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Abstract

Background

To monitor the prevalence of antimicrobial resistance (AMR), methods for interpretation of

susceptibility phenotypes of bacteria are needed. Reference limits to declare resistance are

generally based on or dominated by data from human bacterial isolates and may not reflect

clinical relevance or wild type (WT) populations in livestock or other hosts.

Methods

We compared the observed prevalence of AMR using standard and bespoke interpretations

based on clinical breakpoints or epidemiological cut-offs (ECOFF) using gram positive

(Staphylococcus aureus) and gram negative (Escherichia coli) bacteria from sheep as

exemplars. Isolates were obtained from a cross-sectional study in three lowland sheep

flocks in Scotland, and from a longitudinal study in one flock in Norway. S. aureus (n = 101)

was predominantly isolated from milk or mammary glands whilst E. coli (n = 103) was mostly

isolated from faecal samples. Disc diffusion testing was used to determine inhibition zone

diameters, which were interpreted using either clinical breakpoints or ECOFF, which distin-

guish the bacterial wild type population from bacteria with acquired or mutational resistance

to the compound of interest (non-wild type). Standard ECOFF values were considered as

well as sheep-specific values calculated from the data using Normalized Resistance Inter-

pretation (NRI) methodology.

Results

The prevalence of AMR as measured based on clinical breakpoints was low, e.g. 4.0%

for penicillin resistance in S. aureus. Estimation of AMR prevalence based on standard

ECOFFs was hampered by lack of relevant reference values. In addition, standard

ECOFFS, which are predominantly based on human data, bisected the normal distribution

of inhibition zone diameters for several compounds in our analysis of sheep isolates. This

contravenes recommendations for ECOFF setting based on NRI methodology and may
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lead to high apparent AMR prevalence. Using bespoke ECOFF values based on NRI, S.

aureus showed non-wild type for less than 4% of isolates across 13 compounds, and ca.

13% non-wild type for amoxicillin and ampicillin, while E. coli showed non-wild type for less

than 3% of isolates across 12 compounds, and ca. 13% non-wild type for tetracyclines and

sulfamethoxazole-trimethoprim.

Conclusion

The apparent prevalence of AMR in bacteria isolated from sheep is highly dependent on

interpretation criteria. The sheep industry may want to establish bespoke cut-off values for

AMR monitoring to avoid the use of cut-offs developed for other host species. The latter

could lead to high apparent prevalence of resistance, including to critically important antimi-

crobial classes such as 4th generation cephalosporins and carbapenems, suggesting an

AMR problem that may not actually exist.

Introduction

The World Health Organization (WHO) recognizes antimicrobial resistance (AMR) as a

global problem in public and animal health [1]. A review on AMR conducted in the UK and

often referred to as “the O’Neill Report” based on its lead author [2] estimated that infections

caused by resistant bacteria may become the leading cause of death globally by 2050 and esti-

mated the societal and economic cost of AMR at 100 trillion USD in that period of time. To

help address the problem, WHO has released a Global Action Plan on AMR with an overall

aim of ensuring, for as long as possible, appropriate management of infectious diseases with

effective and safe medicines [3], and a call to its member states to develop and implement

National Action Plans. In the action plans, the need for a One Health approach is recognized,

whereby antimicrobial use in humans and animals are considered jointly, as well as AMR in

organisms derived from human and animal hosts and their environments.

To monitor the scale of the AMR problem across countries and species over time, including

the potential impact of measures to prevent and reduce AMR, tools are needed to measure the

extent and distribution of AMR. Such tools include major reporting infrastructure projects,

such as the European Antimicrobial Resistance Surveillance Network (EARS-Net), which is

the largest publicly funded system for AMR surveillance in Europe. EARS-Net focuses on data

obtained from local and clinical laboratories in European member states and includes AMR

data for microorganisms of major public health importance, i.e. Escherichia coli, Klebsiella
pneumoniae, Pseudomonas aeruginosa, Acinetobacter spp., Streptococcus pneumoniae, Entero-
coccus spp., and Staphylococcus aureus. In addition, there are national and international net-

works for reporting of veterinary AMR data, such as the Veterinary Antimicrobial Resistance

and Sales Surveillance (VARSS) in the UK, or integrated programs, such as the Danish Pro-

gramme for surveillance of antimicrobial consumption and resistance in bacteria from ani-

mals, food and humans (DANMAP) [4].

Although genetic and genomic methods for AMR monitoring are undergoing rapid develop-

ment [5], most resistance screening is still based on phenotypic methods. A critical component

and potential weakness of phenotypic methods is the need for interpretation of measurements

based on inhibitory concentrations or inhibition zones in terms of antimicrobial susceptibility

or resistance. One set of interpretation criteria consists of clinical breakpoints as provided by
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the European Committee on Antimicrobial Susceptibility Testing (EUCAST) or the Clinical &

Laboratory Standards Institute (CLSI) for use in human medicine. Those breakpoints have lim-

ited clinical relevance in veterinary medicine because of the differences in physiology, pharma-

cokinetics and pharmacodynamics between host species. Only a few exceptions exist in the

form of breakpoints that were developed specifically for use in veterinary medicine, such for cef-

tiofur use for treatment of bovine mastitis caused by E. coli or S. aureus [6]. As an alternative to

clinical breakpoints, which are the preferred criteria in clinical microbiology, epidemiological

cut-offs (ECOFFS) can be established, in which Normalized Resistance Interpretation (NRI) of

minimum inhibitory concentrations or inhibition zone diameters (IZD) is used to identify

thresholds to distinguish wild-type (WT) from non-wild type (non-WT) populations [7, 8]. For

clarity, use of the terms “susceptible” and “resistant” is reserved for interpretation based on clin-

ical breakpoints throughout this text, whereas the equivalent terms “WT” and “non-WT” are

used for interpretation of ECOFF data, which increasingly used in epidemiological studies. The

core idea of ECOFFs is that the normal distribution of MIC or IZD values can be used to deter-

mine where to draw the line between WT and non-WT isolates. EUCAST guidelines based on

this methodology exist and tend to split data from human isolates into clear bi- or multimodal

distributions. However, EUCAST recommended cut-offs may cut through the normal distribu-

tion of WT data for animal isolates, as demonstrated for E. coli from wild ungulates [9]. Thus, a

proportion of the WT isolates from animals will be classified as non-WT. The high apparent

prevalence of resistance for E. coli from sheep reported in the UK [10], could potentially be an

artefact of the use of such ECOFFs.

To explore the hypothesis that cut-off values derived predominantly from human bacterial

isolates may result in overestimation of AMR in animal-derived isolates, we assembled collec-

tions of S. aureus and E. coli as exemplars of gram positive and gram negative bacterial species

of major importance to public health. Both bacterial species are also are commonly found in

sheep, whereby S. aureus is a common mastitis pathogen in animals with clinical disease [11]

whilst E. coli is primarily found as gut commensal in healthy animals. Susceptibility data were

collected using disc diffusion testing and interpreted based on three criteria, i.e. clinical break-

points, EUCAST reference values for ECOFF, and sheep-specific ECOFF values calculated

from the data using NRI methodology. The estimated prevalence of AMR was compared

between methods and suggests significant implications for AMR surveillance in livestock spe-

cies, whereby current standard ECOFF methods may overestimate the AMR problem in ani-

mal agriculture.

Material and methods

Sample collection

Samples were collected in Scotland and Norway to obtain sufficiently high numbers of both

bacterial target species. In Scotland, two commercial flocks (flock 1 and 2) and the Moredun

Research Institute (MRI) research flock (flock 3), mostly comprised of commercial cross-

breeds, were selected based on size (at least 50 lactating ewes available for sampling), location

(Lowland farms within 1.5 hrs drive from MRI) and the owner’s willingness to participate.

Scottish flocks were sampled in cross-sectional studies conducted in 2016, in which faecal sam-

ples were collected directly from the rectum from 243 ewes with lambs at foot (54 and 86 ewes

from flocks 1 and 2, respectively, and 103 ewes from the research flock). At the same time,

milk samples were collected from each mammary gland individually after teat ends were

cleaned and disinfected with cotton wool swabs drenched in 70% ethanol. After collection in

sterile containers, all samples were maintained in a mobile cooling box before being processed
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on the same day in the laboratory. The study design was approved by the Moredun Animal

Welfare and Ethical Review Body.

On the Norwegian farm, samples were collected during 2014 to 2017 as part of longitudinal

monitoring of the health of a research flock of 180 Norwegian White Sheep. Milk samples

were collected aseptically from clinical mastitis cases in the first week post-lambing, during

the period of peak lactation (approximately 4 to 6 weeks post-lambing) and at weaning time

(approximately 5 to 6 months post-lambing). Samples of pus, tissue fluid and vaginal dis-

charges from clinical cases (i.e. diseased animals) arising in the flock were collected directly

from affected organs using a sterile swab or by direct aspiration (e.g. arthrocentesis) from both

lambs (under 1 year old) and adult sheep (rams and ewes over 1 year old). Udders from ewes

that had been recorded and treated for mastitis, or those identified with lumpy udders and

mammary abscesses at post-weaning checks were salvaged from the slaughterhouse for stan-

dardised bacteriological sampling, performed at NMBU Sandnes within two hours of slaugh-

ter. For animals that died on-arm, routine necropsy and standardised bacteriological sampling

of the heart, lung, brainstem, spleen, liver and kidneys were performed. Non-invasive milk

sampling on the research flock performed by the named veterinary surgeon was permitted

under Norwegian Animal Welfare (2015) legislation and approved by NMBU Sandnes ethical

committee on use of animals in education and research (29/02/2016).

Bacterial culture and identification

Milk samples collected in Scotland were lightly vortexed and 10 μL was inoculated onto 5%

sheep blood agar (SBA) and MacConkey agar No.3 (Acumedia, Neogen, UK) plates using

calibrated sterile plastic loops. Plates were incubated aerobically for 24 to 48 hours at 37 ˚C.

Samples yielding more than 2 phenotypes of bacteria on primary culture were considered

contaminated. For culture-positive non-contaminated samples, individual colonies were

streaked onto 5% SBA and incubated as above. For faeces samples, approximately one gram

was homogenized in 3 mL of sterile saline solution (0.85%) and 10 μL of the suspension cul-

tured on MacConkey agar No.3 plates. Plates were incubated aerobically for 24 to 48 hours at

37 ˚C. One lactose fermenting colony with E. coli phenotype was picked from each culture-

positive MacConkey plate, and subcultured as described for milk isolates.

Samples from the Norwegian research flock were transported directly to the on-site labora-

tory for immediate processing by standard bacteriology methods, using initial inoculation and

aerobic incubation on blood agar, followed by Gram-staining and limited biochemical testing

such as indole, coagulase and oxidase testing. [12]. S. aureus isolates were obtained from 68

milk (live animal) or udder (post-mortem) samples, and 16 other samples including 15 clinical

samples (6 claw abscesses, 2 joint fluid samples, 4 skin wounds/abscesses, and 3 tail abscesses)

and one post-mortem lung sample. E.coli isolates were obtained from 11 milk or udder sam-

ples (clinical mastitis cases), two clinical samples (urine and caesarean skin wound), and one

post-mortem liver sample (S1 Table). Isolates were frozen at NMBU at -70 ˚C and later sent by

express, chilled transport to MRI for further processing.

At MRI, molecular confirmation of bacterial species identity was conducted on all isolates,

regardless of origin, using species-specific primers for amplification of the nuc gene, which

encodes the thermostable nuclease of S. aureus [13], or the uidA gene encoding the β-glucu-

ronidase enzyme specific for E. coli and Shigella spp. [14]. For DNA-extraction, suspected S.

aureus isolates were plated onto Brain Heart Infusion agar (BD Bacto™, Le Pont de Claix,

France) and incubated aerobically for 24 to 48 hours at 37 ˚C. Five to ten individual colonies

were re-suspended in 50 μL sterile water containing 100 μg/mL of lysostaphin (Sigma-Aldrich,

UK) and incubated at 37 ˚C for 10 min. Next, 200 μL of 100 mM Tris-HCl, pH 8.0, containing
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proteinase K (Sigma-Aldrich, UK) was added for a final concentration of 0.05 mg/mL, fol-

lowed by incubation at 50 ˚C for 10 min. Enzymes were inactivated by incubation at 95 ˚C for

5 min. Lysates were briefly centrifuged at 12,000 × g for 3 min and supernatants stored at -20

˚C. For suspected E. coli isolates, genomic DNA was extracted in the same manner but without

the lysostaphin step. PCR amplification of nuc (for suspected S. aureus) and uidA (for sus-

pected E. coli) was performed in a final volume of 12.5 μL containing GoTaq Green (Promega,

Southampton, UK) and 0.5 μM of each primer using S. aureus ATCC 29213 and the E. coli
ATCC 25922 as positive controls. The amplicons were examined on 1.2% agarose gel stained

with GelRed (Biotium, Fremont, USA).

Antimicrobial susceptibility testing

One hundred and one S. aureus and 103 E. coli isolates (S1 Table) were subjected to antimicro-

bial susceptibility testing (AST), using the Kirby-Bauer disk diffusion method according to

EUCAST guidelines (2018). Briefly, individual colonies of each isolate were collected and sus-

pended in 3 mL of saline solution to a turbidity of 0.5 McFarland and inoculated onto Muel-

ler-Hinton agar (EO LABS, Burnhouse, UK). Antimicrobial agents were added, impregnated

in paper disks (Abtek Biologicals Limited, UK), and plates were incubated aerobically at 35 ± 2

˚C for 18 to 20 h before measuring IZD with a ruler.

For S. aureus, the panel consisted of benzylpenicillin (1 U), cloxacillin (5 μg), ampicillin

(10 μg), amoxicillin-clavulanic acid (20–10 μg), oxacillin (1 μg), ceftiofur (30 μg), cefquinome

(30 μg), cefoxitin (30 μg), erythromycin (15 μg), tilmicosin (15 μg), kanamycin (30 μg), oxytet-

racycline (30 μg), tetracycline (30 μg), sulfamethoxazole-trimethoprim (23.75–1.25 μg), and

enrofloxacin (5 μg). For E. coli, the panel consisted of ampicillin (10 μg), amoxicillin-clavulanic

acid (20–10 μg), aztreonam (30 μg), ceftiofur (30 μg), cefquinome (30 μg), cefotaxime (5 μg),

ceftazidime (10 μg), cefepime (30 μg), cefoxitin (30 μg), kanamycin (30 μg), oxytetracycline

(30 μg), tetracycline (30 μg), sulfamethoxazole-trimethoprim (23.75–1.25 μg), enrofloxacin

(5 μg), and imipenem (10 μg). In addition, E. coli isolates were tested for extended-spectrum

beta-lactamase (ESBL) phenotype using a double-disk diffusion test, which is based on the syn-

ergy between third-generation cephalosporins and clavulanate [15]. The reference strains S.

aureus ATCC 29213 and the E. coli ATCC 25922 were used for quality control.

Data analysis

To differentiate between susceptible or WT and resistant or non-WT isolates, IZD were inter-

preted using three sets of criteria, i.e. clinical breakpoints, standard ECOFFs from EUCAST

and bespoke ECOFFs calculated from the data using NRI methodology. Clinical breakpoints

were taken from EUCAST guidelines when available [16], and from CLSI guidelines if

EUCAST guidelines did not exist, i.e. for S. aureus in combination with amoxicillin-clavulanic

acid, ampicillin, cloxacillin, oxacillin, ceftiofur, tilmicosin and enrofloxacin and, for E. coli in

combination with ceftiofur, cefquinome, kanamycin, tetracycline, and enrofloxacin) [6, 15, 17]

(S2 and S3 Tables). The breakpoint interpretation for tetracycline was also apply to oxytetracy-

cline. For amoxicillin-clavulanic acid, both EUCAST and CLSI clinical breakpoints were con-

sidered because the apparent prevalence of resistance may differ considerably between the

two. Likewise, differences have been described for ECOFF values recommended by EUCAST,

which are largely based on observations from human clinical isolates, and cut-off values that

have been calculated using only data from animals, notably ruminants [9]. Therefore, we used

ECOFFs provided by EUCAST [18], as well as sheep-specific cut-off values that were calcu-

lated from the data using the NRI method. We refer to the sheep-specific values as cut-off val-

ues for wild type (COWT) in the remainder of text, to differentiate them from the ECOFFs
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recommended by EUCAST. Calculation of cut-off values for IZD using the NRI method is

based on the normal distribution of IZDs, which allows for calculation of the mean and stan-

dard deviation. We applied the NRI method to the IZDs that were measured for each combi-

nation of bacterial species and antimicrobial compound using the guidance and spreadsheet

provided for that purpose, and with permission from the patent holder, Bioscand AB, Täby,

Sweden (European patent No. 1,383,913, US Patent No. 7,465,559). The COWT was calculated

as the mean IZD for the calculated normalised distributions of a compound/species combina-

tion minus 2.5 times its standard deviation, as per standard recommendations [8, 19].

Results

Prevalence of resistance based on clinical breakpoints

The reference strains S. aureus ATCC1 29213 and the E. coli ATCC1 25922, which were

included in all susceptibility tests, showed IZD values within the acceptable range for all anti-

microbial agents with available EUCAST criteria. Almost all S. aureus isolates (96.0 to 100%)

were susceptible to the compounds tested based on EUCAST clinical breakpoints (Table 1). Of

Table 1. Prevalence of antimicrobial susceptibility (S) among Staphylococcus aureus and Escherichia coli of ovine origin based on clinical breakpoints, epidemiologi-

cal cut-off values (ECOFF) or normalised resistance interpretation (NRI).

Antimicrobial S. aureus E. coli
S1) (%) EUCAST NRI S (%) EUCAST NRI

ECOFF2) WT3) (%) COWT
4) SD5) WT6) (%) ECOFF WT (%) COWT SD WT (%)

Benzylpenicillin 96.0 26 96.0 25 1.7 97.0 - - - - - -

Amoxicillin-clavulanic acid7) 100.0 - - 35 1.4 88.1 100.0 16 100.0 15 1.3 100.0

Ampicillin 98.0 - - 35 1.5 87.1 80.6 14 80.6 10 2.0 97.1

Cloxacillin 100.0 - - 24 2.1 99.0 - - - - - -

Oxacillin 100.0 - - 19 2.0 97.0 - - - - - -

Aztreonam - - - - - 99.0 26 97.1 23 2.6 99.0

Ceftiofur 99.0 - - 17 2.8 99.0 100.0 - - 19 1.4 100.0

Cefquinome 99.0 - - 23 1.3 96.0 100.0 - - 21 2.1 100.0

Cefotaxime - - - - - - 100.0 21 98.1 20 2.1 98.1

Ceftazidime - - - - - - 99.0 20 99.0 19 1.6 99.0

Cefepime - - - - - - 100.0 28 87.4 26 1.3 98.1

Cefoxitin 100.0 22 100.0 23 1.7 99.0 99.2 17 100.0 20 1.1 98.1

Erythromycin 100.0 21 98.0 21 1.6 98.0 - - - - - -

Tilmicosin 100.0 - - 15 1.9 100.0 - - - - - -

Kanamycin 100.0 - - 14 1.6 100.0 98.1 - - 15 1.4 97.1

Oxytetracycline 97.0 - - 19 1.5 97.0 89.3 - - 15 1.1 87.4

Tetracycline 99.0 22 67.3 19 1.3 99.0 89.3 - - 14 1.3 87.4

Sulfamethoxazole- trimethoprim 100.0 17 100.0 20 2.1 99.2 97.1 21 86.4 21 1.6 86.4

Enrofloxacin 100.0 - - 21 1.9 100.0 100.0 - - 21 2.2 100.0

Imipenem - - - - - - 100.0 24 81.6 21 1.5 100.0

1) Susceptible based on clinical breakpoints.
2)Epidemiological cut-offs values provided by the European Committee on Antimicrobial Susceptibility Testing (EUCAST).
3)Wild type based on ECOFF value provided by EUCAST.
4)Cut-off for wild type (mm) calculated using normalised resistance interpretation (NRI) and inhibition zone diameter data from the current study.
5)SD = standard deviation.
6)Wild type based on COWT value.
7)Clinical laboratory standards institute (CLSI) clinical breakpoint was used for E. coli isolates (Dias et al., 2015).

(-) data no available.

https://doi.org/10.1371/journal.pone.0238708.t001
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the E. coli isolates tested, 80.6% to 100% were susceptible to the compounds evaluated. Antimi-

crobial susceptibility in less than 90% of isolates was observed for ampicillin, oxytetracycline,

and tetracycline (Table 1). If multi-drug resistance is defined as resistance to compounds from

at least three antimicrobial classes [20], two (1.9%) of 103 E. coli had an MDR phenotype, both

from Scotland. One of the isolates showed resistance to ampicillin, (oxy)tetracycline, and kana-

mycin, while the second was resistant to ampicillin, (oxy)tetracycline, and sulfamethoxazole-

trimethoprim. ESBL-producing E. coli or MDR S. aureus were not detected.

Prevalence of resistance based on epidemiological cut-off values (ECOFF)

The distribution of IZDs was unimodal for all compounds in both bacterial species (S2 Table

for S. aureus, S3 Table for E. coli). Standard deviations from the normalised distributions were

well below the recommended threshold of 4 mm [21]. For some compounds, EUCAST-recom-

mended ECOFFs bisected the normal distribution of observed IZD. For S. aureus, this was the

case with IZDs for tetracycline (Fig 1). For E. coli, this was the case with IZDs for imipenem,

which is a carbapenem, and for cefepime, which is a 4th generation cephalosporin (Fig 2).

For S. aureus, EUCAST provided ECOFF guidelines for 5 of 15 tested compounds. The

prevalence of WT phenotype based on ECOFF was high (96.0% to 100%), except for tetracy-

cline, where only 67.3% of sheep isolates were classed as WT (Fig 1, Table 1). NRI-based

COWT values differed from ECOFFs by 0 to 3 mm, whereby NRI-based values could be higher

or lower than EUCAST values (Table 1). Based on COWT values, WT for tetracycline was

observed in 99.0% of the isolates, which matches the prevalence of susceptibility based on clini-

cal breakpoint. For other compounds, 96.0% or more of S. aureus isolates had IZD within the

WT range based on COWT, except for amoxicillin-clavulanic acid and ampicillin (Table 1).

Prevalence of AMR based on clinical breakpoints was the same as or lower than prevalence of

the non-WT phenotype based on ECOFF or COWT, apart from benzylpenicillin, where one

isolate was classed as resistant based on the clinical breakpoint but as WT based on ECOFF

and COWT. No MDR S. aureus was identified using ECOFF or COWT.

For E. coli, EUCAST provided ECOFF guidelines for 9 of 15 tested compounds. The preva-

lence of WT phenotype was variable and ranged from as low as 80.6% for ampicillin to as high

as 100% for amoxicillin-clavulanic acid and cefoxitin (Table 1). With the exception of cefoxi-

tin, NRI-based COWT values were equal to or lower than EUCAST recommended cut-offs i.e.

a narrower inhibition zone was accepted as WT for COWT. As a result, prevalence of the WT

phenotype based on COWT was generally higher than or equal to that based on EUCAST cut-

offs (Table 1). Full agreement between the three methods with regards to antimicrobial suscep-

tibility or WT was observed for only two compounds, i.e. amoxicillin-clavulanic acid (using

CLSI breakpoint) and ceftazidime (100% and 99.0% susceptible or WT, respectively). For

some compounds, e.g. ampicillin, agreement was closer between prevalence based on clinical

breakpoints and ECOFF whereas for other compounds, e.g. cefepime and imipenem, agree-

ment was closer for results based on clinical breakpoints and COWT (Table 1). Based on COWT

values, two E. coli isolates (1.9%) showed a non-WT phenotype against at least three antimi-

crobial classes, both from Scotland. Of these two isolates, one was also considered to be MDR

based on the clinical breakpoints.

Discussion

Antimicrobial susceptibility testing of gram positive and gram negative bacteria isolated from

healthy and clinically affected sheep using three interpretation criteria showed that AMR in

ovine isolates from northern Europe was uncommon. Using clinical breakpoints, only 4.0% of

S. aureus isolates were resistant to benzylpenicillin, which is very low compared to the
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Fig 1. Distribution of inhibition zone diameters for 101 ovine Staphylococcus aureus isolates and those available from the European

Committee on Antimicrobial Susceptibility Testing (EUCAST). Benzylpenicillin (1 U) (a); tetracycline (30 μg) (b); and cefoxitin (30 μg)

(c). Dashed line indicates the epidemiological cut-off values as determined by EUCAST.

https://doi.org/10.1371/journal.pone.0238708.g001
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Fig 2. Distribution of inhibition zone diameters for 103 ovine Escherichia coli isolates and those available from the European

Committee on Antimicrobial Susceptibility Testing (EUCAST). Imipenem (10 μg) (a); cefotaxime (5 μg) (b); and cefepime (30 μg) (c).

Dashed line indicates the epidemiological cut-off values as determined by EUCAST.

https://doi.org/10.1371/journal.pone.0238708.g002
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prevalence of penicillin resistance in international surveillance of S. aureus from other host

species in Europe, including cattle (25% resistance; [22]), dogs (65.2% resistance; [23]) and

people (78% resistance in nasal commensal S. aureus; [24]). Penicillin is among the most

widely used antimicrobials in British sheep flocks [25], and remains the drug of first choice for

bacterial infections in food-producing animals, including sheep, in Norway [26]. Our data pro-

vide no reason to suggest any change to this practice. No resistance to oxacillin and cefoxitin

was observed in our isolates. Oxacillin and cefoxitin are surrogate markers for the detection

of methicillin-resistant S. aureus (MRSA) [27, 28] so our results imply that sheep are not an

important host species for MRSA. Based on data from European Surveillance of Veterinary

Antimicrobial Consumption (ESVAC), both the UK and Norway are among the 5 (out of 31

countries listed) lowest users of antimicrobials in animal production, as expressed in mg per

population corrected unit. For that reason, and because the sampling strategy differed between

Scotland and Norway so that a sufficiently large number of isolates could be obtained for each

bacterial species, comparison of results between the two country was not deemed meaningful.

For E. coli isolates recovered from sheep, prevalence of AMR was rare (<0.1%) to low (1 to

10%) for most antimicrobial agents tested. Moderate levels (10 to 20%) of AMR to ampicillin,

oxytetracycline, tetracycline and sulfamethoxazole-trimethoprim were observed when consid-

ering results based on at least 2 of 3 interpretation criteria. The low levels of AMR were similar

to those reported from Norway before [26, 29] but contrast with data from the UK Veterinary

Antibiotic Resistance and Sales Surveillance report [10], which identified a moderate to very

high prevalence of AMR to different classes of antimicrobial agents (penicillins, aminoglyco-

sides, phenicols, tetracyclines and the combination sulfamethoxazole-trimethoprim) in E. coli
isolates from sheep. The discrepancy in AMR reported here and by VARSS may partly result

from criteria for selection of isolates for susceptibility testing. For example, VARSS predomi-

nantly uses isolates obtained from lambs instead of adult sheep. Bacterial isolates recovered

from young lambs and calves, which are physiologically monogastric animals rather than

ruminants, can show higher levels of AMR than those from older animals [30, 31]. This might

reflect higher exposure to antimicrobial agents in young animals to prevent bacterial neonatal

infections, e.g. infectious arthritis (“joint ill”) [32] or E. coli infection and enterotoxemia

(“watery mouth” or “rattle belly”) [33] in some sheep management systems [34]. Age-depen-

dence of AMR prevalence in E. coli, however, is not necessarily associated with antimicrobial

use and may be related to diet and the gut microbiome [30, 35]. For early detection of AMR,

screening of lambs may be the method of choice. To represent the AMR prevalence in the

national sheep flock, adult animals should be included. As our results were derived from a lim-

ited number of selected farms, which may not be representative of the wider sheep or micro-

bial populations, further cross-sectional and longitudinal studies would be needed to test

whether the proposed association between age and AMR prevalence exists in sheep and

whether AMR in the gastrointestinal microbiota persists as lambs mature. Differences between

clinical and carriage isolates may also need to be considered.

In addition to the selection of animals and isolates for AMR surveillance, the choice of

interpretation criteria has a major impact on the apparent prevalence of resistance. In medical

microbiology and to inform individual treatment decisions, clinical breakpoints are used rou-

tinely. They are threshold concentrations that separate isolates with a high versus low probabil-

ity of treatment success and are often derived from prospective human clinical studies [36].

Such breakpoints are not immediately relevant to non-human isolates. To inform treatment

decisions in animals, ideally clinical breakpoints for animal species/bacteria/drug combina-

tions based on PK/PD data and actual clinical outcomes would be available. As an alternative

approach, wild-type breakpoints or ECOFFs can be derived from testing of large numbers of

isolates [36]. This is also the preferred approach in population level studies, including studies
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of non-clinical isolates [8, 9]. For example, the European Food Safety Authority (EFSA) uses

ECOFFs for interpretation of AMR data from animals and food, which is why we have adopted

this approach for ovine isolates [37]. Semi-subjective determination of ECOFF values is possi-

ble with the Kahlmeter “eye-ball” method, which is a visual interpretation of IZD distributions

[38]. In our study, we used more rigorous statistical methods based on NRI to define sheep-

specific COWT values [8, 39]. ECOFF data are unavailable for many species-drug combina-

tions, which precluded use of EUCAST guidance for close to half of the combinations in our

study, even though common organisms and drugs were considered. Calculation of COWT val-

ues was necessary to interpret the remaining data.

When ECOFF values were available, they were often similar or even identical to COWT val-

ues with some exceptions and important ramifications for apparent AMR prevalence. For S.

aureus, the ECOFF of tetracycline was 3 mm larger than the COWT. Isolates are considered

non-WT when their inhibition zone is narrower than the threshold value, so a larger threshold

value means that more isolates are classed as non-WT. Indeed, almost a third of ovine S. aureus
isolates were classed as non-WT to tetracycline based on ECOFF whereas all but one were con-

sidered WT or susceptible based on the COWT or clinical breakpoint. For this compound, the

choice of interpretation criteria has a major impact on apparent AMR prevalence. For E. coli,
the distribution of sheep-derived IZDs was shifted to the left compared to the EUCAST

reported distribution, i.e. distribution zones were narrower. The same phenomenon has been

reported for wild deer but not for wild birds [9, 40]. It begs the question whether the ruminant

gastrointestinal tract, with its complex fermentation system, activates generic efflux pump

mechanisms that may provide the WT population with enhanced ability to withstand the

action of antimicrobials in the absence of specific acquired resistance mechanisms. The impor-

tance of efflux pumps as a common detoxification mechanism employed by bacteria in the

gastrointestinal intestinal tract of ruminants has been demonstrated [41], as has their physio-

logical role during the anaerobic adaptation of facultatively aerobic bacteria [42]. Follow-up

through in vitro or in silico analysis of ruminant isolates may shed light on the mechanism

underpinning this hypothesis and the phenotypic observations reported here. The observed

shift in IZDs for WT isolates is important because the EUCAST-recommended ECOFFs

bisected the normal distribution of IZDs for cefepime and imipenem, rather than demarcating

the lower boundary of the normal distribution. Cefepime and imipenem belong to the 4th gen-

eration cephalosporins and carabapenems, respectively, which are classed by WHO as highest

priority critically important antimicrobials or critically important antimicrobials [43]. Thus, a

small change in cut-off values has a major impact on the apparent prevalence of resistance to

antimicrobials that are of great importance to human medicine, and hence on the apparent

contribution of the sheep sector to the global AMR problem. The apparent AMR problem

(“wolf”) becomes a non-problem (“sheep”) when clinical breakpoints or bespoke ECOFFs are

used. Our findings suggest that the sheep industry may want to establish bespoke cut-off values

for AMR monitoring in bacterial isolates derived from sheep in order to avoid the use of cut-

offs from human medicine or non-ruminant species. The latter could lead to misclassification

and indicate high apparent AMR rates in ovine bacterial isolates, which may suggest an AMR

problem where one does not actually exist.
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