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Abstract

In December 2019, the novel coronavirus pneumonia (COVID-19) occurred in Wuhan,

Hubei Province, China. The epidemic quickly broke out and spread throughout the country.

Now it becomes a pandemic that affects the whole world. In this study, three models were

used to fit and predict the epidemic situation in China: a modified SEIRD (Susceptible-

Exposed-Infected-Recovered-Dead) dynamic model, a neural network method LSTM (Long

Short-Term Memory), and a GWR (Geographically Weighted Regression) model reflecting

spatial heterogeneity. Overall, all the three models performed well with great accuracy. The

dynamic SEIRD prediction APE (absolute percent error) of China had been� 1.0% since

Mid-February. The LSTM model showed comparable accuracy. The GWR model took into

account the influence of geographical differences, with R2 = 99.98% in fitting and 97.95% in

prediction. Wilcoxon test showed that none of the three models outperformed the other two

at the significance level of 0.05. The parametric analysis of the infectious rate and recovery

rate demonstrated that China’s national policies had effectively slowed down the spread of

the epidemic. Furthermore, the models in this study provided a wide range of implications

for other countries to predict the short-term and long-term trend of COVID-19, and to evalu-

ate the intensity and effect of their interventions.

Introduction

Novel coronavirus pneumonia (coronavirus disease 2019, COVID-19) break out firstly in

Wuhan, Hubei Province, China in December 2019, then the epidemic became prevalent in the

rest of the world. With the research on COVID-19 so far, through the comparison of the gene

sequence of the virus with that of the mammalian coronavirus, some studies found that its

source may be related to bat, snake, mink, Malayan pangolins, turtle and other wild animals

[1–4]. COVID-19 can also cause severe respiratory diseases such as fever and cough [5], and

there is a possibility of transmission after symptoms of lower respiratory diseases [6]. However,

unlike SARS-CoV and MERS-CoV, COVID-19 is separated from airway epithelial cells of

patients [6], yet the mechanism of receptor recognition is not consistent with SARS [7].
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Therefore, the pathogenicity of COVID-19 is less than that of SARS [8], and its transmissibility

is higher than that of SARS [9]. In addition, this new coronavirus presents human-to-human

transmission [10], and close contact could lead to group outbreaks [11]. As of July 7th, 2020,

85,359 confirmed cases and 4,648 deaths had been reported in China [12]. In addition to

China, there are over 200 countries and regions in the world with a total of 11,630,898 of con-

firmed cases and 538,512 of deaths [12].

The outbreak of COVID-19 happened right before the Lunar New Year, which is typical

Chinese Spring Festival transportation period. With a population of over 11 million, Wuhan is

one of the major transportation hubs in China as well as a core city of the Yangtze River Eco-

nomic Belt. The time and location of the outbreak further led to the rapid spread of the epi-

demic in China [13]. Since there is still no vaccine or antiviral drug specifically for COVID-19,

the government’s policies or actions play an important role in flatting the epidemic curve [14].

From the perspective of public health, the interventions of Wuhan government have achieved

the purpose of reducing the flow of people and the risk of exposure to the diagnosed patients,

and also effectively slowed down the spread of the epidemic [15]. Nevertheless, COVID-19 can

be transmitted by asymptomatic carriers [16], and some of the recovered patients may still be

virus carriers [17]. In order to implement non-pharmaceutical interventions more effectively,

we used a combination of epidemiological methods, mathematical or statistical modeling tools

to provide valuable insights and predictions as benchmarks.

For the study of infectious diseases like COVID-19, SARS, and Ebola, most of the literature

used descriptive research or model methods to assess indicators and analyze the effect of inter-

ventions, such as combining migration data to evaluate the potential infection rate [18, 19],

understanding the impact of factors like environmental temperature and vaccines that might

be potentially linked to the diseases [20, 21], using basic and time-varying reproduction num-

ber (R0 & Rt) to estimate changeable transmission dynamics of epidemic conditions [22–27],

calculating and predicting the fatal risk to display any stage of outbreak [28–30], or providing

suggestions and interventions from risk management and other related aspects based on the

results of modeling tools or historical lessons [31–39]. Some literature only used one kind of

model to simulate and predict the course of diseases. For instance, to use relatively common

epidemiological dynamics models like SEIR or SIRD to forecast epidemic trends and peaks in

certain provinces, even the world [9, 40–44]; to apply some other types of statistical models

such as the logistic growth models or time series approaches to analyze the epidemic situation

[45, 46], or to develop new models to support more complex trajectories of epidemics or to

predict the number of confirmed cases and the spatial progression of outbreaks [47–49]. Sev-

eral studies were further expanded based on the basic epidemic dynamic models. For example,

joining the border protection mechanism with the SEIR model to better identify high-risk

groups and infected cases [50]; adding the effect of media or awareness into basic models to

assess whether these outside influences would possible change the transmission mode of infec-

tious diseases [51, 52]; or according to transmission routes contained in dynamic models,

using a multiplex network model or transmission network topology to analyze the outbreak

scale and epidemic spread more accurately [53, 54]. A small number of studies combined the

analysis capabilities of two types of models, like SEIR model and the recurrent neural networks

model (RNN), to determine whether certain interventions could affect the results of outbreak

control [55]. However, we did not find any analysis method using geographically weighted

regression (GWR) on COVID-19 study based on our literature research. There is also a lack of

understanding the model efficacy of predicting the epidemic curve among different

algorithms.

In this study, an SEIR’s extended model SEIRD was used to simulate the epidemic situation

in China and to predict the number of confirmed and cured cases in each province and several
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major Chinese cities. An LSTM model combined with traffic data and a GWR model were

used to predict the number of confirmed patients. Specifically, GWR Model showing geo-

graphical differences was used to predict the development of epidemic situation and analyze

the impact of geographical factors. This paper also compares the characteristics and prediction

ability of these models. In the absence of vaccines and drugs for COVID-19, it makes sense to

use multiple models to show the situation and intensity of non-pharmaceutical interventions

needed to simulate and guide the control of outbreaks.

Materials and methods

Data sources

Daily updated COVID-19 epidemiological data used in this study were retrieved from

National Health Commission of China [12] and accessed via https://github.com/wybert/open-

wuhan-ncov-illness-data. The daily number of outbound from Wuhan city and relevant

migration indice from January to March were collected from an online platform called Baidu

Qianxi [56]. The demographic data and medical resources data were from China urban statis-

tical yearbook published by the National Bureau of Statistics as shown in S1 Table.

Modified SEIRD model

This study used SEIRD model and the changes in the status of the susceptible (S), exposed (E),

infected (I), recovered (R) and dead (D) population in the total population (N) are shown in

Fig 1.

According to the medical characteristics and clinical trials of COVID-19, both confirmed

patients and asymptomatic carriers have the ability to transmit the virus. Therefore, susceptible

people have a certain chance to become infected after they come into contact with exposed or

infected individuals [43]. Carriers in the exposed status may develop obvious symptoms after

the incubation period and become diagnosed or they may be recovered. The final status of

individuals can be basically divided into two categories: one is the recovery from the combined

effects of treatment in hospital and autoimmunity, and the other is the death without effective

treatment. In the model formula, the infectious rate β needs to be adjusted in real time to

adapt to the trend of disease development. In the middle and late stages of the epidemic, the

number of daily new cases decreased significantly due to the positive influence of government

policies. Thus, to better fit the model, we added an attenuation factor desc to β. Based on the

Fig 1. The changes of different status in the modified SEIRD model in this study.

https://doi.org/10.1371/journal.pone.0238280.g001

PLOS ONE Predicting and analyzing the COVID-19 epidemic in China

PLOS ONE | https://doi.org/10.1371/journal.pone.0238280 August 27, 2020 3 / 22

https://github.com/wybert/open-wuhan-ncov-illness-data
https://github.com/wybert/open-wuhan-ncov-illness-data
https://doi.org/10.1371/journal.pone.0238280.g001
https://doi.org/10.1371/journal.pone.0238280


basic SEIRD model formulas [57, 58], our modified model was shown as Eqs (1–6).

dSðtÞ
dt
¼ �

bðtÞSðtÞIðtÞ
N

ð1Þ

dEðtÞ
dt
¼
bðtÞSðtÞIðtÞ

N
� aþ g1ð ÞE tð Þ ð2Þ

dIðtÞ
dt
¼ aE tð Þ � g2I tð Þ � kI tð Þ ð3Þ

dRðtÞ
dt
¼ g1E tð Þ þ g2I tð Þ ð4Þ

dDðtÞ
dt
¼ kI tð Þ ð5Þ

dbðtÞ
dt
¼ � b tð Þ 1 � descð Þ ð6Þ

Here, the parameter t denotes the time; β is the infectious rate; α is the rate for the exposed

to be infected; γ1 is recovery rate for the exposed; γ2 is the recovery rate for the infected; k is

the mortality rate; “desc” is the attenuation factor for β, so that β decays exponentially when

0<desc<1, and β is a constant when desc = 1.

LSTM model

LSTM (Long Short-Term Memory) architecture for recurrent neural networks was first pro-

posed in 1997 [59]. A LSTM block is illustrated in Fig 2. It features three gates (input, forget,

and output), a block input and an output. The output of the block is recurrently connected to

the input of the block.

The vector formulas for a LSTM layer forward pass are given below in Eqs (7–12).

zt ¼ ReLUðWz½xt; ht� 1� þ bzÞ ð7Þ

it ¼ sðWi½xt; ht� 1� þ biÞ ð8Þ

ft ¼ sðWf ½xt; ht� 1� þ bf Þ ð9Þ

ct ¼ it
J

zt þ ft
J

ct� 1 ð10Þ

ot ¼ sðWo½xt; ht� 1� þ boÞ ð11Þ

ht ¼ ot
J

ReLUðctÞ ð12Þ

Here, zt, it, ft, ct, ot and ht denote the block input, input gate, forget gate, cell state, output

gate and block output, respectively. And xt represents the input vector at time t, ⊙ is the point-

wise multiplication operator of two vectors, the Wz, Wi, Wf, and Wo are input weight matrices,

and bz, bi, bf, and bo are bias vectors. Logistic sigmoid s xð Þ ¼ 1

1þe� x

� �
is used as the activation

function of the gates and ReLU is used as the activation function of the block input and output.
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GWR model

Epidemic situations and medical resources in different geographic situations may have differ-

ent extents of influence on the development of the epidemic. Ordinary least squares fitting

method for regression may not be applicable in this case. Geographically weighted regression

model (GWR) was proposed in 1996 [60], which extended the ordinary linear regression

model and embedded the geographic location data into the regression parameters as shown

below:

yi ¼ bi0 þ
Pp

i¼0
bikxik þ εi; ð13Þ

where yi is the ith dependent variable, xik is the kth independent variable in location i, p is the

total number of independent variables, βi0 is the intercept parameter in location i, βik is the

regression coefficient for the kth independent variable in location i, which varies with the geo-

graphical location, and εi is the error term in location i. The spatial weight matrix in this study

uses the bi-square kernel function shown below:

wij ¼ ð1 � ðdij=bÞ
2
Þ

2
; ð14Þ

if dij<b, otherwise wij = 0, where b is the bandwidth, a non-negative attenuation parameter

and dij denotes the distance between the ith and jth observation points. The bandwidth is calcu-

lated by optimizing the root mean square prediction error of cross-validation [61, 62].

Fig 2. The structure of a LSTM block in this study.

https://doi.org/10.1371/journal.pone.0238280.g002
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Results

SEIRD model

In this study, we used the modified SEIRD model to make predictions of the number of cumu-

lative confirmed cases in the next day for all provinces, province-level municipalities and

autonomous regions in China as well as Wuhan City. The parameters were adjusted daily in

our dynamic SEIRD model based on the daily updated epidemic data. The comparison of the

actual data on February 14th and February 25th with the forecast results of our models is shown

in Table 1. The percent error was calculated using the formula: (predicted number—actual

number)/ actual number × 100%. On February 14th, the absolute percent errors of all prov-

inces were< 5%. The percent error for Wuhan City, Hubei Province and China were -3.00%,

-1.60% and 1.00%, respectively. On February 25th, the absolute percent error of prediction of

cumulative confirmed cases in China was < 0.10%. The absolute percent errors of most prov-

inces were< 0.10%, among which the absolute percent errors in Wuhan City was < 0.10%

and that of Hubei province was less than 0.10%. Regarding the number of recovered cases,

Wuhan City and Hubei Province had percent errors of -6.03% and -3.12%, respectively. The

overall prediction of recovered of the whole country was consistent with the actual situation

with percent error of -2.46%. The predicted number of deaths in Hubei province was off by

1.40% (forecast 2,599 vs. actual 2,563).

Fig 3 shows a summary of the prediction results of the cumulative number of COVID-19

cases across the country, Hubei province, Wuhan city and Beijing city by the modified SEIRD

dynamics model. With the increase of the total number of cases, the percent errors in all four

regions tended to decrease and the general absolute percent error in late February was� 0.5%.

Actual and predicted number of confirmed cases using the modified SEIRD model for

China, Hubei province and Wuhan city are shown in Fig 4 (Hubei province and Wuhan City

adjusted the criteria for diagnosis on February 13th, and the number of confirmed cases

increased by about 10,000 on that day [63]. In order to smooth the sudden change, the number

of cumulative cases before February 12th in Hubei City and Wuhan province was proportion-

ally enlarged according to the new criteria. The same for Fig 5). The actual and calculated val-

ues of these three regions provided satisfying fitting curves, indicating that the situation

simulated by the model was basically in line with the actual situation of the epidemic develop-

ment. In this study, the inflection point was defined as the date when the number of existing

confirmed cases has the largest slope. According to the SEIRD dynamic model, the inflection

points of all provinces appeared generally in February, while the specific time varied from

region to region. The results of model simulation revealed that the inflection point in Wuhan

city and Hubei province showed up in early February, and that of the whole country roughly

in the first half of February, which basically conformed to the spread of COVID-19 in China.

Using data on March 5th, the model predicted the long-term trends in the number of con-

firmed, cured and deaths for China, Hubei province and Wuhan city (Fig 5). Again, the model

used adjusted historical data as discussed above. Under the various social non-pharmaceutical

interventions and not allowing for the imported cases from foreign countries, the cumulative

number of confirmed nationwide was expected to reach about 83,000 at the end of the epi-

demic. Hubei Province was expected to have a total of about 70,000 confirmed cases and

Wuhan City about 50,000.

LSTM model

Data from four regions, Zhejiang, Guangdong, Beijing, and Shanghai were selected to train the

LSTM neural network to predict the number of cumulative confirmed cases of the next day.
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Since the LSTM model had a memory function, the first feature included in the model was the

number of cumulative confirmed cases on the previous day. Considering that the number of

migrants from Wuhan also affected the studied city, thus the number of migrants from

Wuhan was also included in the analysis. There was a certain probability that some migrants

from Wuhan may be patients because of the virus’s incubation period, and the inference of

this probability was based on the number of confirmed cases in Wuhan. Therefore, the second

feature considered the number of migrants from Wuhan on the previous day, and the con-

firmed number of patients in Wuhan on the previous day. The feature was calculated as the

Table 1. The comparison of predicted cumulative confirmed cases with actual data on February 14th and 25th in China using SEIRD model.

February 14th February 25th

Regions Predicted Actual Percent errors Predicted Actual Percent errors

Wuhan 34902 35991 -3.00% 47014 47071 -0.12%

Anhui 952 934 1.90% 989 989 0.00%

Beijing 378 372 1.60% 400 400 0.00%

Chongqing 527 529 -0.40% 577 576 0.17%

Fujian 288 281 2.50% 293 294 -0.34%

Gansu 89 90 -1.10% 91 91 0.00%

Guangdong 1288 1261 2.10% 1348 1347 0.07%

Guangxi 237 226 4.90% 253 252 0.40%

Guizhou 142 140 1.40% 146 146 0.00%

Hainan 162 158 2.50% 168 168 0.00%

Hebei 282 283 -0.40% 311 311 0.00%

Heilongjiang 418 418 0.00% 480 480 0.00%

Henan 1213 1184 2.40% 1273 1271 0.16%

Hong Kong 53 53 0.00% 75 81 -7.41%

Hubei 51179 51986 -1.60% 64765 64786 -0.03%

Hunan 995 988 0.70% 1017 1016 0.10%

Inner Mongolia 66 65 1.50% 75 75 0.00%

Jiangsu 588 593 -0.80% 631 631 0.00%

Jiangxi 920 900 2.20% 934 934 0.00%

Jilin 88 86 2.30% 93 93 0.00%

Liaoning 123 117 5.10% 121 121 0.00%

Macau 10 10 0.00% 10 10 0.00%

Ningxia 68 67 1.50% 71 71 0.00%

Qinghai 18 18 0.00% 18 18 0.00%

Shaanxi 239 230 3.90% 245 245 0.00%

Shandong 534 523 2.10% 757 755 0.26%

Shanghai 131 126 4.00% 335 335 0.00%

Shanxi 324 318 1.90% 132 133 -0.75%

Sichuan 471 463 1.70% 528 529 -0.19%

Taiwan 18 18 0.00% 28 30 -6.67%

Tianjin 122 120 1.70% 136 135 0.74%

Tibet 1 1 0.00% 1 1 0.00%

Xinjiang 68 65 4.60% 76 76 0.00%

Yunnan 162 162 0.00% 174 174 0.00%

Zhejiang 1167 1155 1.00% 1206 1205 0.08%

China 63321 63940 -1.00% 77757 77779 -0.03%

https://doi.org/10.1371/journal.pone.0238280.t001
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cumulative number of immigrants from Wuhan multiplied by the incidence of COVID-19 in

Wuhan on the previous day.

This LSTM architecture was designed into 4 layers: an input layer, an LSTM layer (hidden

layer), a fully-connected layer and an output. Each LSTM neuron had 10 hidden features, and

the activation function was ReLU. The loss function was MSE, and the optimizer was “Adam”.

The model structure diagram is as Fig 6. This study used the grid search method to set different

hyperparameters for data in different regions.

The model was trained and the predicted results for latest 8 consecutive days as shown in

Figs 7 and 8. Finally we forecast the number of cumulative confirmed cases on the next day.

The results of the forecast on February 2nd (predicting the number of confirmed cases on Feb-

ruary 3rd) and February 13th (predicting the number of confirmed cases on February 14th) are

shown in Figs 7 and 8, respectively.

The percent error is calculated as: (predicted number—actual number) / actual number

×100%. The results are shown in Tables 2 and 3. The absolute percent errors are� 5.1% in all

models /on February 3rd, and� 0.63% in all models on February 14th.

GWR model

In this study, the data of 220 cities that had confirmed cases on February 2nd were selected to

predict the number of confirmed cases on February 3rd. The number of confirmed cases, the

number of deaths and the number of cured cases are main indicators for the epidemic. Among

them, the number of confirmed cases was the mostly used and reflected the severity of

COVID-19 epidemic. Therefore, this study used the cumulative number of confirmed cases in

Fig 3. Summary of the prediction for cumulative number of COVID-19 cases and percent errors by modified SEIRD model for China, Hubei province, Wuhan city

and Beijing city.

https://doi.org/10.1371/journal.pone.0238280.g003
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different places released by the National Health Commission as dependent variable. In this

study we select the population of each city, the number of hospitals per 10,000 people, the

number of doctors per 10,000 people, the number of inpatient beds per 10,000 people, the

number of confirmed cases, the number of cured cases, and the number of deaths one day and

2 days ago as independent variables.

The GWR model was fitted using the data of February 2nd, and we further made forecast

for the number of the confirmed cases on February 3rd. The R2 of GWR regression on Febru-

ary 2nd was 99.98% and the R2 of the prediction of the data on February 3rd was 97.95%. The

percent errors of fitting and prediction varied for different cities: for Beijing were 11.67% and

3.95%, respectively; for Shanghai were 2.24% and -5.88%, respectively, for Xiaogan in Hubei

Province were -1.27% and 1.70%, respectively, and for Wuhan were 0.00% and 14.57%,

respectively.

Fig 4. Number of actual and predicted data of existing confirmed cases by the modified SEIRD model for China, Hubei province

and Wuhan city.

https://doi.org/10.1371/journal.pone.0238280.g004
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Fig 5. Long-term prediction of confirmed cases by the modified SEIRD model for China, Hubei province, Wuhan city and Beijing city.

https://doi.org/10.1371/journal.pone.0238280.g005

Fig 6. LSTM network structure of predicting COVID-19.

https://doi.org/10.1371/journal.pone.0238280.g006
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The summary of the intercept and coefficients of the independent variables were listed in

Table 4. It shows that the coefficients of the demographic data, and the medical resources data

have larger variations than those of epidemic data. The coefficients of population, number of

hospitals per 10,000 people, number of doctors per 10,000 people, dead_lag1, confirmed_lag2,

cured_lag2 were negative, showing that these factors have negative influence on the dependent

variable. While the other independent variables, number of inpatient beds per 10,000 people,

confirmed_lag1, cured_lag1, dead_lag2 have positive coefficients, indicating positive influence

on the dependent variable as shown in Table 4.

Discussion

Sensitivity analysis of parameters

As of mid-March 2020, more than 60,000 people had been cured in 31 provinces, province-

level municipalities, and autonomous regions in China, and new cases of infection were mainly

led by overseas imports. Although the COVID-19 epidemic was not over, the traffic in the

low- and medium-risk areas in Hubei province had been gradually resuming, indicating that

the government’s non-pharmaceutical interventions had significantly positive effects. In this

study, the modified SEIRD model was used to conduct parameter sensitivity analysis of β, desc,
and γ2 based on data before March 5th, so as to simulate the impact of prevention and control

Fig 7. The results of prediction of cumulative confirmed cases in different regions for February 3rd.

https://doi.org/10.1371/journal.pone.0238280.g007
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measures on real-time infections for China, Hubei Province, Wuhan city, and Beijing city (Fig

9).

The decrease of the infectious rate β would promote the reduction of infections during the

entire epidemic stage with other conditions being equal (Fig 9A). The shape of the epidemic

curve was basically unchanged, but the duration of the epidemic increase as the infectious rate

itself increases. The number of cases increased obviously, and the peak of real-time infections

was postponed as the infectious rate increases. When the infectious rate increased to 125%, the

epidemic size doubled with the delay of the peak of real-time infections by about 10 days (Fig

9A).

Fig 8. The results of prediction of cumulative confirmed cases in different regions for February 14th.

https://doi.org/10.1371/journal.pone.0238280.g008

Table 2. Results of the prediction of number of confirmed cases on February 3rd.

Area Date Actual number of confirmed cases Predicted number of confirmed cases Percent error

Zhejiang 2020/2/3 724 723 -0.14%

Guangdong 2020/2/3 725 762 5.10%

Beijing 2020/2/3 212 221 4.25%

Shanghai 2020/2/3 203 213 4.93%

https://doi.org/10.1371/journal.pone.0238280.t002
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Moreover, increasing the attenuation factor of infectious rate could lead to a significant

slowdown in the spread of the epidemic and the shape of the epidemic curve changed (Fig 9B).

In the beginning, the growth of attenuation factor changed the number of confirmed cases lit-

tle, but the number had changed dramatically over time, the peak of the epidemic moved for-

ward with the increase in the attenuation factor (Fig 9B). The duration of the epidemic also

advanced correspondingly. A combination of the changes in the infectious rate β itself and the

changes in the attenuation factor of β could reflect the effects of the measures such as timely

isolation of confirmed or suspected patients and reduction of population mobility. Coupled

with the community containment measure, the number of exposed, infected and susceptible

individuals outside were greatly reduced, so that the extent of the epidemic in China had been

under control. Implemented metropolitan-wide quarantine of Wuhan city itself could also

interfere with the change of infectious rate. The decrease in the number of daily new con-

firmed cases since late February showed that the corresponding policies had effectively blocked

the spread of the epidemic.

The change in the recovery rate of infected γ2 had little effect in the early stage of the epi-

demic. As time went by, the growth of recovery rate could significantly raise the number of

recovered, thus advancing the peak time of the real-time confirmed cases (Fig 9C). When the

recovery rate raised from 75% to 125%, the whole country, Hubei province, Wuhan city and

Beijing city could reach the time of maximum real-time infections about 6–15 days in advance,

and the scale of the epidemic could be reduced as well (Fig 9C). In fact, China transported

advantage medical resources of more than 20,000 people to Hubei province [5] in order to

achieve the goal of early detection, early reporting, early diagnosis, and early isolation. Besides,

the measure of “one province helping one city” established provincial counterparts to support

the rescue work in Hubei province except Wuhan [5], so as to rationally allocate advanced

Table 3. Results of the prediction of number of confirmed on February 14th.

Area Date Actual number of confirmed cases Predicted number of confirmed cases Percent error

Zhejiang 2020/2/14 1155 1151 -0.35%

Guangdong 2020/2/14 1261 1255 -0.48%

Beijing 2020/2/14 372 372 0.00%

Shanghai 2020/2/14 318 316 -0.63%

https://doi.org/10.1371/journal.pone.0238280.t003

Table 4. Summary of the coefficients of GWR model.

Variable Min Upper Quartile Median Lower Quartile Max Overall

Intercept 1.339 1.419 1.484 1.533 1.970 1.457

Population/10,000 -0.450 -0.419 -0.406 -0.394 -0.331 -0.400

Number of hospitals per 10,000 people -7.512 -6.875 -6.720 -6.532 -6.124 -6.926

Number of doctors per 10,000 people -0.193 -0.169 -0.163 -0.157 -0.145 -0.158

Number of inpatient beds per 10,000 people 0.122 0.127 0.128 0.130 0.136 0.125

Confirmed_lag1 a 1.535 1.541 1.544 1.545 1.556 1.547

Cured_lag1 a 6.989 7.130 7.177 7.220 7.312 7.087

Dead_lag1 a -10.902 -10.664 -10.524 -10.429 -9.787 -10.494

Confirmed _lag2 a -0.417 -0.404 -0.401 -0.398 -0.390 -0.405

Cured_lag2 a -9.417 -9.358 -9.308 -9.271 -8.994 -9.231

Dead_lag2 a 14.431 15.138 15.245 15.395 15.631 15.206

a Confirmed, Cured, and Dead denote the number of confirmed, cured, dead cases, respectively, and lag1 and lag2 denote one day and 2 days ago, respectively

https://doi.org/10.1371/journal.pone.0238280.t004
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resources. These interventions could improve the treatment and medical level of key provinces

and cities, thereby increasing the recovery rate of infected and reducing the mortality rate. By

March 13th, 2020, more than a thousand people each day have been cured and discharged for

29 consecutive days [6], indicating the effectiveness of related policies.

Although the COVID-19 has been effectively controlled in China, it has spread rapidly in

other countries. Italy, the United States and Spain have become the focused areas of the out-

break. By May 2nd, 2020, the United States, as the country with the largest number of con-

firmed cases, has over 1.1 million cases, and Spain had 216,582 cases, and Italy ranked the

third with 207,428 confirmed patients [12]. In order to control the spread of coronavirus,

America took measures to reduce the mobility of the population, built hospitals and facilitate

the treatment of the coronavirus [64–67]. Similar to the US, Italy and Spain also tried to limit

the movement and gathering of the crowds, improve the protection level and provide more

medical resources [64, 68–70].

In conclusion, all three countries have implemented various interventions to slow down the

spread of the COVID-19 disease. The measures could be basically divided into two categories:

reducing the infection rate and increasing the recovery rate. However, according to the recent

large-scale outbreak in the United States and Spain, it could be found that a part of the people

in these two countries might have insufficient awareness of prevention and control of the epi-

demic [64]. The supervision of those prevention and control measures needs further

Fig 9. Number of infections predicted by modified SEIRD model for China, Hubei province, Wuhan city and Beijing city under different scenarios. (A) β, (B)

desc, and (C) γ2.

https://doi.org/10.1371/journal.pone.0238280.g009
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improvement. Thanks to the joint efforts of the people across the Italy, while the number of

confirmed cases in Italy is still large, this country, which was called "the second Hubei prov-

ince" in the early stage of the epidemic, has a trend of declining new cases of infection and

death [12].

In order to test the capability of the SEIRD model in foreign countries, data before June

29th, 2020 of Italy were used to calculate the epidemic curve. The results of the model also fitted

well with the actual data as shown in Fig 10. Although some other countries successfully con-

trolled the epidemic using similar measures with China [71], they may not always work in

other countries because the effect depends on the public attitudes towards the measures and

commitment to the intervention as debated in [72]. Therefore, in the face of the same epidemic

situation and similar crises, our SEIRD dynamics model can be potentially applied to other

countries to evaluate the intensity and effect of policies implemented by simulating and fore-

casting the situation of the epidemic, but the effect may be limited by the attitudes and action

of the public.

Spatial distribution of coefficients in GWR model

To better understand the spatial distribution of the coefficients of the independent variables in

the GWR model, four parameters and their correlations in the model of February 2nd have

been studied to evaluation the heterogeneity of their coefficients in space. There was a strong

negative correlation between the number of hospitals per 10,000 people and the number of

confirmed cases (Fig 11A). This can be explained as that the isolation of confirmed cases in the

hospital can prevent contagion. From the perspective of the spatial distribution of the regres-

sion coefficients, it has a trend of gradual decline from the northeast to the southwest and

Fig 10. Number of actual and predicted data of existing confirmed cases by the modified SEIRD model for Italy.

https://doi.org/10.1371/journal.pone.0238280.g010
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northwest of China (Fig 11A). The most influenced areas are located in the northeast of China,

while the least influenced areas are in southwest and northwest of China.

There was a negative correlation between the number of doctors per 10,000 people and the

number of confirmed cases (Fig 11B). From the perspective of the spatial distribution of

regression coefficient, it shows a gradually decreasing trend from the northeast and northwest

of China to the south (Fig 11B). The regions that are influenced the most are concentrated in

northeast and northwest of China, while the least influenced regions are in the south.

There was a positive correlation between the number of confirmed cases and the confirmed

cases one day ago (Fig 11C). This suggests that the more cases confirmed the day before, the

more confirmed cases would emerge the next day. Effective local quarantine measures can be

used to prevent a pandemic. From the perspective of the spatial distribution of the regression

coefficient, it shows a trend of gradual decline from the northeast to the southwest and north-

west of China (Fig 11C). This trend is not significant, which shows a universal pattern across

the country.

Fig 11. Spatial distribution of the regression coefficients in the GWR model on February 2nd (the source of the maps: USGS National

Map Viewer (public domain): http://viewer.nationalmap.gov/viewer/). (A) Coefficients of number of hospitals per 10,000 people. (B)

Coefficients of number of doctors per 10,000 people. (C) Coefficients of number of confirmed patients one day ago. (D) Coefficients of

number of recovered patients one day ago. (This figure is similar but not identical to the original image of Fig 10 in last version and is for

therefore illustrative purpose only).

https://doi.org/10.1371/journal.pone.0238280.g011
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There was a positive correlation between the number of cured case and the number of con-

firmed cases one day ago (Fig 11D). From the perspective of the spatial distribution of regres-

sion coefficient, it shows a gradually decreasing trend from the northeast and northwest of

China to the south, with the most influenced areas in the northeast and northwest, and the

least influenced areas in the south (Fig 11D).

Comparison of SEIRD, LSTM and GWR models

By comparing the prediction capabilities of these three types of models, the modified SEIRD,

LSTM and GWR model could effectively predict the epidemic data for the next day generally.

The percent errors of the SEIRD model to predict confirmed cases were within ±5.0% in all of

these four selected regions (Beijing, Wuhan, Hubei and China) shown in Table 5. The LSTM

model also fit well to the real curve by incorporating traffic big data, indicating good simula-

tion and prediction effects. The average percent error of LSTM model predictions for the four

selected provinces and cities was within ±1.0% on February 14th (Table 5). GWR model could

reflect spatial heterogeneity but larger percent errors showed than the other two models in

some cases (Table 5). The MAPE (Mean Absolute Percentage Error) for the SEIRD, LSTM and

GWR models in the selected areas were 1.70%, 1.51%, 3.44%, respectively. In order to compare

the APE (Absolute Percent Error) of the three models, we ran Wilcoxon Signed Rank Test for

the paired observations in Table 5. The p-values for the hypotheses: the APE of GWR> that of

LSTM, the APE of GWR > that of SEIRD and the APE of SEIRD> that of LSTM were 0.173,

0.187 and 0.459, respectively, thus not significant at the level of 0.05. Overall, the prediction

efficacy of GWR model was inferior to those of SEIRD and LSTM models according to the

MAPE and p-values.

Conclusions

In this study, the modified SEIRD model, the LSTM model with traffic data and the GWR

model reflecting the geographical environment were used to make forecasts for the develop-

ment of COVID–19 in China. These three types of models all showed remarkable prediction

capabilities. The parameter sensitivity analysis reflected the effectiveness of non-

Table 5. Comparison of the APE (Absolute percent error) of different models.

Province/City Date SEIRD LSTM GWR

Wuhan 2020/2/3 3.01% - 14.57%

Beijing 2020/2/3 4.25% 4.25% 3.95%

Shanghai 2020/2/3 1.48% 4.93% 5.88%

Guangdong 2020/2/3 2.76% 5.10% -

Zhejiang 2020/2/3 2.07% 0.14% -

Wuhan 2020/2/14 3.00% - 1.00%

Beijing 2020/2/14 3.03% 0.00% 3.62%

Shanghai 2020/2/14 1.61% 0.63% 1.17%

Guangdong 2020/2/14 1.89% 0.48% -

Zhejiang 2020/2/14 2.14% 0.35% -

Wuhan 2020/2/25 0.12% - 0.14%

Beijing 2020/2/25 0.00% 0.25% 0.04%

Shanghai 2020/2/25 0.00% 0.60% 0.58%

Guangdong 2020/2/25 0.07% 0.07% -

Zhejiang 2020/2/25 0.08% 1.33% -

https://doi.org/10.1371/journal.pone.0238280.t005
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pharmaceutical interventions. Now the epidemic quickly spread abroad, in the absence of tar-

geted pharmaceutical treatment such as vaccines, the interventions implemented in various

countries were basically similar to those in China, which were based on the two aspects: reduc-

ing the infectious rate and improving the recovery rate. As the number of daily new cases con-

tinues to increase globally, models in this study shows potential being used for epidemic curve

prediction and prevention of COVID-19 in other countries.
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