55].

2.1.5 Time-lapse microscopy. 2.1.5.1 Images of 3T3 fibroblast cells. Fibroblast cells were

imaged with a Zeiss 880 (Axio Observer) confocal laser scanning microscope, equipped with a

×40, NA = 1.1 water immersion lens (Zeiss) and a 30-mW argon laser (wavelengths 488 and

514 nm). Throughout imaging, cells were maintained in a 37˚C 5% CO2 incubation chamber.

Confocal z-stacks were acquired at time intervals as mentioned for each video.

2.1.5.2 Images of MDA-MB-231 cells. Time-lapse imaging of cells spreading on the pillars

was performed as described previously [55]. Imaging was performed using an inverted micro-

scope (Leica DMIRE2) at 37˚C using a ×63, NA = 1.4, oil immersion objective. Bright-field

images were recorded every 10 s with a Retiga EXi Fast 1394 charge-coupled device camera

(QImaging). The microscope and camera were controlled by Micro-Manager software [56].

To minimize photodamage to the cells, a 600-nm long-pass filter was inserted into the illumi-

nation path.

2.2 Video analysis

The whole analysis was implemented in a script coded in MATLAB (version 9.5.0, R2018b;

The MathWorks, Natick, MA) and is freely available (for non-commercial use only) from the

corresponding author by request, both source code and executable file. Interaction and execu-

tion of the code is facilitated by a GUI, also developed in MATLAB.

Fig 1. Overview of the method, including the steps: (I) Obtain an Input Video (time-lapse sequence) from a confocal

microscope, choose a plane from the z-stack to analyze. A representative ‘y-t plot’ of pixel intensity versus time (aka, kymograph

plot) is also shown below for the intersecting arrow line in the image above. The example shows confocal image of an isolated

fibroblast cell (dark green pixels) embedded within Fibrin hydrogel 3D matrix (red); next, (II) Preprocessing of the input video

for denoising, reversing the distortion of the microscope and video stabilization, a similar ‘y-t plot’ is also shown below for the

same line as in the first step; next, (III) Finding dominant movement frequencies using spectrum estimation. The power

spectrum in the example exhibits a detected dominant frequency at 1.28 Hz; next, (IV) motion magnification at a chosen

dominant frequency (e.g., 1.28 Hz) using EVM, the kymograph below corresponds (as in 1st & 2nd steps) to pixel intensity change

over time and now a wavy pattern is noticeable for some pixels; next (V) Detecting motion directors (in-plane) and motion phase

(red/blue for a given director).

https://doi.org/10.1371/journal.pone.0240127.g001
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2.2.1 Choosing a region-of-interest (ROI). Before starting the EVM analysis, the user

may wish to concentrate on a specific ROI in the video, as there may be multiple cells in the

whole field of view. For this purpose, the user has the option to choose in the first image of the

video four points (XY-plane) that define a rectangular ROI. By extracting this rectangular ROI

from each subsequent image in the video, a new subset sequence of ROI video is obtained for

further analysis.

2.2.2 Choosing the main spectral channels for analysis. Our tool is expected to work

well with any common video format collected by any microscope type since we first import

the original video and convert it to Matlab format using the Bio-Formats toolbox [57]. Con-

ventional videos contain either one (grayscale) or three color channels (RGB); confocal

microscopy may contain multiple color channels, depending on the fluorescent labeling

scheme and exciting laser bandwidth. The GUI allows choosing one or more channels for fur-

ther analysis. For a video of mechanically coupled elements (e.g., green cells and their sur-

rounding red fibrous matrix), analysis of information from two color channels may be used to

corroborate parameter estimation (e.g., oscillation frequency, or edge detection) based only on

information from one of the channels

2.2.3 Preprocessing for visibility improvement. The GUI enables performing prepro-

cessing steps for better visualization of the video sequence, including the steps of image decon-

volution, and global video stabilization. Details on these two steps follow.

The light emitted from a specific optic plane of the specimen passes through the optical sys-

tem, generating a convolution of the real image with the PSF of the microscope. Each micro-

scope has its specific combination of optical system and optical path that determine its unique

PSF. Thus the input video may be somewhat blurred. This effect can be reversed by deconvol-

ving the input video images with the PSF. The actual PSF may be either known beforehand by

the user or may be blindly guessed and iteratively estimated using an algorithm, thus obtaining

a deblurred image that better describes the specimen. Specifically, we have implemented in the

GUI, the Matlab command for blind deconvolution as described by Pawley [52, 58] knowing

that adding information about the specific imaging system will improve the data [59]. S2 Fig

shows an example of an image of a cell before and after deconvolution, using the GUI.

Video stabilization is an important video enhancement option which aims at removing

shaky motion from videos caused by a relative movement (rigid body movement) between the

camera and the whole sample. This movement may occur due to immersed sample drift.

Video stabilization was achieved by implementing Matlab commands relevant to “Point Fea-

ture Matching” method. Essentially, the built-in Matlab algorithm performs these six steps: (i)

Read frames from a movie file; (ii) Collect salient points (edges) from each frame; (iii) Select

correspondences between points; (iv) Estimating transform from noisy correspondences; v)

Transform approximation and smoothing; and vi) Run on the full video.

Note that the steps described above are optional for data improvement but are not neces-

sary, as the user may upload to the GUI an already preprocessed video.

2.2.4 Edge detection. For simplicity of use and interpretation we choose to focus on a lim-

ited subset of pixels for further analysis of spectral frequency and direction of movement. This

subset comprises of pixels identified as ‘edge pixels’ of the cell, i.e., points in the image at

which the image brightness changes sharply or has discontinuities. The size of this subset is

flexible and is amenable for control by the user (a knob in the GUI). Our motivation for choos-

ing a limited subset of pixels for analysis is the notion that the cell performs its periodic motion

mainly at the cell-edge by protrusive and retractive membrane movements (e.g., filopodial and

lamellipodial). Therefore, we expect that the largest motions occur mainly along cell edges. To

automatically detect the edge of the cell we first calculate the temporal mean (over a user

defined time window) of grey levels for each pixel. This is done by finding the average intensity
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for each specific pixel location in the video set of images. On the ‘time averaged image’, edge

pixels are identified as pixels in which the spatial gradient is maximal. Eq 1 formulates the con-

dition in which pixel (x,y) is considered an edge pixel if for every color channel i:

r
1

N

XN

t¼1

Ii½x; y; t�

 !�
�
�
�
�

�
�
�
�
�
> GTH ðEq 1Þ

where Ii is the intensity at (x, y) in a frame obtained from channel i; the number of frames (N)

in a temporal window (this window may contain the whole video), and GTH determines what

gradient value is high enough to be considered an edge. The threshold value is adjustable and

set by the user, and its value is selected such that most relevant edges are detected. The user has

the option to choose the method for edge-detection calculation out of six methods (available

in Matlab ‘edge’ command): Sobel (default), Prewitt, Roberts, Laplacian of Gaussian, Zero-

cross, and Canny. For example, the Canny edge detector [60] is superior to Sobel’s since it is

less sensitive to noise, and more likely to detect true weak edges, however, it is slower. Example

image of edge contour detected for a fibroblast cell image appears in S3 Fig.

2.2.5 Spectrum estimation. To estimate the motion power spectrum, i.e., the power spec-

trum of pixel intensity changes of edge pixels, we assume that every edge pixel intensity is a

sample series of a random process. Using sample series xj[t] from edge pixel j, an autocorrela-

tion series estimator is applied:

R̂j t½ � ¼
1

N

XN

t¼1

xj½t� � xj½t � t� ðEq 2Þ

where τ could range from 1 to N. Given the autocorrelation estimator, a consistent estimator

for the power spectrum is:

Ŝ o; L½ � ¼
1

M

X

j

DFTðfR̂j½t�g
L
t¼1
Þ ðEq 3Þ

where M is the number of edge pixels and L is the length of the subseries of the pixel signal to

be analyzed. Assuming that different sample series (different pixel intensities) are uncorre-

lated, the variance of the estimator decreases as M increases. In addition, it is possible that dur-

ing the video the cell changes its motion frequency, and therefore, we provide the option to

choose a length L for the subseries of the signal.

The dominant oscillatory motion frequency is identified as the frequency of the global max-

imum point on the power spectrum, excluding the ‘direct current’ (DC) peak.

2.2.6 Motion magnification. In this step we implement the real time algorithm for phase-

based motion magnification [46] using the original pseudocode [61] as a guide. The user is

required to enter three inputs to this algorithm: (i) A value for the motion amplification factor;

(ii) The frequency of oscillations to be amplified, and (iii) An input video: this video may be

either the original video as obtained by the microscope or a pre-processed one (i.e., decon-

volved, stabilized, etc.). Finally, the output of this algorithm is the amplified-motion video.

2.2.7 Automatic detection of significant motion of edge pixels (its location & direc-

tion). After amplifying the motion, our tool provides an option to draw arrows pointing

along the motion direction of moving edges, on the video sequence. To avoid calculating the

full optical flow field of the video sequence [62] we used a lower resolution but faster method,

as described below.

First, instead of analyzing single pixel movement, we are searching for motion relative to a

grid. A grid line G is defined as a one-pixel wide line segment of length l and the location of its
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pixels satisfies one of the conditions described in Eq 4:

ðx; yÞ 2 G if

l �m < x < l � ðmþ 1Þ; y ¼ l � n

or

x ¼ l �m; l � n < y < l � ðnþ 1Þ

8
>><

>>:

ðEq 4Þ

Where the length l is characterized by an odd number of pixels that determines the grid den-

sity and m; n 2 N. A specific line segment G contains motion if:

XN� 1

t¼1

X

ðx;yÞ2G

jI½x; y; t� � I½x; y; ðt þ 1Þ�j > MTH ðEq 5Þ

where I is the intensity of pixels along G. The lower bound threshold MTH in Eq 5 is deter-

mined by the user and is adjustable; its value is dependent on the noise level in the magnified

video and is therefore chosen empirically.

Next, for every line G that satisfies Eq 5, we aim to estimate the dominant direction of

motion. For simplicity, we limited the automatic assignment of ‘angle of motion’ (θ) to only

four directions (45˚ apart, aligned relative to the image Y-axis, its vertical axis) and chose the

one with the largest apparent motion amplitude. Respectively, we constructed four one-pixel

wide line segments (Pθ) of length l pixels, centered on the geometric center (mid-length pixel)

of the line segment G and running along the θ direction. For each line segment Pθ we enumer-

ate its pixels by ascending integer number h, where �
ðl� 1Þ

2
� h � þ ðl� 1Þ

2
such that one end

pixel gets the number �
ðl� 1Þ

2
and the other end pixel gets the numberþ

ðl� 1Þ

2
. The motion ampli-

tude is measured for each of the line segments Pθ(t). For each of the lines Pθ(t) the ‘center-of-

mass’ point of the gray-level intensity in each time step is calculated, PyCMðtÞ. The gray-level

value (I[� � �]) of the pixels along h of the line Pθ represents virtual mass.

PyCM tð Þ ¼
P

hh � I½PyðtÞ�P
hI½PyðtÞ�

ðEq 6Þ

The assigned ‘direction of movement’ θd is determined by:

yd ¼ argmax
y

frms½PyCMðtÞ � PyCM �g ðEq 7Þ

where rms denotes the root mean square operation and PyCM denotes the temporal average

value of PyCMðtÞ. Fig 2 presents the motion amplitude signal in four directions as a function of

time for a simple case-study video—a pulsating circle changing its radius periodically.

2.2.8 Finding movement phase. After finding the dominant movement direction, we

have provided a method to add indicators for the motion phase on a kymograph plot (aka ‘y-t

plot’); where the ordinate (y-axis) represents grayscale values for pixels in one chosen line of

an image and the abscissa (x-axis) shows this same line data along progressing time. We have

colored the center-of-mass pixel [PyCMðtÞ; Eq 6] in either blue or red, depending on the sign of

the temporal derivative of the center of mass signal, negative or positive, respectively (Fig 1

and S4 Fig. We estimate this derivative at each center-of-mass pixel by calculating the deriva-

tive of high-order (we used fifth order) fitted polynomial. This polynomial is an interpolation

function of the center mass signal, PyCMðtÞ, in an environment of n neighboring center-of-

mass pixels, on each side of the time series (n prior and n later in time). This number can be

chosen by the user, and is influenced by the frame rate and the period of movement.
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3. Results

3.1 Validating example

To validate our tool, we used confocal microscope to acquire video sequence of a periodically

stretched fibrin hydrogel. In order to stretch this soft gel under the microscope, we used a tech-

nique recently developed in our laboratory [63]. Briefly, the gel was polymerized within a cut-

out silicone strip. The strip was then externally stretched by a motor, allowing to transfer con-

trolled cyclic strains to the embedded gel. A fluorescently-labeled fibrin gel was stretched at a

known frequency of 1Hz to several gel extension amplitudes in the range of 1 to 3 μm (imple-

mented by 1˚ or 3˚ motion of the rotating step motor); all of the motion amplitudes are imper-

ceptible in the raw data images by the naked human eye (for the 1μm stretch it was sub-pixel

in size, where pixel size was 2.77 μm), see S1 Movie (Static gel) and S2 Movie (1˚ step stretch at

1 Hz). The ROI in these movies includes both gel and silicone rubber rim. Fig 3 presents the

results of step 2.2.5. (Spectrum Estimation). The resulting spectra indicates that for a video

Fig 2. Example video of a ring changing its radius harmonically. (a) typical frame of the video and markers of the

four analyzed directions, centered on an edge pixel that satisfies Eq 5. (b-e) kymograph plots along 0˚,90˚,135˚,45˚

direction, respectively.

https://doi.org/10.1371/journal.pone.0240127.g002
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with periodic gel movement the spectrum depicts a dominant spectral power peak at the cor-

rect frequency of 1 Hz and does not present any dominant frequency for a video of the same

gel under static conditions (i.e., non periodic stretch).

The pixel intensity noise component changes the gray-level of each pixel in a random man-

ner. This noise component may have a wide temporal frequency bandwidth and therefore

falsely represent periodic movements in that bandwidth that then will be amplified by the

EVM algorithm. To validate that in the motion magnification step (section 2.2.6), the motion

we amplify was real (i.e., unique to periodically stretched samples) and not a result of noise, we

estimated the amount of movement in a video sequence using the Lucas-Kanade optic flow

algorithm [62]. Specifically, we used Matlab tools such as ‘opticalFlowLK’ and ‘estimateFlow’

with the threshold for noise reduction being 1E-4. The reported estimate for the motion was

the total sum of the motion magnitude for all the pixels.

Fig 4 presents the result of motion as a function of the amplification factor for different

stretching amplitudes. The result indicates that the motion magnification algorithm amplifies

the noise, but to a lesser extent than the amplification of real movements. Due to noise amplifi-

cation, a ‘degree of motion’ is demonstrated in a sample where the gel was held statically (i.e.,

no periodic tension was exerted). For indication whether the amplified motions are real or

not, one can estimate the ‘degree of motion’ (as quantified using the optic flow algorithm) in a

sample of interest—for several values of the amplification factor—and compare the observed

buildup of ‘degree of motion’ to the ‘degree of motion’ buildup calculated for a ‘control’

Fig 3. Power spectrums of the motion in the gel stretching validation videos. Static video (dashed line) and a

dynamic spectrum video of a gel stretched by 1˚ step motor rotation–at 1 Hz (solid line).

https://doi.org/10.1371/journal.pone.0240127.g003
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sample that is essentially affected only by noise. Then one checks whether or not it falls within

the “real” region on the motion as a function of amplification curve (white region in Fig 4).

3.2 Oscillatory movement behavior of fibroblasts cultured on top of 2D

glass dishes vs. fibroblasts embedded in 3D hydrogels

Using the tool presented above we examined video sequences of fibroblast cells plated on 2D

glass dishes and cells embedded in a 3D fibrin gel. We found that the frequency of the domi-

nant motion of cells cultured on 2D dishes is about four times lower than for cells embedded

in 3D soft fibrin hydrogel, with the average values: f dish ¼ 0:6� 0:1 Hz and

f gel ¼ 2:3� 1:3 Hz, respectively. The p-value for similarity between the groups is 0.02 which

indicates significant difference. S5 and S6 Figs present the power spectra obtained for cells cul-

tured on top of dish and for cells embedded in 3D soft fibrin hydrogel, respectively.

3.3 Oscillatory behavior of live vs. dead fibroblasts

Interestingly, due to image pixel’s intensity noise, even samples containing dead cells (i.e.,

PFA-chemically fixated) exhibit peaks (other than the dc-peak) in the power spectrum.

Among these peaks the user may detect a ‘dominant peak’ that is higher than the spectral

power of its close environment. We compared the significance of the dominant peaks in

power spectra for groups of live and dead cells (S5 and S6 Figs) and have found that for live

cells the value of the dominant frequency peak is 8% - 12% above the average peak height

(8.2% in 2D; 9.2% in 3D) and the height of the dominant peaks found in videos of dead cells

are only about 5%-8% above the average intensity (6.8% in 2D; 7.4% in 3D). This indicates that

the movements in live cells are relatively higher than the noise induced apparent movements

Fig 4. ‘Degree of motion’ in amplified video sequence of a periodic stretched gel as function of amplification

factor for three stretching amplitudes (0˚, 1˚ and 3˚ motion of the step motor). The white region (the region above

the continuous black line that limits the gray region) represents real motions and the gray region represents noise

interpreted as movement.

https://doi.org/10.1371/journal.pone.0240127.g004
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in dead cells and that the detected dominant peaks in the power spectra for live cells are more

significant (i.e., distinguished from their immediate neighborhood and higher in amplitude).

3.4 Micro-pillar oscillations by live mda-mb-231 cells

The micro-pillar setup, in which cells are cultured on pillar-array of defined length and stiff-

ness, is a well-established platform to study cell-matrix interaction [64, 65]. Wolfenson et al.

have shown that actomyosin-based contractile units activity between sub-micron pillars

involves nanometer-scale rhythmic steps [23], and that long-term force application on micro-

pillars is driven by local fluctuations in actin density [55]. As another demonstration of our

tool’s capability, we have analyzed videos of MDA-MB-231 cells grown on top of micropillars.

Appearing in the Supplementary Movies: (i) an original video (S3 Movie) of MDA-MB-231

cells plated on top of micropillars; and (ii) an amplified video (Amplification factor = 20; S4

Movie). We have detected dominant peak frequency at about 0.009Hz, i.e., a period of ~ 111

sec (S7 and S8 Figs). Looking at these movies one may notice that only micropillars under-

neath cells oscillate. The population of oscillating micropillars changes as the cell moves and

extends. The direction of oscillation seems to correspond with cell alignment on the plane, and

that waves of propagation along micropillars occur (e.g., top of the image to its bottom and

reverse). Finally, we have noticed that pillar oscillations may occur in bursts, i.e., oscillation

amplitude for a specific pillar is not constant throughout the video (time duration).

4. Discussion

We have developed an application for analyzing time-lapse image series produced by optical

microscope, based on Eulerian approach to video motion magnification. To enable complete

analysis of research data we incorporated into a GUI interface complimentary methods for

spectral analysis and motion detection and its analysis, as well as, allowed for preprocessing

step to prepare visually optimal data for the analysis. We demonstrate the use of our applica-

tion in analysis of fibroblast cells cultured in various types of environments (dish, hydrogel),

and of MDA-MB-231 cells cultured on top of micropillars.

4.1 Limitations

Our tool has some theoretical and practical limitations.

i) The input video frame rate and total duration determine together the frequency range

and spectrum resolution. From Nyquist–Shannon sampling theorem, the highest frequency of

the sampled signal is half the sampling rate and higher frequencies in the original signal will

suffer from aliasing (aka, wagon-wheel) effect. In other words, if the video sampling rate is not

high enough, we will interpret high motion frequencies as small ones. In addition, from the

variance expression of Blackman-Tukey power spectrum estimator [50], as the signal duration

is longer in time the estimator variance is getting smaller. Therefore, frequency estimation is

improved as the signal is recorded for longer times. The longer the video acquisition period

one may be able to detect lower frequency oscillations.

ii) Signal-to-noise level in confocal microscopes is dependent on multiple parameters [66]

such as: pinhole diameter, type of detector, pixel size, illumination intensity, scan rate, and the

image post-processing steps. Time lapse microscopy of living cells often requires fast acquisi-

tion of images and therefore relatively larger pixel size to be able to capture dynamic phenom-

ena on the length scale of tens of microns. Noise in the video, i.e., random changes in gray-

level intensity over time, may be interpreted as motion in the EVM method, as noise contains

a multitude of implicit frequencies. Therefore, with a high amplification factor we may errone-

ously synthesize motion from a video of a static object. To deal with it, for a given experiment
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the user should examine the amount of "motion" in a static control measurement as function

of amplification factor, allowing to determine its threshold (as we performed here, see Fig 4).

Such ‘static’ control video may be of deliberately fixated cells or where any external movement

and deformation is neutralized.

iii) One should maintain a watchful eye and notice the actual resulting amplified video to

see if it indeed makes biological sense. Note that the EVM algorithm does not distinguish

between gray level changes due to color level changes, for example in fluorescent protein

expression levels vs. gray level changes due to actual movement in space.

iv) The user cannot always know beforehand what will be the dominant oscillation fre-

quency that may change depending on several parameters. A fibroblast cell either embedded

in 3D extracellular matrix or residing on top of a 2D substrate tests the rigidity of its immediate

environment by applying forces on it. The ‘rigidity sensing’ mechanism was suggested recently

to have a periodic nature (0.1 Hz to 0.001 Hz, range) [7, 67]. Note that the dominant frequency

and oscillations bandwidth are sensitive to experimental setup, cell type and physiological state

[67]. It is also known that the manner cells interact with rigid 2D substrates and with 3D soft

environment may differ significantly.

v) Another limitation is the actual performance of the EVM algorithm used in our current

implementation of this GUI tool. We used in this work a 1st-order Taylor approximation

based algorithm, where recently advanced algorithms allow for 2nd- and 3rd-order accuracy

[68–70] that results in a better amplification of accelerated or jerked movements in the video,

less blur in the constructed images, and neutralization of large and slow background move-

ments [71].

4.2 Comparison to literature

The main motivation of this paper is to present a new applicative tool that combines several

useful features for analyzing time-lapse microscopy of single living cells. Indeed, recently an

EVM adaptation for live cell microscopy analysis of photo-conversion protocol time lapse

images (HeLa cells) has been demonstrated [72]. However, the focus of that adaptation was

lowering video image noise. In addition, their preprocessing step is different from ours, as they

used a Laplacian pyramid for each image. Finally, the output of their application is noise-

reduced image instead of motion amplified video with indication of movement region of inter-

est, arrows of movement direction and indication of phase.

As a specific demonstration of the capabilities of our application, we show that cells directly

attached to a Petri glass dish may slowly and periodically deform, relative to the same cells but

embedded in a 3D fibrin matrix that may demonstrate faster oscillatory movements. Possible

reasons are that glass dish (~GPa range) has a much larger stiffness than 3D hydrogel (~KPa),

effective density of available sites for cell attachment to its substrate, and mode of attachment

(through specific receptors or through nonspecific polar interactions). Engler et al. [73] had

found that the beat rate of embryonic cardiomyocytes on stiff matrices (having scar-like stiff-

ness) is lower, and eventually the cells stop beating after some time. Those cells beat best on a

matrix with heart-like elasticity. This finding may corroborate our result for fibroblast cells,

however, it is fully acknowledged that exploring this issue requires experimental work that is

beyond the scope the current study.

We would remark that in 2D cultures the cells are attached to the glass bottom and the stiff

substrate does not allow mechanical interaction between the relatively far away cells. In fibrin

gels, cells embedded in the soft gel exert force which may be carried along relatively long dis-

tances in the elastic gel [74, 75], and therefore oscillations at the proximity of a cell may be

caused by oscillations of the same cell and those exerted by neighboring cells. Hence, some
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oscillatory movement may be mediated by neighboring cells and not necessarily by the cell

itself. Furthermore, the relatively large mechanical compliance of the gel may allow the fast

oscillatory action of the actomyosin machinery while the stiff glass bottom may halt the acto-

myosin machinery at isometric exertion (according to the force-velocity relationship, FVR

[76]).

Another important feature of our tool is the ability to detect patterns of cell movements

that are unidentifiable under normal imaging conditions. This is clearly demonstrated in vid-

eos of MDA-MB-231 cells plated on micropillar arrays. Such arrays are used for measuring cel-

lular forces during the process of mechanosensing, which occurs when cells pull on the matrix

(pillars) via integrin adhesions. In recent work, Wolfenson et al. [23, 55] found that this pro-

cess occurs in a periodic fashion, typically at the cell edge. Interestingly, applying the EVM

algorithm using our tool on videos of individual cells spreading on pillars shows two additional

previously undetected features apart from the cell edge contractions. First, noticeable pillar

contractions beneath the central area of the cell are observed, which, together with the cell

edge contractions, indicate that significant mechanical power is invested in slow collective

movements of all the pillars. Second, noticeable rounds of bursts of intense activity, followed

by “quieter” round of activity, are observed, suggesting that a large-scale oscillatory mecha-

nism might drive this process (S4 Movie). Our tool thus may provide a more complete view of

the mechanosensing process, in ways that were previously unavailable.

Currently, tissue constructs with cells embedded in three-dimensional matrices that mimic

the natural tissue serve as platforms for basic research, regenerative medicine and drug discov-

ery. In such tissue constructs, force oscillations were detected, for example, as ensemble of

beating cells movements [77]. Thus, the EVM tool may be used for the study of mechanobiol-

ogy in such tissue constructs. It may also be used for the study of biochemical oscillations as

exhibited, for example, by oscillatory enzyme kinetics in cyclic reactions [78].

Conclusions

We have developed a reliable video analysis tool for research of periodic movements of living

cells. In addition, we suggest a connection between cell motion frequency and its substrate proper-

ties. This tool may be used both for basic research and for diagnostics of pathological states.

Supporting information

S1 Movie. Fluorescent fibrin gel held statically.

(WMV)

S2 Movie. Fluorescent fibrin gel that is stretched dynamically (stretch-release cycles at

1Hz) at 1˚ rotation of a controlled motor.

(WMV)

S3 Movie. An original video of MDA-MB-231 cells plated on top of micropillars (each

2 μm in diameter). Original frame rate is 1 frame per ten seconds. The movie is accelerated

for visualization (fast-forward × 200 times).

(AVI)

S4 Movie. EVM amplification of S3 Movie (Amplification factor = 20, frequency 0.009Hz).

Other details are the same as in S3 Movie.

(AVI)

S1 Fig. Typical view of the GUI (Graphical User Interface).

(DOCX)
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S2 Fig. Typical frame of example video before (a) and after (b) deconvolution process.

(DOCX)

S3 Fig. Acquired image in a confocal microscope fibroblast cell (colored green pixels) embed-

ded in fibrin gel (colored red pixels) (a); Edge detection: cell contour pixels detected (b); Spec-

trum Estimation: video power spectrum analysis for the edge pixels (c).

(DOCX)

S4 Fig. Phase of movement. Expansion designated by blue pixels, and contraction by red pix-

els, delineated on a kymograph of a short segment of a ring changing its size periodically.

(DOCX)

S5 Fig. Representative power spectrum of fibroblast cells cultured on top of a 2D glass

dish. (A) Live cells with a dominant peak is at 0.76 Hz, and (B) dead cells (PFA fixated) with-

out a distinguished dominant peak.

(DOCX)

S6 Fig. Representative power spectrum of fibroblast cells embedded within a 3D fibrin gel.

(A) Live cells with dominant peak at 1.28 Hz, and (B) Dead cells (PFA fixated) without a dis-

tinguished dominant peak.

(DOCX)

S7 Fig. Power spectrum of live MDA-MB-231 cells on top of micropillars. The reference

image for spectrum calculation is the whole image (182 × 286 pixels).

(DOCX)

S8 Fig. Power spectra of cells on micropillars. The figure compares the power spectra of

three windows (70 × 90 pixels wide) that focus on micropillars: (i) 1st window, micropillars

under a live cell (yellow); (ii) 2nd window, far-field micropillars without cells (red), taken from

the same video of the live cells (yellow). (iii) 3rd window, micropillars under a fixated cell

(blue), taken from the ‘dead cells’ video. Note that the blue and red spectra are very similar,

especially in the high frequencies and both are very different (weaker) than the yellow spec-

trum of micropillars under live cells. Here, the reference image for spectrum analysis is smaller

(70 × 90 pixels) than the one shown on S7 Fig, in order to compare live MDA-MB-231 cells

and far-field micropillars without any cells, in the same video.

(DOCX)
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