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Abstract

Somatic copy number alterations (CNA) are common in endometrial serous carcinoma

(ESC). We used the Tumor Cancer Genome Atlas Pan Cancer dataset (TCGA Pan Can) to

explore the impact of somatic CNA and gene expression levels (mRNA) of cancer-related

genes in ESC. Results were correlated with clinico-pathologic parameters such as age of

onset, disease stage, progression-free survival (PFS) and overall survival (OS) (n = 108).

1,449 genes with recurrent somatic CNA were identified, observed in 10% or more tumor

samples. Somatic CNA and mRNA expression levels were highly correlated (r> = 0.6) for

383 genes. Among these, 45 genes were classified in the Tier 1 category of Cancer

Genome Census-Catalogue of Somatic Mutations in Cancer. Eighteen of 45 Tier 1 genes

had highly correlated somatic CNA and mRNA expression levels including ARNT, PIK3CA,

TBLXR1, ASXL1, EIF4A2, HOOK3, IKBKB, KAT6A, TCEA1, KAT6B, ERBB2, BRD4,

KEAP1, PRKACA, DNM2, SMARCA4, AKT2, SS18L1. Our results are in agreement with

previously reported somatic CNA for ERBB2, BRD4 and PIK3C in ESC. In addition, AKT2

(p = 0.002) and KAT6A (p = 0.015) amplifications were more frequent in tumor samples

from younger patients (<60), and CEBPA (p = 0.028) and MYC (p = 0.023) amplifications

were more common with advanced (stage III and IV) disease stage. Patients with tumors

carrying KAT6A and MYC amplifications had shorter PFS and OS. The hazard ratio (HR) of

KAT6A was 2.82 [95 CI 1.12–7.07] for PFS and 3.87 [95 CI 1.28–11.68] for OS. The HR of

MYC was 2.25 [95 CI 1.05–4.81] and 2.62[95 CI 1.07–6.41] for PFS and OS, respectively.

Introduction

Somatic copy number alterations (CNA), including aneuploidy, segmental duplications and

focal aberrations are frequently observed in neoplasia. For critical oncogenes and tumor sup-

pressor genes, changes in gene copy number might result in alteration of gene expression
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and drive the neoplastic process. For example, PTEN [1] and RB1 [2] deletions result in

decreased gene expression of tumor suppressor genes, whereas MET [3], ERBB2 [4] and

MYC [5] amplifications lead to increased gene expression levels. The frequency of somatic

CNAs varies significantly according to the histologic type of neoplasm as well as anatomical

site. For example somatic CNAs are very common in endometrial serous cancers (ESC), but

not in other endometrial cancer (EC) histologic types. As a matter of fact, ESC overlap with

the “copy number (CN) high group” at the molecular level to such an extent; in the current

molecular classification of EC the CN-high group is also known “serous-like” carcinoma [6].

ESC is one of the high-grade EC with a worse clinical outcome compared to low-grade (type

1) EC [7].

We hypothesized that frequently observed somatic CNAs are highly relevant in the patho-

genesis of ESC by changing expression levels of critical cancer-related genes. To address this

hypothesis, we took advantage of the publically available TCGA Pan Can dataset deposited in

cBioPortal (cbioportal.org). The main objective of this study is to identify candidate onco-

genes and tumor suppressor genes, which have been implicated in other human neoplasms,

but not implicated ESC. We pursued this objective by correlating copy number and mRNA

expression levels in patients with ESC using the TCGA Pan Cancer dataset (TCGA Pan Can),

and cross-tabulating the highly correlated genes with known cancer genes (i.e. Tier 1 Cancer

Census Genes for Catalogue of Somatic Mutations in Cancer (CGC-COSMIC) [8]. The sec-

ondary objective of this study is to explore associations of identified Tier 1 CGC-COSMIC

genes with clinic-pathological parameters such as disease stage, age of onset, overall survival

(OS) and progression free survival (PFS), to identify potential biomarkers associated with

these cancers.

Material and methods

TCGA endometrial serous cancer cohort

ESC samples (n = 108) were identified in public TCGA dataset [9] from cBioPortal [10]. Fro-

zen tumor samples with companion normal tissue were collected at diagnosis according to the

consent provided by the relevant institutional review boards of participating institutions.

Patients were selected only if their treatment plan required surgical resection and had received

no prior treatment for their disease. Pathologic diagnoses were made at local laboratories

using formalin-fixed and paraffin-embedded (FFPE) sections. Each frozen, OCT-embedded

tumor was processed centrally by the TCGA and a hematoxylin-eosin stained section was

reviewed by a pathologist to confirm the tumor subtype and grade [6, 9]. For a given patient,

clinical data such as age of onset, stage of tumor, OS and PFS were extracted using the visuali-

zation tools of cBioPortal.

Identification of recurrent somatic CNA

Copy number status of each gene (n = 24,881) in the genome was determined according to the

TCGA analysis methods described elsewhere. Using cBioPortal tools [10], the dataset specify-

ing somatic copy number aberration (CNA) frequency for each gene in 108 patients was

downloaded. Then, 1,449 genes with recurrent somatic CNA (i.e. amplification or deletion in

at least 10% of tumor samples) were identified (S1 Table). GRCh38 coordinates of each identi-

fied gene was obtained from the Galaxy platform [11] (S2 Table). Based on these coordinates,

genomic blocks with recurrent somatic CNAs were determined (Table 1).
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Correlation of gene expression and copy number data for genes with

recurrent somatic CNA

Relative linear copy number values were plotted against mRNA expression z-scores (RNA Seq

V2) in order to determine the impact of somatic CNA on gene expression at the mRNA level,

Pearson correlation coefficients were obtained using the cBioPortal visualization tool. The cut-

off for “high-correlation” was arbitrarily accepted as equal as or more than 0.6 (r> = 0.6).

Identification of cancer relevant genes among genes with recurrent somatic

CNAs

In order to identify cancer relevant genes among the genes with recurrent somatic CNA, we

cross-tabulated these genes with Tier 1 Cancer Gene Census (CGC) genes (n = 576) from the

Catalogue of Somatic Mutations in Cancer (COSMIC) (S3 Table). CGC is an ongoing curation

effort under the auspices of COSMIC to catalogue genes whose mutations have been causally

implicated in cancer. To be classified into Tier 1, a gene must possess a documented activity

relevant to cancer, along with evidence of mutations in cancer which change the activity of the

gene product in a way that promotes oncogenic transformation [8]. From cBioPortal, somatic

CNA and point mutation data were obtained.

Table 1. Recurrent somatic copy number aberrations (CNAs) in endometrial serous carcinoma.

Locus Cytoband GRC38 Coordinates Size (Mb) CNV Tier 1 COSMIC-CGC genes

1 1p34.3-p34.2 chr1:38991243–43623672 4.63 AMP MYCL
2 1p12-p11.2 chr1:119911552–121571888 1.66 AMP

3 1q21.1-q22 chr1:143874742–156429548 12.55 AMP BCL9,MLLT11,ARNTa,TPM3, LMNA,MUC1
4 2q14.1-q14.1 chr2:112773914–113756693 0.98 AMP PAX8
5 3q26.1-q29 chr3:165772902–198222513 32.45 AMP MECOM,PIK3CAa,TBL1XR1a,SOX2, MAP3K13, BCL6, EIF4A2, LPP, TP63
6 5p15.33-p15.33 chr5:1392789–2312201 0.92 AMP

7 5p15.31-p15.2 chr5:9035025–9903824 0.87 AMP LIFR, IL7R
8 5p13.3-p13.3 chr5:31639409–32791724 1.15 AMP

9 5p13.2-p13.1 chr5:35617886–41870689 6.25 AMP

10 8p23.3-p23.2 chr8:208343–4994806 4.79 DEL

11 8p21.3-p21.1 chr8:22275279–27992852 5.72 DEL

12 8p21.1 chr8:41261956–43363185 2.10 AMP HOOK3a,IKBKBa,KAT6Aa

13 8q12.1-q12.1 chr8:53851807–70404238 0.78 AMP NCOA2, TCEA1a

14 8q22.1-q22.3 chr8:94371959–101669726 7.30 AMP

15 8q24.13-q24.31 chr8:124310917–141228574 16.92 AMP MYC, NDRG1
16 10q22.2-q22.3 chr10:74151184–79067448 4.92 AMP KAT6Ba

17 11q13.1-q13.2 chr11:63838927–67410090 3.57 AMP

18 17q12-q21.1 chr17:39461510–40136789 0.68 AMP ERBB2a, CDK12
19 17q25.1-q25.1 chr17:75318075–75825805 0.51 AMP

20 18p11.31-p11.3 chr18:3066806–4455266 1.39 AMP

21 18q11.2-q11.2 chr18:26226882–26657512 0.43 AMP

22 19p13.2-p13.11 chr19:8809575–18323191 9.51 AMP JAK3,BRD4a,DNAJB1,PRKACAa,TPM4,LYL1,CALR,DNM2a,KEAP1a, SMARCA4, a

23 19q11-q13.2 chr19:27790492–40465818 12.68 AMP CEBPA,CCNE1,AKT2
24 20q11.21-q11.23 chr20:31257663–37241623 5.98 AMP ASXLa1
25 20q13.12-q13.2 chr20:44966469–53583097 8.62 AMP SDC4
26 20q13.33-q13.33 chr20:62143719–62762771 0.62 AMP SS18L1a

aThe genes in bold format have correlation coefficient—r >0.6

https://doi.org/10.1371/journal.pone.0238477.t001
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Association of cancer relevant genes with clinic-pathological data

GraphPad Prism (v8.0.0) and Minitab software (v18) were used for statistical analysis. Fisher

exact tests were applied for categorical variables such as somatic CNA, stage of disease and age

of diagnosis. For age, we used 60 years as an arbitrary cut-off since ESC is usually diagnosed at

more advanced ages, typically in the eight decade [12]. The Kaplan-Meier method was used to

estimate PFS and OS at last follow-up date for alive patients with no evidence of progression

for PFS estimation. For OS, just being alive is qualified for censoring. Using the curve compar-

ison analysis module in GraphPad Prism software (v8.0.0), the median PFS differences, hazard

ratios (Mantel-Haentzel) and p-values (Mantel-Cox test) were calculated. p<0.05 was consid-

ered to be statistically significant.

Results

Cohort characteristics

The median patient age was 68 years (range, 45–90). There were 38 patients with stage I, 12

with stage II, 45 with stage III and 13 with stage IV disease. The patients < 60 years of age pre-

sented more often with advanced stage (III and IV) disease compared to older patients

(p = 0.002). More advanced disease stage was associated with shorter PFS (p<0.001) and OS

(p<0.001).

Recurrent somatic CNA in endometrial serous carcinoma

1,449 genes with somatic CNA were observed in at least 10% of tumors (S1 Table) and were

located on 26 genomic segments on chromosomes 1, 2, 3, 5, 8, 10, 11, 17, 18, 19 and 20. The

size of these genomic loci ranged from 0.43 to 32.45 MB (median, 4.10). With the exception of

two segments exhibiting deletion on 8p, spanning 8p23.3 to 8p21.1 (chr8:208343–27992852),

all detected somatic CNAs were amplifications (Table 1).

Impact of recurrent somatic CNA in endometrial serous carcinoma

The 1,449 genes with recurrent somatic CNA were evaluated based on two criteria. The first

criterion was whether the gene copy number and the gene expression was highly correlated

(r> = 0.6), and the second criterion was whether the gene was implicated in cancer (Tier 1

CGC-COSMIC gene). The number of the genes that fulfilled the first (highly correlated) and

second (implicated in cancer) criteria were 383 and 45, respectively. In addition, 18 genes ful-

filled both criteria, as they are highly correlated Tier 1 CGC-COSMIC genes (Fig 1).

These 18 genes were ARNT (r = 0.80), PIK3CA (r = 0.73), TBL1XR1(r = 0.68), ASXL1
(r = 0.68), EIF4A2 (r = 0.64), HOOK3 (r = 0.74), IKBKB (r = 0.72), KAT6A (r = 0.83), TCEA1
(r = 0.71), KAT6B (r = 0.81), ERBB2 (r = 0.66), BRD4 (r = 0.76), PRKACA (r = 0.62), DNM2
(r = 0.62), KEAP1(r = 0.8), SMARCA4 (r = 0.78), AKT2 (r = 0.73), SS18L1 (r = 0.62) (Fig 2A–

2Q).

Eleven of these genes were located on the same genomic segment, such as PIK3CA,

TBLIXR1 and EIF4A2 at 3q26.1-q29; HOOK3, IKBKB and KAT6A at 8p21.1; and BRD4,

PRKACA, DNMA2, KEAP1 and SMARCA4 19p13.2-p13.11 and they were co-amplified

(Table 1; S4 Table).

Mutation spectrum of Tier 1 CGC-COSMIC genes

The most observed aberrations were amplifications (Fig 3) with the mutation rate ranging 11

to 33% of the tumors. Point mutation or fusions were infrequently observed in these tumors

with a notable exception of PIK3CA. PIK3CA was mutated in 37% of tumor samples (S1A Fig,
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and when combined with amplifications, 51% of samples had a PIK3CA abnormality (S1B

Fig). A large majority of these PIK3CA mutations were characterized as Oncogenic/Likely

Oncogenic mutations in OncoKB. Among other genes, rate of point mutations varied between

0.9 to 5%. For 45 genes, fusions involving PAX8 (n = 1), MUC 1 (n = 1), MECOM (n = 2),

MAP3K13 (n = 1), ERBB2 (n = 2), DNM2 (n = 1), KEAP1 (n = 1), SMARCA4 (n = 1), and

AKT2 (n = 1) were found in 11 out of 108 tumors (~11%) (S1A Fig).

Association of Tier 1 CGC-COSMIC gene amplifications with clinico-

pathological parameters

Association with age. The frequency of AKT2 and KAT6A amplifications were much

higher in patients who were younger than 60 years. For AKT2, the frequency of amplifications

for younger patients was 36% (n = 11), whereas this figure was 7% for older patients (n = 97)

(p = 0.002). For KAT6A, younger and older patients had amplification rates of 45% and 15%,

respectively (p = 0.015). There was no association between age and other genes (Table 2).

Association with disease stage. The frequency of CEBPA and MYC amplifications was

much higher in patients with advanced stage disease. For CEBPA, the frequency of amplifica-

tions in patients diagnosed at advanced stage (n = 58) was 21%, whereas it was 6% for patients

Fig 1. Venn diagram of genes with somatic CNA in> = 10 of tumors, Tier 1 CGC-COSMIC genes and highly correlated genes.

https://doi.org/10.1371/journal.pone.0238477.g001
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diagnosed at stage I and II disease (n = 50) (p = 0.028). For MYC, tumor samples obtained

from advanced and early stage diseases had an amplification rate of 33% and 14%, respectively

(p = 0.023). An association with other genes was not observed (Table 2).

Association with PFS and OS. Patients with tumors carrying KAT6A and MYC amplifi-

cations had shorter PFS and OS. For KAT6A, the hazard ratio (HR) for PFS is 2.82 [95 CI

Fig 2. Correlation of gene copy numbers with mRNA expression. A. ARNT, B.PIK3CA, C. TBL1XR1, D.ASXL1, E.EIF4A2, F.HOOK3, G.IKBKB, H. KAT6A, I.

TCEA1, J.KAT6B, K. ERBB2, L.BRD4, M.PRKACA, N.DNM2, O.KEAP1, P.SMARCA4, Q.AKT2, R.SS18L1.

https://doi.org/10.1371/journal.pone.0238477.g002
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Fig 3. Somatic CNA of 45 Tier 1 CGC-COSMIC Genes occurring in the endometrial serous cancers in the TCGA

PanCan dataset (n = 108).

https://doi.org/10.1371/journal.pone.0238477.g003
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Table 2. Summary data on association and correlation for Tier 1 CCG-COSMIC genes.

Genomic

Segment

Tier 1 CGC-COSMIC

genes

Correlation with RNA expression

(r=)

Association with

Stage

Association with

Age

Association with PFS or OS

1p34.3-p34.2 MYCL 0.48 NS NS NS

1q21.1-q22 BCL9 0.46 NS NS NS

1q21.1-q22 MLLT11 0.24 NS NS NS

1q21.1-q22 ARNT 0.80 NS NS NS

1q21.1-q22 TPM3 0.50 NS NS NS

1q21.1-q22 LMNA 0.27 NS NS NS

1q21.1-q22 MUC1 0.27 NS NS NS

2q14.1-q14 PAX8 0.55 NS NS NS

3q26.1-q29 MECOM 0.28 NS NS NS

3q26.1-q29 PIK3CA 0.73 NS NS NS

3q26.1-q29 TBL1XR1 0.68 NS NS NS

3q26.1-q29 SOX2 -0.04 NS NS NS

3q26.1-q29 MAP3K13 0.28 NS NS NS

3q26.1-q29 BCL6 0.18 NS NS NS

3q26.1-q29 EIF4A2 0.64 NS NS NS

3q26.1-q29 LPP 0.23 NS NS NS

3q26.1-q29 TP63 0.03 NS NS NS

3q26.1-q29 LIFR 0.27 NS NS NS

3q26.1-q29 IL7R -0.10 NS NS NS

8p21.3-p21.1 HOOK3 0.74 NS NS NS

8p21.3-p21.1 IBKBB 0.72 NS NS NS

8p21.3-p21.1 KAT6A 0.83 NS p = 0.015 PFS (p = 0.027); OS

(p = 0.016)

8q12.1-q12.1 TCEA1 0.71 NS NS NS

8q12.1-q12.1 NCOA2 0.41 NS NS NS

8q24.13-q24 MYC 0.48 p = 0.023 NS PFS (p = 0.035); OS

(p = 0.033)

8q24.13-q24 NDRG1 0.55 NS NS NS

10q22.2-q22 KAT6B 0.81 NS NS NS

17q12-q21.1 ERBB2 0.66 NS NS NS

17q12-q21.1 CDK12 0.51 NS NS NS

19p13.2-p13.11 JAK3 0.10 NS NS NS

19p13.2-p13.11 BRD4 0.76 NS NS NS

19p13.2-p13.11 DNJAB1 0.55 NS NS NS

19p13.2-p13.11 PRKACA 0.61 NS NS NS

19p13.2-p13.11 TPM4 0.59 NS NS NS

19p13.2-p13.11 LYL1 0.00 NS NS NS

19p13.2-p13.11 CALR 0.18 NS NS NS

19p13.2-p13.11 DNM2 0.62 NS NS NS

19p13.2-p13.11 KEAP1 0.80 NS NS NS

19p13.2-p13.11 SMARCA4 0.78 NS NS NS

19q11-q13.2 CEBPA 0.21 p = 0.028 NS NS

19q11-q13.3 CCNE1 0.39 NS NS NS

19q11-q13.2 AKT2 0.73 NS p = 0.003 NS

20q11.21-q11.23 ASXL1 0.68 NS NS NS

20q13.12-q13.2 SDC4 0.49 NS NS NS

20q13.33-q13.33 SS18L1 0.62 NS NS NS

https://doi.org/10.1371/journal.pone.0238477.t002
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1.12–7.07] (p = 0.027), and the HR for OS was 3.87 [95 CI 1.28–11.68] (p = 0.016) (Fig 4A and

4B). For MYC, the HR for PFS was 2.25 [95 CI 1.05–4.81] (p = 0.035), and the HR for OS was

2.62[95 CI 1.07–6.41] (p = 0.034) (Fig 4C and 4D).

Discussion

The primary objective of this study was to identify candidate oncogenes and tumor suppressor

genes in ESC cases by correlating DNA copy number and mRNA expression in the TCGA

cohort. We identified 18 amplified known oncogenes, which also were overexpressed in ESC.

Our PubMed search of these 18 genes in relation to “endometrial cancer”, “endometrial serous

cancer” and “gynecologic cancers” categorized them into four groups. The first group of genes

were reported previously in ESC pathogenesis. For ERBB2 [13], BRD4 [14] and PIK3CA [15],

our findings are in accord with previously reported findings on ESC suggesting overexpression

due to amplification. The second group of genes has been implicated in EC, but not in the

serous histologic type. These include IKBKB [16, 17], KEAP1 [18, 19], AKT2 [20, 21] and

SMARCA4 [22]. The third group of genes are ARNT [23], KAT6B [24], DNM2 [25] and ASXL1
[26]. These genes have been reported to be associated with other gynecological cancers, but

not in endometrial cancers. To the best of our knowledge, TBL1XR1, EIF4A2, HOOK3,

KAT6A, TCEA1, PRKACA, and SS18L1 belong to a group of genes that have never been impli-

cated in any gynecological cancers. Point mutation or fusions of the amplified genes were not

frequently observed in these tumors, with a notable exception of PIK3CA. Point mutations

and amplifications of PIK3CA were observed in approximately half of the tumor samples.

Fig 4. Comparison of survival curves A. KAT6A progression-free survival Amp versus. No-AMP; B. KAT6A overall survival Amp versus. no-AMP; C. MYC
progression-free survival Amp versus. No-AMP; D. MYC overall survival Amp vs. no-AMP.

https://doi.org/10.1371/journal.pone.0238477.g004
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The secondary objective of this study was to explore potential associations of identified can-

cer genes with clinic-pathological parameters. For this purpose, association of several genes at

three recurrent somatic CNA, at 8p21.3, 8q24.13 and 19q11-q13.2, is worth mentioning. The

2.1 Mb recurrent somatic CNA at 8p21.1 (chr8:41261956–43363185) contains three Tier 1

CGC-COSMIC genes HOOK3, IBKB and [25] KAT6A. Expression of all three genes was highly

correlated with their copy numbers. No associations with clinic-pathologic parameters were

noted for HOOK3 or IKBKB, but KAT6A amplification was associated with shorter PFS and

OS and earlier age of onset of disease. KAT6A has never been implicated in gynecological

malignancies, and its role is unknown in ESC. KAT6A is a member of the histone lysine acetyl-

transferase (KATs) family, also known as monocytic leukemia zinc finger protein (MOZ).

KAT6A has an important role in the regulation of chromatin organization and function.

Translocations involving KAT6A (and KAT6B) is are identified in acute myeloid leukemia

[27]. In an animal study, inhibitors of KAT6A/B induced senescence and arrest in lymphoma

growth [28]. Even partial blockage of KAT6A reduced proliferation of myc-induced lym-

phoma and leukemia [29]. Our results indicate KAT6A is one of the candidate genes for fur-

ther evaluation in ESC pathogenesis.

The 16.92 MB recurrent somatic CNA at 8q24.13-q24.31 (chr8:41261956–43363185) con-

tains two Tier 1 CGC-COSMIC genes, MYC and NDRG1. Neither MYC (r = 0.48) nor NDRG1
(r = 0.55) expression was highly correlated with their copy numbers. However, amplification

of MYC was associated with higher disease stage and poorer OS and PFS rates. MYC amplifica-

tion in EC has been reported in other studies [30, 31]. In agreement with our results, MYC
amplification along with HER-2/neu and cyclin E high protein expression have been associ-

ated with tumor progression, higher tumor grade and deep myometrial invasion in the litera-

ture [32]. Although MYC copy number and mRNA expression levels were not highly

correlated, PVT1 was co-amplified with MYC (p<0.001) (Fig 5) in 25% of the cases, and had a

strong correlation with gene expression (r = 0.60). PVT1 is not a CGC-COSMIC gene. but it

encodes a long non-coding RNA with oncogenic properties whose amplification and overex-

pression have been implicated in several cancers including breast and ovarian carcinomas

[33]. Therefore, PVT1, in conjunction with or instead of MYC might be the cancer driver gene

in this setting.

The 12.16 MB recurrent somatic CNA at 19q11-13.2 (chr8:41261956–43363185) contains

three Tier 1 CGC-COSMIC genes CEBPA, CCNE1, AKT2. Expression of AKT2 was highly cor-

related with its copy number (r = 0.73), whereas this correlation was weaker for CEBPA
(r = 0.23) and CCNE1(r = 0.39). AKT2 amplification was associated with younger age of dis-

ease onset.AKT2 belongs to a family of three serine/threonine-protein kinases called the AKT

kinases (encoded by AKT1, AKT2 and AKT3), which regulate cell proliferation, cell survival,

growth and angiogenesis. Among all three genes, amplification and overexpression of AKT2
was demonstrated in many cancers including EC.AKT2 was associated with cancer cell inva-

sion, metastasis, and survival [34]. A second amplified gene at the same locus was CEBP in our

analysis. Its amplification was also associated with more advanced disease stage. CEBPA
expression is highly expressed in normal endometrial tissues and is not expressed in clinical

endometrial cancer samples [35]. DNA hypermethylation of the upstream CEBPA promoter

region is responsible for very low CEBPA expression in lung and endometrial cancers [36].

Decreased expression of CEBPA by posttranscriptional regulation was also shown in myeloid

leukemia [32]. Therefore, CEBPA does not appear to be a likely candidate driver gene in ESC.

Lastly, CCNE1 amplification was one of the previously reported [37–39] genes in EC, and we

also identified CCNE1 amplification in serous-like cancers of TGCA samples. However, we

did not detect a strong correlation (r = 0.39) between copy number and mRNA expression
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Fig 5. Somatic CNA of 47 genes in the 16.92 MB recurrent somatic CNA genomic segment chr8:124310917–141228574 at 8q24.13-q24.3

occurring in the endometrial serous cancers of the TCGA PanCan dataset (n = 108).

https://doi.org/10.1371/journal.pone.0238477.g005
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levels for this gene. It is plausible that AKT2 rather than CCNE1 or CEBPA in this dataset is the

driver of the tumor. More detailed studies are required for this group of genes at this locus.

There are several limitations of this study. First, this is a retrospective analysis of a multi-

center study and the obtained survival data in regard to PFS and OS are not derived from a

randomized clinical trial, or even the clinical practice of a single center. Therefore some het-

erogeneity is expected. A second limitation is regarding the calls for somatic CNA. GISTIC

[40] is the standard algorithm to call somatic CNA in the TCGA studies using Affymetrix data,

however other algorithms like Hidden Markov Models(HMM) [41] and Circular Binary Seg-

mentation (CBS) [42] are widely used in commercial software applied in clinical practice. For

the purpose of this study, we accepted TCGA calls at their face value. A third limitation of is

the arbitrary selection of a cut-off for Pearson coefficient (r => = 0.6). However, this approach

seems adequately sensitive to identify ERBB2 [13], BRD4 [14] and PIK3CA [15], in agreement

with previously generated data. A fourth limitation is using CCG-COSMIC Tier 1 genes as the

source for “cancer genes”. There are other initiatives for curation of cancer genes, such as

CIViC [43], myCancerGenome [44] or OnkoKB [45], but we believe CGC-COSMIC is a repu-

table dataset. A fifth limitation is using mRNA levels as a marker of gene expression. Obvi-

ously, protein levels from reverse phase protein arrays (RPPA) and immunohistochemistry

studies would be ideal, but these data are not available for EC in the TCGA dataset. Finally, the

major limitation of this study is the analysis being performed only on the TCGA dataset.

Although ESC collection (n = 108) in the TCGA Pan Cancer dataset is the largest known

cohort with clinical and genomics data on these tumors, we are aware that in an ideal situation,

our findings should be replicated in an independent study group. Unfortunately, the rarity of

the ESC, precluded the prospective collection of same of higher number of tumors with rele-

vant clinical information for the purposes of this study.

In conclusion, despite the aforementioned limitations, our analysis of ESC in TCGA sam-

ples identified several novel candidate genes which may be important in the ESC pathogenesis.

KAT6A is among the most interesting and novel candidate; amplification correlated with

increased gene expression and was associated with low PFS and OS. The results of this study

also reaffirm the previously known clinic-pathological associations for loci such as 8q24and

19q13-q11. More research is warranted to determine the impact of gene copy number changes

in the pathogenesis of ESC.
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