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Abstract

While complex sample pooling strategies have been developed for large-scale experiments

with robotic liquid handling, many medium-scale experiments like mycotoxin screening by

Enzyme-Linked Immunosorbent Assay (ELISA) are still conducted manually in 48- and 96-

well plates. At this scale, the opportunity to save on reagent costs is offset by the increased

costs of labor, materials, and risk-of-error caused by increasingly complex pooling strate-

gies. This paper compares one-dimensional (1D), two-dimensional (2D), and Shifted Trans-

versal Design (STD) pooling to study whether pooling affects assay accuracy and

experimental cost and to provide guidance for when a human experimentalist might benefit

from pooling. We approximated mycotoxin contamination in single corn kernels by fitting sta-

tistical distributions to experimental data (432 kernels for aflatoxin and 528 kernels for fumo-

nisin) and used experimentally-validated Monte-Carlo simulation (10,000 iterations) to

evaluate assay sensitivity, specificity, reagent cost, and pipetting cost. Based on the vali-

dated simulation results, assay sensitivity remains 100% for all four pooling strategies while

specificity decreases as prevalence level rises. Reagent cost could be reduced by 70% and

80% in 48- and 96-well plates, with 1D and STD pooling being most reagent-saving respec-

tively. Such a reagent-saving effect is only valid when prevalence level is < 21% for 48-well

plates and < 13%-21% for 96-well plates. Pipetting cost will rise by 1.3–3.3 fold for 48-well

plates and 1.2–4.3 fold for 96-well plates, with 1D pooling by row requiring the least pipett-

ing. Thus, it is advisable to employ pooling when the expected prevalence level is below

21% and when the likely savings of up to 80% on reagent cost outweighs the increased

materials and labor costs of up to 4 fold increases in pipetting.

Introduction

Pooling is defined in this paper as the act of taking an aliquot of equal volume from multiple

samples and mixing them. It is intended to rule out a large number of negative samples and

detect a few positive samples at a lower cost. Pooling has been widely utilized in various testing

scenarios where positive samples are rare, such as high throughput drug screening [1,2],
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detecting human pathogens in clinical samples [3–5], testing for foodborne pathogens in food

products [6,7]. To perform pooling, a variety of pooling schemes have been developed includ-

ing one-dimensional (1D), two-dimensional (2D), N-dimensional, orthogonal pooling, and

Shifted Transversal Design (STD) [1,8,9]. Many of these studies on pooling schemes are estab-

lished on the foundation of group testing problems in combinatorial mathematics and thus are

primarily focused on theoretical derivation. Despite advantages of conciseness and generaliz-

ability, abstract notations and complex computation in these studies might deter researchers

of other disciplines seeking concrete instruction. Moreover, the effect of pooling has been

mainly investigated for large-scale experiments (thousands of samples) where sample size is so

substantial that it is nearly impossible to assay each individual sample. Medium-scale experi-

ments such as mycotoxin screening in food products, however, are often restricted to hun-

dreds of samples and are usually performed by students and technicians manually pipetting

samples into 48- and 96-well plates. On this scale, the reagent-saving benefit of pooling may be

counterbalanced by the rising costs of labor, materials and higher risk of human error due to

escalating complexity of pooling strategies. Hence, we intend to evaluate the performance and

cost-saving effect of pooling in a mycotoxin screening setting and provide experimenters with

instruction that leans toward application rather than theory.

This paper employed Monte Carlo simulation technique to study how pooling affects assay

sensitivity, specificity, and number of tests and pipetting. To simulate a medium-scale experi-

mental setting, 48- or 96-well assay plates were designated as sample containers as they are fre-

quently used in this setting. As for the simulated experiment, aflatoxin detection in single corn

kernels by Enzyme-linked Immunosorbent Assay (ELISA) was selected because aflatoxin con-

tamination in corn, a potential cause of acute toxicosis and liver cancer, is a low-prevalence

event in the U.S. [10,11], for which pooling may exhibit its full potential in cost reduction. For

countries or regions with higher aflatoxin prevalence, such as Kenya [12], it remains an inter-

esting question how much cost one can save, or more importantly, whether pooling is advanta-

geous at all. Results of pooling simulation for such an experimental setting could be

generalized and used to infer the effect of pooling on test performance and cost for other

medium-scale experiments. We examined four pooling strategies in this paper: 1D by rows,

1D by columns, 2D, and STD pooling. The first three strategies have been well characterized

mathematically for decades and can be readily applied to a wide range of experiments [13].

The last, STD pooling, has been developed more recently and adopted to carry out rapid

screening in the field of genomics [14,15]. Our hypothesis is that performing pooling in a

medium-scale laboratory setting would lower the cost of experiment while not affecting the

sensitivity of the test.

Our results provide guidance on how to select a pooling strategy for 48- and 96-unit experi-

ments based on assay performance and trade-offs between number of test and number of

pipetting for a given expected prevalence of positive samples. These results should be useful to

experimentalists for evaluating whether pooling is appropriate for their assay.

Materials and methods

The overall workflow is demonstrated in Fig 1. To start with, mycotoxin levels (aflatoxin and

fumonisin) in single corn kernels were measured experimentally. The measured data were

then approximated by statistical distributions. Once the fitted distributions were determined

to represent the data, they were used to draw random numbers that represented mycotoxin

levels. These simulated mycotoxin levels were arranged in various combinations to reflect dif-

ferent plate layouts (48- or 96-well) and prevalence levels (1–47 or 1–95 positive samples).

Next, computerized models were constructed to simulate four pooling strategies (1D by row
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and by column, 2D, STD). With the simulated mycotoxin levels as input, these computerized

models ran iteratively and produced the following outputs: sensitivity, specificity, number of

tests, and number of pipetting. To validate the outputs from the simulation, experimental

pooling was performed on a new batch of corn samples and the experimental results were

compared with the simulated results. Details are provided in the following sections.

Experimental mycotoxin data

Wet chemistry data of Texas commercial corn samples were collected, tested for aflatoxin and

fumonisin in single kernels using ELISA kits, and utilized to fit statistical distributions. The

corn samples were received in 2017 from the Office of the Texas State Chemist, which they

tested in bulk as part of their mycotoxin survey program.

Aflatoxin. A total of 432 kernels were randomly selected from three classes of bulk sam-

ples with 144 kernels from low-aflatoxin class (< 20 ppb), 144 kernels from medium-aflatoxin

class (between 20 and 50 ppb), and 144 kernels from high-aflatoxin class (� 50 ppb). Total

Fig 1. Flow chart of the overall study design.

https://doi.org/10.1371/journal.pone.0236668.g001
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aflatoxins in the kernels were measured by the Total Aflatoxins Quantitative 96-wells ELISA

kits (Helica Biosystems Inc., USA)[16]. 1D pooling by row in a 48-well plate was utilized to

save on reagent. As a reminder, kernels with < 20 ppb aflatoxin were considered uncontami-

nated and those with� 20 ppb aflatoxin were classified as contaminated kernels [17]. The

limit of detection (LOD) is 1 ppb, which is defined as the expected aflatoxin level in commod-

ity corn that produces assay signal equal to the lowest non-zero concentration standard (0.2

ng/mL). Such an LOD was used throughout the simulation.

After pooling, only 138 out of 432 kernels were individually tested after their pools were

identified as positive. Their individual concentration values were used to construct the simula-

tion function for aflatoxin contamination in corn kernels. The remaining 294 kernels were

deduced as uncontaminated and excluded from further analysis.

Fumonisin. With the same sample selection logic described above, a total of 528 kernels

were pooled by row in a 48-well plate and screened for fumonisin by the Fumonisin ELISA

Assay (Helica Biosystems Inc., USA). The fumonisin regulatory limit is 1 ppm [18]. After pool-

ing, 93 kernels were individually tested, where 43 kernels were considered contaminated

(� 1 ppm) by fumonisin and 50 were considered uncontaminated (< 1 ppm). The LOD for

this ELISA kit is 0.1 ppm in commodity corn, which corresponds to the 2.5 ng/mL concentra-

tion standard. These fumonisin data were used solely for validating the simulated fumonisin

distribution.

Simulation

Simulation of mycotoxin contamination. Simulating mycotoxin contamination includes

finding an optimal statistical distribution by the maximum likelihood estimation method to fit

the experimental data and using that statistical distribution to generate random numbers that

represent mycotoxin concentration values.

To fit the aflatoxin data of 138 kernels, aflatoxin concentration in uncontaminated kernels

was estimated to follow a modified PERT distribution with the minimum (a) at 0, the mode

(b) at 0.7, the maximum (c) at 19.99 and the shape parameter (γ) at 80. Aflatoxin concentration

in contaminated kernels was estimated to follow a customized Gamma distribution with the

shape parameter (α) at 2 and the scale parameter (θ) at 39980. As a kernel would be considered

contaminated only when its aflatoxin concentration was� 20 ppb, the support of this Gamma

distribution was shifted by 20 towards the positive direction so that any random number gen-

erated from this distribution would be in the range of [20, +1).

To simulate fumonisin distribution, a truncated log normal distribution was used to fit the

fumonisin data of 93 kernels. Given the positive threshold of 1 ppm, the fumonisin concentra-

tion in uncontaminated kernels was estimated to have a mean at -2.75 and a standard deviation

at 1.42 with a support on [0, 1). The fumonisin concentration in contaminated kernels was esti-

mated to have a mean at 3.62 and a standard deviation at 1.74 with a support on [1, +1).

Using the distributions above, 48 or 96 random numbers were drawn to represent myco-

toxin concentrations. Next, the sequence of mycotoxin concentrations was randomized and

reshaped into a matrix to mimic the layout of either a 48-well or 96-well plate.

Simulation of pooling. Monte Carlo simulations were implemented to compare the per-

formance and cost among 1D (by rows or columns), 2D, and STD pooling. First, mycotoxin

levels were simulated by drawing random numbers from the fitted distributions described

above. For simplicity, this study only simulated aflatoxin contamination to evaluate pooling

performance and cost. Fumonisin experimental data were only utilized for pooling validation,

which will be further described in the validation section. Next, the four pooling strategies were

converted into computerized models that could take the simulated aflatoxin level as an input
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and return sensitivity and specificity values as outputs. Each of these four models was iterated

for 10,000 times over a fully-crossed combination of inputs: 2 plate dimensions (48- and

96-well) and all possible prevalence levels (1–47 or 1–95 positive kernels). Exploring all possi-

ble prevalence levels was intended to demonstrate the continuous trend of performance and

cost in relation to prevalence and reveal the critical turning point in cost.

Reproducibility. Simulations were conducted in R (3.6.1) on Windows 10. In addition to

the base R packages, the following packages were also used: tidyverse (1.2.1), MASS (7.3–51.1),

EnvStats (2.3.1), and mc2d (0.1–18). The seed for initializing the pseudorandom number gen-

erator was set at 123 before running each simulation model.

Pooling simulation methods

One-dimensional (1D) pooling. 1D pooling refers to pooling all the samples of equal vol-

ume in a row or a column. In this study, standard 48-well plates (6 rows and 8 columns) or

96-well plates (8 rows and 12 columns) were used as sample layouts. Once the chemical results

were obtained for all pools, positive pools were identified by comparing pool concentration to

the positive-pool threshold, which was derived as an individual sample’s positive threshold

divided by pooling size. In the context of aflatoxin detection, an individual sample is considered

positive when its aflatoxin concentration reaches 20 ppb [17]. Based on this individual thresh-

old, positive pool thresholds were calculated and presented in Table 1. Any pool whose concen-

tration is higher than or equal to these thresholds is considered a positive pool. Eventually, all

individual samples in a positive pool are re-tested to confirm the individual sample status. For

any generic pool other than those in Table 1 or for any region with a different mycotoxin regu-

latory limit, the positive pool threshold can be calculated as Positive individual threshold
Pooling size . As a caveat, it is

imperative to keep the positive pool threshold larger than or equal to the assay’s limit of detec-

tion (LOD).

Two-dimensional (2D) pooling. 2D pooling is a potential improvement to 1D pooling

that may eliminate number of re-tests. First, 1D pooling is performed on both rows and col-

umns. Next, positive pools are identified by the thresholds listed in Table 1. Finally, any indi-

vidual sample that is present in a positive row-pool and a positive column-pool is considered

putatively positive. Re-tests are carried out for these putatively positive samples to confirm

their status.

Shifted Transversal Design (STD). STD pooling is a complex pooling strategy designed

to identify positive samples in a single run [19]. The STD pooling schemes in this study were

constructed by following instructions from [14] and [9]. Input and derived parameters that are

necessary for constructing and interpreting STD pooling schemes are listed in S2 Table.

Table 1. Summary of number of pools, pooling size, and positive pool thresholds for one-dimensional (1D)a and STD pooling in 48- and 96-well plates.

Sample size Pooling strategy Number of pools Pooling size Positive pool threshold (ppb)

48 1D Row 6 8 2.50

1D Column 8 6 3.33

STD(48; 7; 2) 14 7 2.86

96 1D Row 8 12 1.67

1D Column 12 8 2.50

STD(96; 5; 3) 15 20 1.00

aTwo-dimensional (2D) pooling uses the same parameters as 1D row and column pooling.

https://doi.org/10.1371/journal.pone.0236668.t001

PLOS ONE Sample pooling in mycotoxin screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0236668 August 5, 2020 5 / 18

https://doi.org/10.1371/journal.pone.0236668.t001
https://doi.org/10.1371/journal.pone.0236668


To reflect performing experiments with 48- or 96-well plates, sample size (n) was set as

either 48 or 96. To construct a STD pooling scheme for low-prevalence scenarios, the expected

maximum number of positive samples (d) was set as 1, as it is the lowest possible number. The

maximum number of errors expected (E) was set as 0. The maximum number of samples

allowed to mix in one pool (m) was set as 20 so that any positive pool could be detected by

ELISA (LOD = 1 ppb) [16].

With the input parameters described above, a list of possible STD pooling schemes was gen-

erated, each corresponding to a different number of pools in total. Two more parameters were

used to describe the pooling scheme: the number of pools per layer (q), and the number of lay-

ers (k). As the goal of pooling was to economize reagents, the pooling scheme that required the

fewest pools was considered optimal and was selected for sequential pooling procedures.

When prevalence was at the lowest (only 1 expected positive sample), STD (n = 48; q = 7;

k = 2) and STD (n = 96; q = 5; k = 3) would require the fewest pools and were thus chosen for

48- and 96-well plates. Specifically, 14 pools were created for the 48-well plate (pooling

size = 7) and 15 pools were created for the 96-well plate (pooling size = 20). A web-based app

has been created for generating and visualizing STD pooling scheme based on customized

input parameters (see S1 Appendix). Definitions for other STD parameters are listed in S2

Table.

Positive pools are ascertained through the same rule for determining positive pools in 1D

and 2D pooling. For aflatoxin detection, the positive-pool threshold for a 48-well plate is
20

7
¼ 2:86 ppb and that for a 96-well plate is 20

20
¼ 1 ppb (Table 1).

Eventually, positive individual samples are identified through a 2-step logical elimination

procedure. In step 1, if a pool is tested negative, then all its individual samples are marked as

negative. For the pools tested positive in step 1, we proceed to step 2 where any individual sam-

ple from those positive pools is marked as positive, unless it has already been ruled out as nega-

tive in step 1. For example, given a negative pool {A, B, C} and a positive pool {B, C, D},

samples A, B, and C will be determined as negative and D will be positive.

An example of performing STD pooling (n = 48; q = 7; k = 2) with E = 0, m = 20, d = 1 is

illustrated in S1 Fig. Details of constructing this pool are provided in S1 Appendix.

Data processing and analysis

Sensitivity and specificity analysis. In this study, sensitivity (Sn) is the number of con-

taminated kernels correctly identified as contaminated divided by the total number of contam-

inated kernels or Sn ¼ TP
TPþFN and specificity (Sp) is the number of healthy kernels correctly

identified as healthy divided by the total number of healthy kernels or Sp ¼ TN
TNþFP. It is

assumed that individual testing has 100% sensitivity and specificity. The detailed definitions

for all the abbreviations are listed in Table 2.

Table 2. Glossary of evaluation metrics.

Name Abbreviation Definition

Actual positive P The total number of contaminated kernels

Actual negative N The total number of healthy kernels or n − P
True positive TP The number of contaminated kernels that are correctly identified

True negative TN The number of healthy kernels that are correctly identified

False positive FP The number of healthy kernels misclassified as contaminated

False negative FN The number of contaminated kernels misclassified as healthy

Putatively positive TP + FP It can be derived from Sn × P + (1−Sp) × N

https://doi.org/10.1371/journal.pone.0236668.t002
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Cost analysis. Two types of cost were analyzed for each pooling strategy, including the cost

of reagent and the cost of pipetting. The experimental procedure could be generalized as three

steps: making pools from individual samples, transferring pools into ELISA assay wells, and per-

forming individual sample re-tests for positive pools. The cost of reagent was defined as the

number of assays needed to ascertain the status (positive or negative) of all individual samples.

The cost of pipetting is the number of liquid transfers by pipetting needed to create the pools,

then load the assay wells with the pooled samples and any subsequent re-tests. For the simplicity

of the analysis, it was assumed that there was no error in the chemical assay and re-tests would

only be carried out for individual samples in positive pools to ascertain the sample status. Calcu-

lation of these two costs can be expressed as formulae containing true positives (TP) and false

positives (FP) (Table 3). The minimum and maximum costs observed in the simulation were

also reported to demonstrate the optimal cost-saving effects and the worst-case scenario.

Validation

Validation of simulated mycotoxin data. Generically, validating simulated mycotoxin

data against experimental data (i.e. evaluating goodness of fit) can be summarized in two steps.

First, one draws a sequence of numbers from a positive-kernel representing distribution and a

negative-kernel representing distribution respectively and concatenates them into one

sequence. The ratio of simulated positive and negative kernels should be equivalent to the

prevalence level of the experimental data. Second, a Wilcoxon rank sum test with continuity

correction is conducted to test whether the simulated distribution is significantly different

from the empirical distribution (α = 0.05).

Given that the prevalence of aflatoxin contamination in the experimental data was approxi-

mately 4%, 9.6 × 105 random numbers were drawn from the modified-PERT distribution

(a = 0, b = 0.7, c = 19.99, γ = 80) to represent healthy kernels and 4 × 104 random numbers

were drawn from the customized Gamma distribution (20 + Gamma(α = 2, θ = 39980)) to rep-

resent contaminated kernels. These two sequences of number comprised a simulated sample

of 1 million kernels with 4% prevalence of aflatoxin contamination.

To simulate fumonisin contamination with an empirical prevalence of 46%, 1 million ran-

dom numbers were drawn where 5.4 × 105 numbers followed a truncated log normal

Table 3. Summary of reagent cost (number of assays) and pipetting cost (number of pipetting) of four pooling strategies in 48- and 96-well plates.

Plate Pooling strategy Reagent cost (number of assays) Pipetting cost (number of pipetting)

Formulaa Minb (Change) Maxb (Change) Critical prevalencec Formula Minb (Change) Maxb (Change)

48 1D Column 8 + TP + FP 14 (29%) 56 (117%) 10 (21%) 48 + 8 + TP + FP 62 (129%) 104 (217%)

1D Row 6 + TP + FP 14 (29%) 54 (113%) 11 (23%) 48 + 6 + TP + FP 62 (129%) 102 (213%)

2D 6 + 8 + TP + FP 15 (31%) 62 (129%) 10 (21%) 2 × 48 + 6 + 8 + TP + FP 111 (231%) 158 (329%)

STD (48; 7; 2) 14 + TP + FP 15 (31%) 62 (129%) 10 (21%) 14 × 7 + 14 + TP + FP 113 (235%) 160 (333%)

96 1D Column 12 + TP + FP 20 (21%) 108 (113%) 20 (21%) 96 + 12 + TP + FP 116 (121%) 204 (213%)

1D Row 8 + TP + FP 20 (21%) 104 (108%) 17 (18%) 96 + 8 + TP + FP 116 (121%) 200 (208%)

2D 8 + 12 + TP + FP 21 (22%) 116 (121%) 18 (19%) 2 × 96 + 8 + 12 + TP + FP 213 (222%) 308 (321%)

STD (96; 5; 3) 15 + TP + FP 16 (17%) 111 (116%) 12 (13%) 15 × 20 + 15 + TP + FP 316 (329%) 411 (428%)

a Each formula is used to calculate a specific cost. TP denotes the number of true positives and FP denotes the number of false positives.
b “Min” and “Max” represent the minimum and maximum number of assay/pipetting from the 10,000 iterations. Each change is calculated as the cost divided by the size

of assay plate. These results are presented in the method section to facilitate comparison between theoretical and empirical values
c Critical prevalence is defined as the number (or proportion) of positive kernels that would cost as much reagent to test with pooling as it would cost to test without

pooling.

https://doi.org/10.1371/journal.pone.0236668.t003
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distribution (μ = −2.75, σ = 1.42, min = 0, max = 0.99) to represent healthy kernels and

4.6 × 105 numbers followed a truncated log normal distribution (μ = 3.62, σ = 1.74, min = 1,

max = +1) to represent contaminated kernels.

Validation of simulated pooling sensitivity and specificity. Experimental validation was

conducted to prove the pooling simulation can accurately estimate the pooling sensitivity and

specificity. Due to limited available single-kernel samples and assay reagents, STD pooling was

validated with aflatoxin-contaminated samples whereas 1D and 2D pooling were validated

with fumonisin-contaminated samples. With the individual and pooling test results combined,

the experimental sensitivity and specificity were calculated. These experimental metrics were

then compared against the simulated sensitivities and specificities range to determine whether

the range of simulated metrics successfully encompassed the experimental ones. More specifi-

cally, the simulation was considered valid only when the experimental metrics fall within the

inner fence of the simulated range. The inner fence is defined as the range of [Q1−1.5 × IQR,

Q3 + 1.5 × IQR], where Q1 is the 25th percentile, Q3 is the 75th percentile, and IQR is the inter-

quartile range (Q3 –Q1).

To validate 1D and 2D pooling strategies, 48 corn kernels were individually tested for fumo-

nisins (B1, B2, B3) by the Fumonisin ELISA Assay kit (Helica Biosystems Inc., USA). Next, 6

row pools and 8 column pools were formed and tested, followed by positive pool identification

using the rule described above. As a reminder, all the kernels in a positive pool are putatively

positive for 1D pooling, and only the kernels at the intersection of positive row pools and col-

umn pools are putatively positive for 2D pooling.

To validate the STD pooling strategy, 48 corn kernels were pooled using the STD (n = 48;

q = 7; k = 4) pooling scheme. This specific scheme was used because prior experiments sug-

gested a prevalence of 6%, at which this pooling scheme would require the least number of

assays. After pooling and determining putatively positive samples, these 48 kernels were indi-

vidually tested for total aflatoxins following the same protocol described above.

Given the knowledge of true positives from the individual tests, the experimental pooling

sensitivity and specificity were calculated through the equations described above. To simulate

pooling under the same experimental conditions, the simulation model was supplied with the

corresponding input parameters (e.g. n = 48, same number of positive kernels as discovered in

the experiment, etc.) and was iterated for 10,000 times.

Results

Simulated mycotoxin data mimic reality

Experimental mycotoxin data were fitted with optimal statistical distributions, from which

simulated data were drawn and compared to the experimental data by the Wilcoxon rank sum

test.

Aflatoxin levels in single corn kernels were remarkably skewed. Among the 432 total ker-

nels, 294 kernels were marked as uncontaminated due to negative pooling results and 138 ker-

nels were individually assayed. 6 kernels (4%) had� 20 ppb aflatoxin and 132 kernels (96%)

had< 20 ppb aflatoxin (S2 Fig). The median aflatoxin concentration was 4.0 × 104 ppb for

contaminated kernels and 0.74 ppb for uncontaminated kernels.

As for fumonisin, 93 out of 528 kernels were tested individually where 43 kernels (46%)

had� 1 ppm fumonisin and 50 kernels (54%) had< 1 ppm fumonisin. The median fumonisin

concentration was 36 ppm for contaminated kernels and 0.07 ppm for uncontaminated ones

(S3 Fig).

According to the Wilcoxon rank sum test with continuity correction, there was no suffi-

cient evidence to prove the simulated mycotoxin distribution was different from that of the
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experimental data (p-value = 0.343 for aflatoxin; 0.768 for fumonisin). Thus, these simulated

mycotoxin data mimic observations in reality and are appropriate for pooling simulation.

Pooling performance

Pooling performance was evaluated by the sensitivity and specificity to detect a positive well in

an assay plate with different levels of prevalence (defined as the proportion of kernels

with> 20 ppb aflatoxin in an assay plate) [17]. We analyzed pooling for both 48- and 96-well

plates and present figures for the 48-well plates in the main body of the text and 96-well plates

in Supporting Information. As a reminder, sensitivity is defined as TP
TPþFN and specificity is

defined as TN
TNþFP.

For the 48-well plate, sensitivity remains 100% for all types of pooling while specificity

decreased as the contaminated kernel count increases (Fig 2). Median specificity starts

decreasing from 96% for 1D pooling by columns, 91% for 1D pooling by rows, and 100% for

both 2D and STD pooling. As the prevalence level increased, specificity for these four pooling

strategies dropped to 0%, eventually. While the median specificity for 1D pooling by rows

decreased the fastest, reaching 0% when 12 kernels were contaminated, the median specificity

for 2D pooling decreased the most slowly, reaching 0% when 18 kernels were contaminated.

In terms of the 96-well scenario, sensitivity also remained 100% and a similar decreasing

trend was observed in specificity (S4 Fig). Median specificity started decreasing from 95% for

1D pooling by columns, 91% for 1D pooling by rows, and 100% for both 2D and STD pooling.

Unlike the 48-well scenario, median specificity for STD pooling decreased the fastest, reaching

0% when 13 kernels were contaminated, while median specificity for 2D pooling decreased the

most slowly, reaching 0% when 30 kernels were contaminated.

Cost of reagent

Pooling strategies are expected to have the minimum reagent cost at lowest prevalence and

have increasing reagent costs as increasing prevalence of positives requires additional re-test-

ing; at some critical point the number of assays required for pooling, which is a proxy for

reagent cost, may surpass the number of assays required for un-pooled testing.

In the case of 48-well plates, pooling by any of the four strategies could, at lowest preva-

lence, reduce the consumption of reagent to around 30% (14–15 assays) compared to what

would be needed without pooling (48 assays) (Fig 3 and Table 3). When the number of positive

kernels reached a critical prevalence (around 10 positive kernels or 21%), all pooling strategies

would require approximately the same number of assays as does non-pooled testing. Beyond

the critical prevalence level, pooling strategies no longer saved assays and started to require

more assays than testing without pooling. Eventually, the number of assays reaches a plateau

of around 55 units for 1D pooling and 62 units for 2D and STD pooling.

For the 96-well plates (S5 Fig and Table 3), pooling could reduce the number of assays to

around 20% (16–21 assays) compared to testing without pooling (96 units of reagent). Similar

to the case of 48-well plates, as the prevalence level increased, each pooling strategy would

reach a critical point where the cost-saving effect by pooling became marginal. While STD

pooling reached the critical point the fastest (12 positive kernels or 13%), 1D pooling by col-

umns reached it the slowest (20 positive kernels or 20%).

Cost of pipetting

The number of pipetting needed for pooling was invariably higher than that for without pool-

ing (Figs 4 and S6). For 48-well plates, 1D pooing would require 1.3–2.2 folds more pipetting
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than without pooling while 2D and STD pooling would need 2.3–3.3 folds more pipetting. In

terms of 96-well plates, the pattern of fold change in 1D and 2D pooling was similar to what

was observed in the 48-well plates. However, STD pooling would demand much more pipett-

ing, ranging from 3.3–4.3 folds (S6 Fig).

Simulated pooling was validated with experimental pooling

Sensitivity and specificity values calculated from the experimental pooling data were compared

with those from the simulation to determine whether the simulation could make accurate esti-

mation (Table 4).

For 1D and 2D pooling validation, the experimental sensitivities were 100% for all three

pooling strategies, which were the same as the medians of the simulated sensitivities. While the

Fig 2. Sensitivity and specificity of four pooling strategies at different prevalence levels for 48-well plates. The point represents the

median and the shaded area represents the range from 2.5th percentile to 97.5th percentile. (A) 1D pooling by columns. (B) 1D pooling

by rows. (C) 2D pooling. (D) STD-pooling (n = 48; q = 7; k = 2).

https://doi.org/10.1371/journal.pone.0236668.g002
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specificities of 1D pooling by column (39%) and 2D pooling (39%) were higher than the

median of the simulated specificity (0%), all the experimental specificities still fell within the

acceptable range.

In terms of validating STD pooling, only 6 out of 48 kernels are above 20 ppb and are iden-

tified as aflatoxin-positive kernels. This prevalence level suggested STD (n = 48; q = 7; k = 4)

was a suitable pooling scheme. Again, the experimental sensitivity was the same as the median

of the simulated one (100%). While the experimental specificity (86%) was lower than the

median of the simulated specificity (95%), it was still within the acceptable range.

Overall, the validation of simulated metrics against the experimental ones showed that the

simulated sensitivities were highly accurate and precise in predicting experimental sensitivity

Fig 3. Total number of assays needed for four pooling strategies at different prevalence levels for 48-well plates. The dashed line

indicates that 48 assays would be needed without pooling. The dot represents the median and the shaded area represents the range from

2.5th percentile to 97.5th percentile. (A) 1D pooling by columns. (B) 1D pooling by rows. (C) 2D pooling. (D) STD-pooling (n = 48; q = 7;

k = 2).

https://doi.org/10.1371/journal.pone.0236668.g003
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whereas the simulated specificities may be less precise in prediction, albeit within the allowable

range.

Discussion

All pooling strategies can detect positive samples without false negatives

1D, 2D, and STD (n; q; k = 48; 7; 2 and 96; 5; 3) pooling can detect all contaminated kernels

(> 20 ppb) without false negatives. This finding relieves experimenters of the concern that

pooling would dilute the positive samples and result in failure of detection. The finding would

remain valid regardless of the actual prevalence level, which is usually unknown prior to

Fig 4. Total number of pipetting for four pooling strategies at different prevalence levels for 48-well plates. The dashed line

indicates that without pooling 48 times of pipetting would be needed to transfer samples into the assay plate. The dot represents the

median and the shaded area represents the range from 2.5th percentile to 97.5th percentile. (A) 1D pooling by columns. (B) 1D pooling

by rows. (C) 2D pooling. (D) STD-pooling (n = 48; q = 7; k = 2).

https://doi.org/10.1371/journal.pone.0236668.g004
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experiments. However, it is worth mentioning that there is a limit to the pooling size in the

context of measuring aflatoxin with ELISA assays. The conclusion would only hold when a

pool satisfies the following inequality:
positive individual threshold

pooling size � LOD, where LOD is the limit of

detection of the assay. This paper used 20 ppb as the positive aflatoxin threshold to comply

with the U.S. regulations for corn intended for human consumption and 1 ppb as the LOD.

These values yield a maximum pooling size of 20. For countries or regions with more stringent

regulation on aflatoxin, the maximum pooling size will be smaller. For example, the EU’s afla-

toxin regulatory limit is 4 ppb for groundnuts intended for direct human consumption and

thus the maximum pooling size for ELISA will be 4 [20]. For other assays, there may be differ-

ent criteria for choosing a proper pooling size, such as using IC50 values for enzyme screening

[21].

Our study only considers scenarios where the pooling size is within the allowable limit. In

our simulation, the conclusion of 100% sensitivity remains valid even when
positive individual threshold

pooling size

is at the LOD. This may not be true in real experiments and one could observe false negatives,

given that the positive signal is blurry when the analyte concentration is near the LOD. When
positive individual threshold

pooling size is smaller than LOD, it is highly likely to have false negatives. Researchers

using the guidance would need to determine pooling size limit for their specific assay and

select an appropriate pooling strategy.

This study explores the advantages of pooling on the foundation of single kernel mycotoxin

measurement, which is a method adopted by several studies investigating the plausibility of

high-throughput mycotoxin detection [10,22–24]. Admittedly, it is more common in the

industry to use representative samples rather than single kernels to estimate the overall myco-

toxin level in bulk corn. Mycotoxin level in a representative sample tends to be less extreme

due to the fact that it is formed by compositing multiple small portions of grain. Nevertheless,

mycotoxin level in bulk corn has been reported to be skewed; while many composite samples

are low in mycotoxin, a few samples may exceed the regulatory limit and reach an astonish-

ingly high level [25,26]. This creates an opportunity for pooling as it equates to a scenario with

low-prevalence events, which fits the precondition for pooling. Theoretically, the conclusion

of 100% sensitivity and decreasing specificity should still hold true for pooling representative

bulk samples as long as the aforementioned inequality is satisfied.

Trade-off between cost of reagent and cost of pipetting

It has been reported in multiple studies that pooling can lower the cost of reagents to varying

degrees in large-scale experiments [4,5,27]. In this study, pooling would reduce the number of

Table 4. Validation of simulated sensitivity and specificity against empirical metrics for four types of pooling strategies in 48-well plates.

Pooling

strategy

Mycotoxin Number of positive

kernelsa
Pooling sensitivity Pooling specificity

Experiment Simulation (Median with inner

fences)b
Experiment Simulation (Median with inner

fences)b

1D Row Fumonisin 17 (35%) 100% 100% (100% - 100%) 0% 0% (0% - 0%)

1D Column Fumonisin 17 (35%) 100% 100% (100% - 100%) 39% 0% (0% - 48%)

2D Fumonisin 17 (35%) 100% 100% (100% - 100%) 39% 0% (0% - 48%)

STD (48; 7; 4) Aflatoxin 6 (13%) 100% 100% (100% - 100%) 86% 95% (80% - 100%)

a Prevalence of positives is presented in the parentheses.
b The inner fences include the lower inner fence (Q1–1.5 × IQR) and the upper inner fence (Q3 + 1.5 × IQR), where Q1 = 25th percentile, Q3 = 75th percentile, and

IQR = Q3 –Q1. The simulation is considered valid when the experimental metrics fall within the inner fences of the simulated metrics.

https://doi.org/10.1371/journal.pone.0236668.t004
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assays by around 69% - 71% for a 48-well plate and around 78% - 83% for a 96-well plate at

most. This could potentially alleviate the economic burden of testing large quantities of sam-

ples with low prevalence in a resource-limited setting. However, the cost saving effect would

diminish when the prevalence increases because there would be more positive pools and thus

more re-tests to perform. Such a finding corroborates a previous study’s result that lower prev-

alence leads to higher proportion of tests saved at a fixed pool size [6]. Beyond the critical prev-

alence level, pooling would backfire and cost more in reagents than without pooling. Hence,

prior knowledge of prevalence level, often acquired from empirical data, would be useful to

determine whether pooling is likely beneficial.

Potential savings in reagents come with a price of increasing cost in pipetting. These four

pooling strategies would multiply the number of pipetting by 1.3–3.3 folds for a 48-well plate

and 1.2–4.3 folds for a 96-well plate. Compared to 1D pooing, 2D and STD pooling tend to

perform slightly better at reducing reagent cost, but they would also require much more pipett-

ing. This may defeat the purpose of cost-saving if the cost incurred by extra labor work or

extended working hours becomes substantial, let alone the empirical fact that long hours of

repetitive pipetting is an error-prone process.

To reconcile the conflict between cost of reagent and cost of pipetting, it may be helpful to

estimate the total cost of pooling and make comparison with the cost of non-pooling. This

study, along with previous research, suggests that prevalence level in the sample has a heavy

influence on test specificity, which drives the cost of reagent and pipetting [6]. With the esti-

mated prevalence level, one can find the corresponding median number of assays and pipetting

from the simulation results. These estimates could be used to calculate the expected total cost of

pooling, which may be expressed as a weighted sum incorporating the full cost of reagents, cost

of pipetting, and other miscellaneous costs including but not limited to human labor, experi-

ment time, equipment purchasing, and maintenance. Depending on the experimental setting,

each laboratory may put unique weights on these sources of expenditure and thus the same

experimental task could result in different total costs. It is only advisable to implement pooling

when the expected total cost of pooling is lower than the total cost of without pooling.

Automation

In cases where pooling is required for multiple batches of sample, automating the pooling pro-

cess may be a good investment. It would not only remarkably reduce the workload for lab tech-

nicians but also perform pooling with increased precision and lower risk of pipetting error

that human experimenters could achieve. Applications of automated pipetting have been well

developed and utilized in large-scale experiments, such as high throughput screening for target

molecules in the pharmaceutical industry. Robotic platforms with integrated chemical assay

workstation have been built and used to facilitate chemical and biological profiling of potential

drug compounds [2]. A more recent study of utilizing pipetting robots to perform assay on

antioxidants has also shown great possibility that these automated systems can be adapted to

conduct pooling in a medium-scale experiment setting [28].

Conclusions

Pooling is widely adopted in large-scale chemical experiments with the purpose of rapid

screening and cost reduction [19]. While pooling theories have been well established and vali-

dated in a large-scale experimental setting, there remains an opportunity for practical instruc-

tion of pooling in medium-scale experiments [8]. Our study strives to provide detailed

instruction for pooling in a medium scale setting and examines how different pooling strate-

gies affect assay performance, reagent cost, and cost of pipetting.
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In our Monte Carlo simulation, we simulated aflatoxin-contaminated kernels from fitted dis-

tributions and used four different pooling strategies to pool samples before subjecting them to

aflatoxin detection assay. Simulation results demonstrate that all positive samples can be detected

after pooling by all four strategies (1D by rows, 1D by columns, 2D, STD), regardless of the actual

prevalence level. Prevalence level affects false negative rate and plays a major role in deciding

whether pooling would save reagents. Pooling could reduce the cost of reagent by around 70% in

48-well plates and 80% in 96-well plates. When there is only one positive sample, 1D and STD

pooling would be the most cost-efficient for 48- and 96-well plates respectively. However, such a

cost-saving effect would be achieved only when prevalence level is lower than approximately 21%

for experiments conducted in 48-well plates and a range of 13% - 21% for 96-well plates, with

STD pooling being most sensitive to prevalence level and 1D pooling by column most tolerant.

Meanwhile, pooling would inevitably increase the number of pipetting by 1.3–3.3 folds for

48-well plates and 1.2–4.3 folds for 96-well plates. More specifically, the inflation of pipetting cost

is the mildest when 1D pooling by row is implemented while STD pooling is likely to cause a

surge in pipetting cost. Because prevalence level has a substantial influence on reagent and pipett-

ing cost, it is crucial to estimate the prevalence level of sample so that the experimenter can calcu-

late the total cost of pooling. With the total cost, the experimenter may decide whether pooling is

appropriate and which pooling strategy to employ if pooling is worth trying.

Generally, 1D pooling would be the most cost-saving for both 48- and 96-well plates when

considering the reagent-pipetting trade-off. STD pooling, however, could be a better alterna-

tive when automation is available to offset the soaring cost incurred by extra pipetting.

Supporting information

S1 Fig. The STD pooling scheme for 48 samples with 1 expected positive sample, 0

expected error, and a maximum of 8 extracts allowed to be pooled. The horizontal dashed

lines split the pooling scheme into 2 layers. There are 14 pools; each layer contains 7 pools and

each pool comprises a combination of samples indicated as squares.

(TIF)

S2 Fig. Comparison between the distribution of real aflatoxin data and simulated data.

The histogram represented the real aflatoxin concentration distribution, with 6 kernels (4%)�

20 ppb aflatoxin and 132 kernels (96%) < 20 ppb aflatoxin. The density plot (grey shaded area)

illustrated the distribution of simulated data with 9.6 × 105 healthy kernels (96%) and 4 × 104

contaminated kernels (4%).

(TIF)

S3 Fig. Comparison between the experimental and simulated distribution of fumonisin.

The histogram represented the experimental fumonisin concentration with 43 kernels (46%)

� 1 ppm and 50 kernels (54%)< 1 ppm. The density plot (grey shaded area) illustrated the dis-

tribution of simulated data with 5.4 × 105 (54%) healthy kernels and 4.6 × 105 (46%) contami-

nated kernels.

(TIF)

S4 Fig. Sensitivity (circle) and specificity (triangle) at different levels of prevalence for

96-well plates. The point represents the median and the shaded area represents the range

from 2.5th percentile to 97.5th percentile. Top left panel is 1D pooling where columns are

pooled, top right panel is 1D pooling where rows are pooled, bottom left panel is 2D pooling,

and bottom right panel is STD-pooling (n = 96; q = 5; k = 3).

(TIF)
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S5 Fig. Total number of assays needed at different levels of prevalence for 96-well plates.

The dashed line indicates that 96 tests would be needed without pooling. The dot represents

the median and the shaded area represents the range from 2.5th percentile to 97.5th percentile.

Top left panel is 1D pooling where columns are pooled, top right panel is 1D pooling where

rows are pooled, bottom left panel is 2D pooling, and bottom right panel is STD-pooling

(n = 96; q = 5; k = 3).

(TIF)

S6 Fig. Total number of pipettings at different levels of prevalence for 96-well plates. The

dashed line indicates that without pooling 96 times of pipetting would be needed to transfer

samples into ELISA assay plate. The dot represents the median and the shaded area represents

the range from 2.5th percentile to 97.5th percentile. Top left panel is 1D pooling where columns

are pooled, top right panel is 1D pooling where rows are pooled, bottom left panel is 2D pool-

ing, and bottom right panel is STD-pooling (n = 96; q = 5; k = 3).

(TIF)

S1 Table. The STD-pooling scheme (n = 48; q = 7; k = 2) in table format for 48 samples.

Each pool consists of 7 samples of equal volume. Number 1 to 48 represents the sample index

and number 0 represents the solvent (80% methanol solution).

(DOCX)

S2 Table. Glossary of important Shifted Transversal Design parameters.

(DOCX)

S1 Appendix.

(DOCX)
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