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Abstract

In the field of fluorescence microscopy, there is continued demand for dynamic technologies

that can exploit the complete information from every pixel of an image. One imaging tech-

nique with proven ability for yielding additional information from fluorescence imaging is

Fluorescence Lifetime Imaging Microscopy (FLIM). FLIM allows for the measurement of

how long a fluorophore stays in an excited energy state, and this measurement is affected

by changes in its chemical microenvironment, such as proximity to other fluorophores, pH,

and hydrophobic regions. This ability to provide information about the microenvironment

has made FLIM a powerful tool for cellular imaging studies ranging from metabolic measure-

ment to measuring distances between proteins. The increased use of FLIM has necessi-

tated the development of computational tools for integrating FLIM analysis with image and

data processing. To address this need, we have created FLIMJ, an ImageJ plugin and toolkit

that allows for easy use and development of extensible image analysis workflows with FLIM

data. Built on the FLIMLib decay curve fitting library and the ImageJ Ops framework, FLIMJ

offers FLIM fitting routines with seamless integration with many other ImageJ components,

and the ability to be extended to create complex FLIM analysis workflows. Building on Ima-

geJ Ops also enables FLIMJ’s routines to be used with Jupyter notebooks and integrate nat-

urally with science-friendly programming in, e.g., Python and Groovy. We show the

extensibility of FLIMJ in two analysis scenarios: lifetime-based image segmentation and

image colocalization. We also validate the fitting routines by comparing them against indus-

try FLIM analysis standards.

Introduction

In the last thirty years, numerous advanced biological imaging techniques have allowed for the

interrogation of biological phenomena at cellular and subcellular resolution. One of these
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powerful techniques is modern fluorescence microscopy, empowered by key inventions such

as the laser scanning microscope and the use of fluorescent proteins. Among the range of

modalities, Fluorescence Lifetime Imaging Microscopy (FLIM) has been of particular interest

in molecular imaging diagnostics due to its ability to probe the cellular microenvironment,

sensitivity to changes in molecular conformations, and utility in interpreting phenomena such

as Förster Resonance Energy Transfer (FRET) and physiological states including pH and

hydrophobicity. FLIM is now widely used in a variety of cell imaging applications, from mea-

suring the metabolic state of differentiating stem cells [1] and intrinsic signatures of cancer

cells [2] to measuring changes in lipid rafts [3] and FRET of signaling events in cell division

[4]. FLIM is available in two primary modes of operation, time-domain [5] and frequency

domain [6], but also is compatible with a number of different microscopy configurations,

including wide-field [7], confocal [8], spinning disc [9], and multiphoton [10] microscopy.

Several research groups have demonstrated super-resolution FLIM [11] and medical applica-

tions of FLIM, including ophthalmology and endoscopy [12]. These emerging applications of

FLIM continuously push further the innovation of FLIM technology including faster electron-

ics and more sensitive detection. Despite these advances in biological applications and instru-

mentation, there has been a surprising lack in corresponding development in image

informatics tools to directly support the FLIM imaging and analysis. Specifically, as a quantita-

tive technique that generates image datasets, FLIM has the inherent need for powerful down-

stream image analysis software to interpret the results.

While more work is needed, many recent advances in FLIM have largely been enabled by

improved computation and software. Advanced software tools have not only allowed for FLIM

electronics to be robustly controlled and capture short lifetimes, but to do so rapidly so that FLIM

images in 3D (space) and 4D (space and time, or space and spectral) can be collected [13]. Curve

fitting algorithms have been developed that allow for robust fitting of two or more components.

Several companies have made commercial packages for FLIM analysis, but these are closed source

tools that are not transparent in their analyses and typically only support their own file formats.

This makes the sharing of approaches and FLIM data difficult while also limiting the usage of the

features supported by the software. In recognition of the need for more transparent and custom-

izable methods for FLIM analysis, there are new developments for turnkey open analysis FLIM

software tools such as FLIMfit from Paul French’s group [14]. However, most of these software

packages are not designed with the rationale that FLIM results should be treated as images that

can be segmented, statistically analyzed, or learned by upcoming newer machine learning algo-

rithms. The separation of FLIM from other image analysis workflows has placed difficulty for

biologists who would otherwise benefit from an easier image-based integration of FLIM.

To summarize, the scientific community would benefit from a more complete informatics

approach addressing three specific and currently unmet needs:

1. an open and extensible FLIM algorithm library that supports the most popular FLIM file

formats and can be utilized and modified easily by a developer;

2. a turnkey FLIM analysis tool that uses the library and yet still can be used easily and directly

by the bench biologist; and

3. the integration of FLIM analysis with versatile microscopy image analysis.

To address the first two needs, Barber et al. developed the Time-Resolved Imaging version

2 (TRI2), a freely available closed source FLIM analysis application equipped with a LabWin-

dows graphical user interface (GUI) and basic image analysis capabilities [15]. TRI2 was

released to selected researchers in 2004, and from it, the core fitting algorithms were extracted

to form the open-source FLIMLib library.
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The remaining need can be fulfilled by exploiting established open-source image analysis

platforms. A great platform to integrate FLIM analysis is the open-source ImageJ [16] and its

distribution for the life sciences, Fiji [17]. ImageJ has long enjoyed use and adaptation by

experimental biologists. However, FLIM workflows have largely been segregated from ImageJ

due to a lack of the necessary FLIM analysis functionality. Fortunately, the recent development

of the ImageJ Ops framework [18] has laid a solid foundation for such a FLIM analysis toolbox.

As a backbone of the next-generation ImageJ2 that powers Fiji, the ImageJ Ops framework

supports the growth of ImageJ’s image processing and analysis power. In addition to offering

hundreds of easy-to-use, general and efficient image processing operations such as segmenta-

tion algorithms, statistics, and colocalization methods across hundreds of file types, this frame-

work provides programming interfaces for developers to extend the library. For example, the

Ops-based plugins naturally cater to the needs of both bench biologists and advanced develop-

ers by allowing the former to easily use the Ops and the latter to build user-tailored applica-

tions for their own needs. Together with the seamless connections between Ops, the ImageJ

Ops framework creates a suitable environment for developing modular, extensible image pro-

cessing workflow components.

There were previous efforts by our group to integrate FLIM analysis into ImageJ, known as

the SLIM Curve (Spectral Lifetime Imaging Microscopy) plugin for ImageJ, which provided a

graphical interface to FLIMLib. The SLIM Curve plugin was able to integrate FLIMLib’s full

fitting functionalities with ImageJ while being accessible to bench biologists. However, the

SLIM Curve plugin was built on legacy ImageJ 1.x data structures, which limited its extensibil-

ity and modularity compared to the ImageJ2 infrastructure.

We now have built on previous efforts in lifetime analysis [15, 19] and spectral lifetime anal-

ysis [20] to build an ImageJ-centric toolkit, FLIMJ, that directly addresses these three needs. A

schematic representation of the FLIMJ framework is presented in Fig 1. FLIMJ is an interna-

tional collaboration between software developers and microscopists at the UCL Cancer Insti-

tute, London, UK (and formerly at the Gray Institute for Radiation Oncology and Biology at

the University of Oxford, UK) and the UW-Madison Laboratory for Optical and Computa-

tional Instrumentation (LOCI) in the USA that leverages several existing software projects.

When designing this FLIM analysis system, we recognized that current methods, such as those

in MATLAB, may be difficult for the biological community to use. Further, many of these

methods are also not attractive for developers because much of the published code, such as

Numerical Recipes [21], may have restrictive licenses and a steep learning curve. We sought to

develop a toolkit that would complement current commercial efforts and in fact, directly sup-

port the image acquisition and image processing formats of these systems. We decided to

focus our initial efforts on time-resolved FLIM data collected from the PicoQuant and Becker

& Hickl hardware systems, but the toolkit is designed to be flexible enough to support fre-

quency or spectral domain analyses. Currently, spectral support is minimal, but this will be

augmented as the toolkit evolves. This flexibility is supported by the use of the ImgLib2 (http://

imglib2.net/) data container as widely adopted by almost all of the ImageJ plugins, which

allows for the support of data of, in principle, unlimited dimensions and will handle FLIM

data that includes additional channels of spectra and polarization.

As described below, the FLIMJ toolkit can either be invoked as an ImageJ Op or used from

the graphical user interface (GUI) equipped plugin. One powerful advantage ImageJ can offer

in FLIM analysis is segmentation. Looking at the lifetime distribution of a specific manually

defined ROI can often be cumbersome or not even possible with commercially available FLIM

analysis software packages. ImageJ not only has conventional manual segmentation but in

addition, supports machine learning-based classification techniques [22], which can be

exploited to use a training set to segment images in batch processing automatically. A number
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of other ImageJ features could be utilized with FLIM data, including scripting, 3D visualiza-

tion, and feature tracking, as well as a myriad of imaging file formats that can be supported

through the use of the SCIFIO (http://scif.io/) infrastructures [23] to support a range of open

and proprietary FLIM file formats. To our knowledge, this is the first FLIM analysis system

that offers this range of flexibility and functionality.

The approach to use a core open-source software library brings the usual advantages of

open-source that enable community contribution to and verification of the underlying code. It

also enables the release of a ‘polished’ graphical-user-interface-driven plugin and allows use in

other environments. In the following section, a description of the toolkit is given, followed by

how it can be extended for some more-advanced uses.

Methods

FLIMJ provides access to a variety of FLIM analysis techniques including standard nonlinear

least-squares fitting in the form of the Levenberg-Marquardt (LM) algorithm and more

advanced algorithms such as maximum likelihood, global, and Bayesian analysis that has been

optimized for FLIM [15], as well as simpler methods such as the rapid lifetime determination

(RLD) by integration [24], and frequency domain analysis via the method of phasors [25, 26].

In particular, the toolkit has the ability to account for an instrument response function (IRF,

Fig 1. Relationships between components of FLIMJ and ImageJ2. FLIMJ Ops depends on FLIMLib and communicates with other supporting ops

(mathematical, statistical, and input/output tools) through the Ops framework. This schematic shows two different ways to access FLIMLib. The scripting

path goes through the ops-framework to the FLIMJ-Ops library, and the GUI path goes through the FLIMJ-UI to FLIMJ-Ops.

https://doi.org/10.1371/journal.pone.0238327.g001
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prompt, or excitation function) that distorts the pure exponential decay. Through iterative

reconvolution, the LM algorithm extracts the true lifetime estimate from IRF distorted signals.

The addition of new methods is also allowed and can inherit the standard library code inter-

face as exemplified by the recently incorporated Bayesian algorithms [27]. Similar to any other

open or proprietary FLIM analysis software, FLIMJ uses FLIM datasets of any accessible for-

mat (supported by Bio-Formats [28]) and outputs the results as images for further examina-

tion. Using ImageJ’s high-dimensional image data structure for both the input and output,

FLIMJ ensures maximal compatibility with other parts of ImageJ, which can provide powerful

preprocessing and post-analysis for the FLIM workflow (see Results).

The toolkit employs a modular design and comprises three major components: FLIMLib,

FLIMJ Ops, and FLIMJ-UI. FLIMLib is the underlying library that contains an efficient C

implementation of the algorithms. Based on the ImageJ Ops framework, FLIMJ Ops imple-

ments adapter ops for each of the algorithms in Java to dispatch the input data, invoke the cor-

responding C routines in FLIMLib, and collect the results. While FLIMJ Ops, together with

the underlying FLIMLib, deliver core functionality programmatically, FLIMJ-UI greatly

improves the accessibility for bench biologists by providing an intuitive GUI based on the

JavaFX framework to allow for the visualization and fine-tuning of the fit. In the rest of the sec-

tion, we present a detailed description of each of the components.

FLIMLib

FLIMLib is a cross-platform compatible library written in ANSI C with a Java API extension.

With help from the current Maven-CMake building mechanism, the library can be compiled to

run as a native executable on Linux, Windows, or macOS. As the weight-lifting component of

FLIMJ, FLIMLib is equipped with a Java Native Interface (JNI) wrapper created by the SWIG

framework (http://swig.org/), which offers efficient type conversion and data transfer between

C and Java applications. However, more connectors can be added to make the library accessible

to many high-level programmers using Python, MATLAB, C++, and C#, to name a few. Besides

integrations with other languages, the library can also be compiled into a standalone command-

line program with the intention that user interaction with the library could be in several forms

according to the user’s choice. That is, the interaction could be through a graphical user inter-

face such as with TRI2 or ImageJ, or could be through the command line in a scriptable form,

or could be via a third-party framework such as Python (http://www.python.org), MATLAB

(www.mathworks.com) or R (http://www.r-project.org/). Full details on FLIMLib, including

downloads, can be found on the project web site at https://flimlib.github.io.

The following fitting and analysis methods are currently present in the open-source library

for lifetime data:

• Rapid Lifetime Determination (RLD): A fast computation method based on three integrals to

determine a single average lifetime [24], including a variant that accounts for the IRF [24, 29].

• Levenberg-Marquardt (LM) Non-Linear Least Squares Fitting: A classical LM algorithm

[30], the performance of which is modified by the noise model. Multi-exponential and

stretched exponential analyses are built-in, others can be added, as are parameter fixing and

restraining. There are variants with and without an IRF. Parameter error estimates are

returned based on the fitting alpha matrix [21]. Possible noise models include Maximum

Likelihood Estimation: Poisson noise model [31] and Gaussian: Variance for Gaussian dis-

tribution (Least-squares fitting). These statistical noise models used here were described in

detail in Rowley’s work [27].
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◦Maximum Likelihood Estimation: This variant of the LM algorithm is accessed by using a

specific noise model. Several noise models can be chosen to influence the LM optimiza-

tion via the chi-squared (χ2) parameter. The models are a) ‘Constant’—every data point

is assumed to have the same supplied variance. b) ‘Given’—every data point can have an

individual variance, given via a data array. c) ‘Gaussian’—Variance for Gaussian distribu-

tion is used at all data points. d) ‘Poisson’—Variance for Gaussian distribution is used

with a lower limit of 15, this being the point where the Gaussian approximation begins to

break down with Poissonian data. e) ‘MLE’—Maximum likelihood estimation through

the use of the Poisson equation [31].

• Global Analysis: In some biological experiments, it is extremely advantageous to analyze

data from a whole image or a series of images simultaneously to determine certain parame-

ters with a high accuracy yet allow other parameters to remain variable at the pixel level to

capture spatial variations. In this so-called ‘global analysis,’ some parameters can be globally

determined while others remain local [32, 33]. This method is particularly useful when a bio-

sensor based on FRET is in use [34], which usually exists in either an activated or deactivated

state that is represented by different measured lifetimes by FLIM. Thus, these characteristic

lifetimes can be determined globally, whilst the determination of the fraction of activated

molecules can be determined locally [15]. The library has built-in optimized functions for

this type of analysis [19], that offer fast convergence and built-in optimization of initial

parameter estimates. Methods for global analysis involving other generic functions (e.g., an

exponential rise or non-exponential functions) are also included in the library.

• Phasor: Transformation to phasor space for the calculation of a single average lifetime and

graphical multi-exponential analysis [26].

• Bayesian Inference: Lifetime estimation based on Bayesian inference offers higher precision

and stability when faced with data with low photon counts (low signal-to-noise ratio). This

algorithm acts by combining evidence from the photon arrival times to produce robust esti-

mates of lifetimes and the potential errors in those estimates. In in-vitro experiments, it was

found that the precision was increased by a factor of two compared to LM fitting, or acquisi-

tion time could be reduced by a factor of two for an equivalent precision [27]. The algorithms

in the library can be used to estimate the IRF and exponential decay simultaneously or can be

used to perform model selection between mono- and bi-exponential fitting models.

FLIMJ Ops

FLIMJ Ops is a plugin built upon the ImageJ Ops framework [18, 35] that connects FLIMLib

and the ImageJ ecosystem. Based on the ImageJ Ops template, the plugin adapts the single-

transient RLD, LMA, Global, Bayesian, and phasor analysis functionalities from FLIMLib into

dataset-level fitting ops accessible from ImageJ. With help from the ImageJ Ops framework,

FLIMJ Ops provides a concise yet flexible programmatic interface that can be easily included

in a scripting workflow (see Results).

Ops API

Conforming to the organization convention of ImageJ Ops, the fitting ops are contained in

the flim namespace. Specifically, by calling flim.fit� with � being RLD, LMA, Global, Bayes

or Phasor, the user performs the corresponding analysis implemented by FLIMLib over the

dataset on each individual pixel. While fully preserving FLIMLib’s granularity of control
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over fitting parameters such as noise model, initial estimation, and IRF, the Ops API pro-

vides support for dataset-level preprocessing operations, including pixel binning and ROI

cropping. To optimize for the ease of use and prevent the need for a verbose argument list,

some of the op arguments are marked as optional (required = false) at definition so that the

programmer can ignore them in op calls. Upon invocation by name, the ImageJ Ops frame-

work automatically inspects the number and types of arguments passed in, matches the

appropriate fitting op, and completes the argument list by assigning sensible default values

to optional parameters.

FLIM dataset analysis tasks greatly benefit from the parallelized fitting of individual pixels if

they can be analyzed independently. This paradigm is employed by TRI2 and SPCImage by

leveraging either the central processing unit (CPU) multithreading or graphics processing unit

(GPU) acceleration. However, in terms of portability, CPU multithreading is considered more

favorable. So far, all fitting ops in FLIMJ Ops, except for the global analysis op, by default run

on multiple CPU threads in parallel. The parallelization relies on the ImageJ ChunkerOp util-

ity for dispatching the workload.

FLIMJ-UI

Oftentimes, it may be desirable for analytical software to integrate tools for visualizing results

and to allow fine-tuning of the configurations. This is especially true for FLIM applications since

the fitting results are usually sensitive to the settings, and manual setting of parameters such as

initial values and decay interval range is required to obtain the optimal fit. The FLIMJ-UI is an

ImageJ plugin created for such needs. Based on the SciJava Command framework, the plugin

invokes FLIMJ Ops to carry out the computation and displays the fitted parameters alongside

the decay curve with a JavaFX GUI. Like any of the ImageJ Ops, the plugin can be started

through scripting, or the user may launch it from Fiji during an image analysis workflow.

Notebooks for FLIM analysis

Notebooks are scientific programming tools that bind the processing pipeline (codes) with the

input and output assisted with detailed comments using markdown-style notes. Experiments

and Image datasets can now be associated with processing routines pointing out dependencies

and programming environments used for extracting results. Currently, notebooks are available

to most scientific languages, including Mathematica, MATLAB, Python, R, Julia, Groovy, and

others under tag names of Jupyter, BeakerX, and Zeglin notebooks. We supplement the FLIMJ

Ops with a Groovy and Python notebook that can help a beginner to use fitting FLIM data in

an interactive and data-analysis friendly way. Two example demo notebooks are provided with

the FLIMJ Ops repository: 1) a groovy notebook running on the BeakerX kernel that accesses

ImageJ ops directly, 2) a python Jupyter notebook that accesses ImageJ ops through the PyIma-

geJ interface to invoke FLIMJ ops.

Results

In this section, we demonstrate FLIMJ workflow and validate the results using separate soft-

ware and simulated data. Two use-case scenarios are presented for image-segmentation and

image-colocalization. a) Segmentation: FRET efficiency calculation of segmented tumorous

tissue, b) colocalization of NAD(P)H, and antibody distribution for microglia. FLIMJ is shown

to collaborate seamlessly and performantly with the central components of each workflow, as

well as to have the potential to be integrated with more complex ones.

PLOS ONE Open-source ImageJ toolkit for fluorescence lifetime image data analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0238327 December 30, 2020 7 / 18

https://doi.org/10.1371/journal.pone.0238327


Use case I: Segmentation

This use case is based on the FLIMJ plugin for ImageJ, and relates to linking fluorescence life-

time processing to other advanced image processing plugins within ImageJ to accurately mea-

sure protein dimer information in cancer tissue [36]. Many cancers are driven by the

dimerization of the members of the HER/ErbB protein family (EGFR, HER2, HER3 etc.) at the

cell surface. This discovery has led to the invention of targeted therapies that specifically dis-

rupt the ability of these proteins to dimerize, and with some success; e.g., a monoclonal anti-

body for EGFR, cetuximab, is now used alongside chemotherapy for certain colorectal and

head & neck tumors, and trastuzumab is used to target HER2 in some breast cancers [37]. We

have recently published the use of FLIM/FRET to detect HER family dimerization in archived

patient tissue from breast and colorectal cancer studies and clinical trials [36, 37] and correlate

this with the response to targeted treatment.

One challenging aspect of these measurements in tissue is the need to segment the tumor

tissue from surrounding stroma and other normal tissue components. This can be achieved

through multi-exponential lifetime filtering [38], but it is often better to use independent

information provided by the tissue morphology provided by imaging to segment the tumor. In

ImageJ, we have created a pipeline that uses trainable Weka segmentation [22] on the intensity

image in parallel to FLIMJ to provide tumor segmented lifetime statistics. These results from

two serial sections, stained with the FRET donor and acceptor, and donor alone as a control,

provide a FRET measure of protein dimerization. Additionally, training can also be done on

lifetime images post-processing to help identify dimmer species. Fig 2 shows representative

sections of breast cancer tissue from the METABRIC study [37] and calculated FRET scores of

HER2-HER3 dimerization.

Samples were imaged on a customized “open” microscope automated FLIM system [38].

Time-domain fluorescence lifetime images were acquired via time-correlated single-photon

counting (TCSPC) at a resolution of 256 by 256 pixels, with 256-time bins and 100 frames

accumulated over 300 seconds, via excitation and emission filters suitable for the detection of

Alexa546 fluorescence (Excitation filter: Semrock FF01-540/15-25; Beam Splitter: Edmund

48NT-392 30R/70T; Emission filter: Semrock FF01-593/40-25). For technical convenience,

those FLIM images were acquired through the emission channel of a UV filter cube (Long pass

emission filter > 420 nm).

The pipeline for Use Case 1 can all be performed using the graphical user interface as follows.

Total FLIM intensity images were created using the Z-Project function and these were used to

train the Weka Trainable Segmentation plugin. The Weka Apply Classifier function then cre-

ated segmented images of tumour areas which could be thresholded, and made into a mask and

an ImageJ selection (Threshold, Create Mask and Create Selection functions). In parallel the

FLIM image was analysed in the FLIMJ plugin using a mono-exponential LMA model. The

export function from FLIMJ created a Tau image onto which the selection from the Weka out-

put was applied (Restore Selection function). The Measure function was used to create the

mean lifetime for the tumour area and images for display were created by applying the mask to

the Tau image (Image Calculator min value between Tau and Mask). Once the Weka segmenta-

tion is trained, all these functions can also be scripted for automated processing.

Use case II: Colocalization

This use case is based on the Fiji ROI colocalization plugin and links to fluorescence lifetime

processing of autofluorescence images of microglia. Previously we and others have demon-

strated the potential applicability of NAD(P)H FLIM in differentiating microglia functional

state [39–41] and computational approaches to distinguish microglia cells [42]. Based on our
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findings in the previous works, we expect that the hybrid method allowing lifetime estimation

from raw decay data and subsequent colocalization analysis can be helpful in determining the

effectiveness of FLIM based approaches in the identification of a specific cell type. The chal-

lenge lies in developing post-processing algorithms that yield maximum overlap between life-

time images generated from the endogenous signal and ground-truth images from the

exogenous antibody fluorescence signal. To properly evaluate microglia identification with

endogenous NADH signal [43], colocalization analysis can be of great benefit to quantitatively

analyze the overlapping areas. Besides, there is concern that when GFP is used as a marker for

cellular visualization and the NADH channel is used for lifetime analysis, there is a GFP signal

bleed through to the NADH channel, which can affect lifetime analysis [44]. Colocalization

analysis can help us identify pixels with higher GFP bleed through [45] and recalibrate the

analysis. Fortunately, ImageJ includes the colocalization analysis plugin coloc-2, which is a

great candidate for our use case that can be used in conjunction with lifetime analysis.

Fig 2. A) Breast cancer tissues from 107 patients METABRIC study were stained with antibodies: anti-HER3-IgG-Alexa546 (donor) and anti-

HER2-IgG-Cy5 (acceptor) [37]. Serial sections were stained with donor+acceptor (DA, FRET pair) and with donor alone (D, control). Average lifetime

values (TD and TDA) can be determined for the tumor from the two serial sections using FLIMJ after segmentation. The FRET efficiency can be calculated

according to FRETeff = 1 –TDA/TD. B) Weka Trainable Segmentation plugin was used to segment the tissue areas. The FLIMJ user interface showing a

typical transient and fit from the tissue. We used the LM fitting with a mono-exponential model. C) Zoom into a smaller region. Composite image from

FLIMJ showing lifetime information. Pure lifetime map with Weka segmentation shown in yellow. Segmentation result of the lifetime within the tumor with

artifactual tissue removed. From TD = 2.23 ns and TDA = 2.16 ns, we estimate a FRET efficiency for this example tumor area as 3.1% as a measure of

HER2-HER3 dimerization on the tumor in this patient.

https://doi.org/10.1371/journal.pone.0238327.g002
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The data was obtained from a custom multiphoton microscope built around an inverted

Nikon Eclipse TE2000U and 20X (Nikon Plan Apo VC 0.75NA) objective lens. For NAD(P)H

imaging, an excitation wavelength of 740 nm, emission filter centered around 457 nm (FF01-

457/50, Semrock, Rochester, NY) was used. The excitation was set at 890 nm for GFP imaging,

and an emission filter at 520 nm (FF01-520/35-25, Semrock, Rochester, NY) was used. FLIM

data were generated using TCSPC electronics (SPC 150, Becker & Hickl, Berlin, Germany).

FLIM images of 256 × 256 pixels were collected with 256-time bins and 120 s collection times.

Here, we explore the potential of FLIMLib fitting routines using FLIMJ connected with the

ImageJ colocalization plugin [45]. We use a ground truth generated from CX3CR1 GFP images

and use the NADH FLIM signal from the same field-of-views. The NADH FLIM data is then fit-

ted using two-component fit using FLIMJ, and the mean lifetime image is compared with the

ground truth image using the colocalization plugin [46]. The processing steps are described in

Fig 3A. Fig 3C shows the overlaid image of the mean lifetime (red) and antibody intensity

(green). Fig 3D shows the intensity histogram from the colocalization analysis using the coloc2

plugin, and the colocalization was ~33%. This colocalization can help us evaluate a score of

overlap between antibody channel and NADH-metabolism and extend the results into analysis

where a non-fluorescent antibody such as Ionized calcium-binding adaptor molecule 1 (iba1) is

used [39, 46]. The detailed biology and metabolic interpretations are reported elsewhere [46].

Fig 3. Microglia colocalization analysis using NADH FLIM and CX3CR1-GFP labels [39, 46]. A) The analysis workflow describing how microglia are visualized

using a specific antibody, followed by NADH FLIM acquisition and FLIMJ analysis B) NADH FLIM data analysis using 2-component fit in FLIMJ-UI. Users can

choose the intensity threshold, kernel size, fitting model, noise model, model restraints, and the number of components. The single curve fit is fast, and the “Fit Dataset”

button performs fits for all the pixels. The fit result and fitting-parameters can be exported from the export tab on the lower right part of the UI. C) Overlaid images of

antibody (green) and lifetime image (red) to show the pixels with overlapping NADH and GFP signal. D) Coloc2 analysis of mean lifetime and microglia antibody

image.

https://doi.org/10.1371/journal.pone.0238327.g003
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Method validation

We validated the lifetime value estimations of FLIMLib (see Fig 4) using a FLIM image of a fluo-

rescence standard: fluorescein in water with a known lifetime of 4.0 ns [47]. The results were

compared with the conventional fitting routine provided by the hardware vendor (SPCImage)

and using the FLIMJ/FLIMLib routine. The data were analyzed using a 3x3 kernel and fit to a

single component model in the LMA setting for both analyses. The vendor’s routine results in

an identical distribution to FLIMLib fitting results. The fitting results shown here are derived by

setting the offset value to fixed numbers and fitting for the two parameters: lifetime and ampli-

tude. The average fitting time for SPCImage and FLIMJ is identical for similar fitting parame-

ters. There is an apparent change in speed when spatial binning is changed. FLIMJ performs

spatial binning by convolving the input data with the kernel using FFT, and this operation is

separate from the fitting, while SPCImage calculates the kernel every time within the fitting rou-

tine. The calculation times were computed for SPCImage 7.4 and flimj-ops 2.0.0 on the same

computer. Neither of these comparisons used GPU optimization for testing, which could be

advantageous for fitting large image datasets with homogenous fitting parameters.

We tested different fitting routines available within the flimj-ops framework (Refer to Fig

5). Two data sets were simulated for testing: 1) one component model and 2) a two-component

model. The one component model was used to compare results from LMA, Phasor, and RLD

methods. Fit results were plotted against the ground truth values, and a linear ~1:1 relation

was seen between these three commonly used fitting methods. We also tested the phasor plots

and found the phasors for single component lifetime curves fit on the universal circle. The uni-

versal phasor circle is plotted based on the fitting range. In the simulations, we used a 117

MHz universal circle to match the fitting range, instead of the more common 80 MHz plot

(matched to the repetition rate of the laser used) [48]. When compared to other available com-

mercial software bundles, two significant advantages of our library are its ability to use the

Bayesian lifetime estimation method and Global fitting routines [32, 49]. We validated the fit-

Bayes function on the same one component dataset. However, Bayesian estimates work best at

low photon images and low-light FLIM experiments. For a practical comparison, we simulated

Fig 4. A) Validation of FLIMLib LMA lifetime estimation against hardware vendor-provided software (SPCImage) for fluorescein in water. B) The phasor plot for

the data is also shown as a proof of principle of the FLIMLib Phasor function for fit-less estimation of lifetime parameters. The two parallels of lifetime histograms

and phasor plots are the current laboratory standards for FLIM analysis. The phasor is plotted on a universal circle derived from the endpoints of the fit-range (117

MHz).

https://doi.org/10.1371/journal.pone.0238327.g004
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a noisy dataset by sampling only a fraction of the photons from the original decay curve

(ground truth). We simulated nine datasets with varying the fraction of photons: 10% to 90%

of total photons from the curve with an increment of 10%. We compared the results of LMA

and Bayes obtained by fitting this noisy or partial data against the results from clean decay

curve fit.

Both clean and noisy data were simulated on the same image, as shown in Fig 5. A sample

intensity/photon distribution of 10%, 50%, and 90% data is shown in Fig 5F, along with repre-

sentative decay curves from the noisy data at 4 ns. When compared with LMA, Bayes fits have

a smaller difference to the clean curve fits. This can be seen in the comparison panels Fig 5G

and 5H. Fig 5H shows all the sampled lifetime values (0.2 to 6.0 ns, 32 points) for all nine lim-

ited-photon data. The mean difference (mean across all pixels of the same ground-truth life-

time value) of the noisy-data lifetime estimate to the clean-data lifetime estimate is plotted as

one data point. This difference is better revealed in Fig 5G, where 10% and 90% photon data

are compared. Bayes fits show a low variation in comparison to LMA, but more importantly,

the Bayes fit with 10% photons data is able to accurately match the characteristics of the clean

curve better than LMA fits with as high as 90% photons.

For validating Global fitting, we simulated a spatially varying two-component model Refer

to Fig 6). We demonstrate the fitting results from data simulated by two fluorescent species

(Fig 6A and 6B) with fixed lifetime values (0.4 ns and 2.1 ns), with spatially varying fractions.

These values were chosen as an example of widely used autofluorescence FLIM analyses of

NAD(P)H and FAD [50, 51]. In the FLIM data shown, the top left is 100% species A and the

bottom right is purely species B. The image is made of 128x128 pixels. We tested all the avail-

able fitting models on this dataset to estimate the time taken by each method (without any spa-

tial binning). The measured timings were: fitLMA required ~1 second, fitGlobal ~0.5

seconds, fitRLD ~0.16 seconds, fitPhasor ~0.27 seconds, and fitBayes ~0.95 sec (using 1-com-
ponent. fitBayes is currently implemented only for 1-component analysis).

Discussion

In this paper, we presented FLIMJ, an open-source toolkit for curve fitting and analysis of life-

time responses. We demonstrated how it could be integrated with a variety of ImageJ work-

flows, including segmentation, colocalization, and cross-language analysis for Python. The use

of the toolkit is also possible from other languages such as JavaScript, Groovy, or the R statis-

tics package.

FLIMJ is powered by the FLIMLib library, which includes a range of fitting routines for life-

time data based on Levenberg-Marquardt [30], Bayesian [27, 49] as well as analysis tools such as

the phasor method [25] and rapid lifetime determination method [29]. FLIMJ supports nonlin-

ear least-squares fitting (NLS) [52] and Maximum likelihood estimation (MLE) minimization

methods [53]. With support from the ImageJ Ops algorithmic framework, FLIMJ Ops can

extend the usage of FLIMLib functions beyond plain curve fitting and seamlessly incorporates

them with Ops-based image analysis workflows. The described analysis tools of FLIMJ can be

used for a wide range of FLIM experiments. FLIM applications include simple detection of a

change in lifetime due to a change in the chemical environment [54], such as viscosity [33].

More advanced experiments, such as the detection of FRET, are possible with FLIMJ. Biologi-

cally useful analysis extensions are also possible based on this core algorithmic functionality,

such as global analysis, to increase the signal to noise ratio in lifetime invariant systems. Support

analysis conclusions to determine the “confidence” in the fitted parameters using chi-squared

maps, and model selection options to help selection of the most appropriate model for the data

are all critical tools in a FLIM analysis toolbox, that are also available in FLIMJ.
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Fig 5. FLIM Validation using a simulated dataset for 1-component fitting. The lifetime values range from 0.2 ns to 6.0 ns that fit within the fitting range of 10 ns. A)

Ground truth lifetime distribution. B) Ground truth is compared against lifetime estimates obtained using B) LMA, C) RLD, and D) Phasor. The insets in panels B-D

shows the maps of lifetime estimates generated by each method. E) The phasor plot for the estimates shown in panel D. Panels F-H) shows how Bayesian fits generate a

better accuracy in low-photon decay curves. F) The ground truth data was trimmed down to a fraction of total photons (10% - 90%). The data is divided diagonally half

as noisy and clean. Three representative images of 10%, 50%, and 90% of total photons are compared for total photons and a sample decay curve at 4ns. A different

color-map is used here to highlight that this is the photon counts and not the lifetime map. G, H) The differences between fit results of the noisy (10% - 90% photons)

and clean decay curves of a range of lifetime values (0.2–6.0 ns) are presented in panel H. The LMA distribution shows a larger variance at lower photons in comparison

to Bayes. Bayes fit gives a better representation to the clean curve than LMA with as low as 10% total photons. Panel G compares two representative distribution of

photons: 10% and 90% for both Bayes and LMA. Bayes converges approximately four times better than LMA. The inset in panel G shows how the values are extracted

for 32-lifetime value.

https://doi.org/10.1371/journal.pone.0238327.g005
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Although FLIMJ has successfully integrated FLIM analysis into ImageJ as an image analysis

workflow, several improvements can be made. This may be mitigated by introducing global opti-

mization algorithms before and/or after the fit. Further, although the fitting routines have been

verified with data from our laboratory, more validation can be done as users start to use FLIMJ

on theirs collected from different systems. We also plan to improve FLIMJ Ops and FLIMJ-UI in

terms of usability. Until the current stage of development, more of the effort has been put on

implementing new features than on demonstrating the existing ones. While the FLIMJ Ops land-

scape is being finalized, we will shift our focus towards updating and creating demonstrative tuto-

rials using the ImageJ Wiki page or Jupyter Notebooks. Other usability improvements may

include allowing saving of fitting configurations as a workspace file as in TRI2, implementing

batch-fitting in the GUI, and packaging FLIMJ as standalone runnable for those without access to

ImageJ. Much of the future work will also focus on further extending the functionality of FLIMJ.

Development and distribution of FLIMLib, in particular, will be aimed at the simultaneous

analysis of spectral, lifetime, and polarization information that is now routinely captured in

Fig 6. FLIM Validation using simulated 2-component lifetime data. The figure shows the simulated data with fixed lifetime values, 2.1 ns, and 0.4 ns. A) The

intensity image for the simulated dataset is shown here. Note that this scale is for photons. B) Five sample lifetime curves are shown to demonstrate the variation in their

intensity levels and decay rates. C) This panel compares the Global fitting routine and LMA for the two-component model. The color maps are the same between the

panels of each parameter. The three parameters shown are Z (offset), A1 (amplitude of species 1), and A2 (amplitude of species 2). Both LMA and Global fitting

reproduce the apparent fraction of two species, but we find that global fitting yields less noise and works twice as fast. (This dataset is provided in the SCIFIO sample

datasets or https://samples.scif.io/Gray-FLIM-datasets.zip).

https://doi.org/10.1371/journal.pone.0238327.g006
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some laboratories [20, 55, 56]. This is an area in which novel advanced analysis is needed, espe-

cially as photon numbers from biological samples are limited [57], and the addition of more

dimensions of measurement (i.e. time, spectrum, polarization) can result in a very small num-

ber of photon counts per measurement channel. Although the current implementation of

FLIMLib has been able to deliver a decent throughput, it can still be further optimized for

speed and simplicity by depending on open-source libraries such as GSL and Boost, which

yields benefit to throughput-demanding applications, including machine learning-assisted

FLIM analysis. Lastly, as Fiji continues to be optimized for speed and performance and

explores parallelization and possible GPU based applications, these are areas where improved

FLIM analysis performance can be evaluated as well.
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