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Abstract

Diadromous fishes have drastically declined over the last century, especially in Europe.

Several authors have highlighted the role of large dams in this decline, but in fact, its causes

are potentially multiple and cumulative, including degradation of local environmental condi-

tions and widespread fragmentation of hydrographic networks associated with the pervasive

establishment of smaller barriers. Consequently, there is a need to improve the identification

and prioritization of the drivers of diadromous species loss in order to identify and apply the

most appropriate conservation and restoration measures. In this study, we used both histori-

cal sources (from mid-18th to early 20th century) and current data to quantify the long-term

loss of diadromous taxa over 555 sites throughout the French river network. Then, we mod-

eled the effects of several anthropogenic pressures (e.g. barriers, water quality, hydrological

and river morphological alterations) on diadromous taxon loss. Lastly, we assessed the

potential consequences of four different scenarios of anthropogenic pressure reduction.

Due to uncertainties in historical sources, some species were grouped into taxa leading to a

potential underestimation of actual species extinctions. Despite this limitation, our results

showed that the decline in diadromous assemblages is widespread but with contrasting

magnitudes depending on site locations. The maximum height and density of barriers

appeared as the major factors of taxon loss. Over the scenarios tested, we observed that

exclusively improving local conditions have much more limited effects than restoring river

continuity. Focusing actions on large dam removal did not show the strongest responses

compared to removing medium and small-sized barriers. For effective and sustainable res-

toration of diadromous fish assemblage, (1) historical occurrences of diadromous fishes

should be used as an indicator for assessing recovery, and (2) undertaken measures must

be adapted to each basin to target and limit the number of barriers to remove while allowing

diadromous fish recovery.
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Introduction

Diadromous fish species have complex life cycles which include long-distance migrations

between freshwater and marine habitats to access food resources and spawning grounds. As a

particular component of biodiversity [1], they constitute a remarkable ecological and conserva-

tional heritage and in some cases are recognized as keystone species of ecosystems [2]. However,

due to their economic and recreational values and the numerous pressures they face through

their life cycle, diadromous fishes appear to be more vulnerable to human activities than strictly

freshwater fishes [3–5]. Thus, for several centuries and especially since the nineteenth century,

there has been a continuous and dramatic decline in diadromous fish populations, particularly

in European and North American rivers [6, 7]. As a result, many diadromous species are now

classified as rare, endangered or extinct, in the IUCN Red List [8].

Most studies addressing the potential causes of declines in diadromous fish populations have

cited the disruption of longitudinal continuity [7, 9, 10]. Indeed, diadromous species share a life-

history that makes them particularly sensitive to river fragmentation induced by the construction

of dams, weirs and sluices. Such physical barriers may reduce or compromise the accessibility of

suitable habitats necessary to growth or reproduction and may, in turn, threaten the survival of

species [6, 11, 12]. Moreover, the channelization of river stretches, the alteration of riparian zones,

the lateral and transversal barriers and the substrate extraction have deeply impacted river mor-

phology and sediment transport, leading to degradation of available habitats for different facets of

migratory fish life cycles (e.g. spawning ground, nursery areas, shelter) [7]. Hydromorphological

alterations also influence physicochemical processes (e.g. temperature, dissolved oxygen, sus-

pended matters) and may worsen the alteration of water quality due to domestic and industrial

pollution which also adversely affect diadromous species [13–15]. The causes of the decline in

abundance or local extinction are varied and probably result in cumulative and/or interacting

anthropogenic effects [16, 17]. However, the strong focus on the "barrier effect" induced by physi-

cal obstacles in past works may have hampered consideration of other factors. Consequently, their

relative contribution to the decline in diadromous fishes has been poorly studied [18]. There is,

therefore, an urgent need to develop approaches that provide reliable quantification of the specific

impacts of the different anthropogenic pressures acting in streams on diadromous fish assem-

blage. This would help to ensure the implementation of effective mitigation measures and to pro-

vide appropriate responses to national and international regulation policies worldwide.

In the present study, we evaluated both the historical and current composition of diadromous

fish assemblage throughout the metropolitan French hydrographic network, in order to identify

the major factors associated with species loss in rivers and to evaluate different mitigation mea-

sures. To this end, we structured our analysis in a four-step procedure: (1) collecting historical

data at the national level to reconstitute the past distribution map of diadromous taxa; (2) quanti-

fying local taxon loss on 555 sites covering all French watercourses by comparing historical distri-

butions with current data; (3) establishing a model linking diadromous taxon loss to several

variables related to impairments in longitudinal continuity, water quality, hydrology, and river

morphology; and (4) using this model for identifying and ranking the main drivers involved in

the erosion of diadromous fish assemblages and for assessing the potential effects of four scenarios

of human pressure reduction on the recovery of diadromous species assemblages.

Materials and methods

Study area

The study area includes the French metropolitan hydrographic network which represents

430,000 km, delimited by eight large basins draining 552,000 km2 (Fig 1). The main rivers are
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Fig 1. Major rivers and streams in France and large basin boundaries. BE: Belgium; DE: Germany; NL: The Netherlands; LU: Luxembourg; IT: Italy; UK:

United Kingdom; ES: Spain; CH: Switzerland.

https://doi.org/10.1371/journal.pone.0236575.g001
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the Loire, Seine, Garonne and Rhone rivers whose cumulated catchments represent 62% of the

metropolitan territory. The territory is geologically and climatically varied, with 22 different

large hydroecoregions [19] and the majority of rivers flows in plain, with 75% of the area

below 400 m elevation. The country counts 67 million inhabitants in 2019 (40 million in 1900)

and the main sectors of economic activity are services followed by agriculture and industry.

Nowadays, 51% of the land cover is represented by agricultural areas, 9% by urban areas

(including transport and industrial areas) and 40% by natural areas.

Diadromous fish data

Historical data. Historical data on diadromous fish occurrence were collected from a

large range of historical sources including different kinds of public archives related to fishery

and fish stocks, old scientific and naturalist literature and more occasionally iconographic

sources (old photographs and postcards). In total 165 documents were consulted (S1 File).

To characterize the historical distribution of species, we focused on the period from the

mid-18th century to the beginning of the 20th century. We selected this period because (1) it

provided a lot of data on past fish distribution, unlike earlier periods, and (2) it was prior to

the major transformations that affected European rivers (e.g. large dam construction, wide-

spread industrial and domestic pollution, large scale river channelization [20]). Because some

specific quantitative data (e.g. abundance, spawning grounds) was rarely available, we only

considered the species occurrence.

Initially, we planned to consider all diadromous species potentially encountered in metro-

politan French rivers. However, a large amount of evidence has indicated that the past distribu-

tion of eels (Anguilla Anguilla) was very wide; and probably due to this wide distribution,

historical information for this species was too spatially imprecise to establish a suitable distribu-

tion map. Notwithstanding its interest from a conservational point of view (classified as criti-

cally endangered [21]), we excluded this species from our approach. Our work focused on 13

diadromous fish species, including one species classified as regionally extinct in the IUCN

National Red List [21] and four as threatened, two of which are critically endangered (Table 1).

Table 1. List of the 13 diadromous species considered for taxon distribution maps; Species are associated with their national conservation status and their taxon

group name if gathered.

Common name Latin name Taxon group name Conservation

status�

Atlantic sturgeon Acipenser oxyrinchus Sturgeons RE

European sturgeon Acipenser sturio Sturgeons CR

Allis shad Alosa alosa Shads CR

Twait shad Alosa fallax Shads NT

Thicklip grey mullet Chelon labrosus Mullets DD

Thinlip grey mullet Liza ramada Mullets LC

River lamprey Lampetra fluviatilis Lampreys VU

Sea lamprey Petromyzon marinus Lampreys EN

Atlantic salmon Salmo salar Diadromous salmonids NT

Sea trout Salmo trutta Diadromous salmonids LC

Houting Coregonus oxyrinchus - NE

Smelt Osmerus eperlanus - NT

European flounder Platichthys flesus - DD

�IUCN National Red List (2019)

RE: Regionally extinct; CR: Critically endangered; EN: Endangered: VU: Vulnerable; NT: Near threatened; LC: Least concern; DD: Data deficient; NE: Not evaluated.

https://doi.org/10.1371/journal.pone.0236575.t001
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Due to identification uncertainties of some species in old documents (e.g. use of the com-

mon French name not precise enough to identify species), we decided to group some species

under single taxon (Table 1). It should be noted that these taxa gathered species with quite sim-

ilar ecological requirements. The species-level identification was kept for European flounder,

houting and smelt, as no taxonomical confusion was possible for these species. Thus, eight dif-

ferent taxa were considered in further analyses.

Historical occurrences were then used for reconstructing species or taxon past distribution

within the river network. For this purpose, we georeferenced all past occurrences (n = 1830).

This task was made difficult by the lack of precision of some historical data. When an occur-

rence had not been precisely located in historical documents, we applied the following conser-

vative approach: (1) when a species was assigned to a river within an administrative district

(without more spatial precision), we georeferenced this occurrence to the most downstream

section of the river in that district; (2) when the presence of a species was assigned to a river

without any additional precision on its location, we georeferenced this occurrence on the

downstream section of the river (in practice ca. 5 km from the confluence in the case of a tribu-

tary to a larger river and ca. 10 km from the sea for a river flowing directly into the sea). A his-

torical distribution map was generated for each taxon based on occurrence data, assuming that

the considered taxon was present in the whole downstream hydrographic network for each

observation. The dataset of historical observations has been made available online on the GBIF

[22].

Current data. Current data on diadromous fish occurrences were collected by The French

Office of Biodiversity (OFB) over 1948 sites in France for the period 1978–2007. For each site,

this dataset provides expertise on presence/absence of diadromous species, specifying natural

presences or/and from fish stocking. Since we focused on sustainable natural populations, we

excluded cases where the presence of a species was only attributed to restocking operations. To

maintain consistency with historical data, we excluded eel data and grouped the species in the

same way we did with historical data. Current occurrence data were then integrated into a

Geographical Information System, and current distribution maps were generated.

Loss of diadromous fishes

In order to assess the loss of diadromous fish at the assemblage level, we compared the current

and historical lists of taxa recorded for each of the 1948 sites. Initially, we planned to base our

assessment of diadromous fish loss on a ratio between the number of current and historical

taxa. However, for about 11% of sites, we noticed that one or more taxa currently mentioned

did not appear in historical occurrences. We assumed that these situations were essentially a

consequence of gaps in knowledge of the historical distributions of species rather than true

species colonization in areas they had never occupied before. We based our assumption on the

fact that the vast majority of these cases concerned (1) taxa of low economic interest that con-

sequently receiving less attention in historical sources (e.g. mullets, lampreys or to a lesser

extent shads) and/or (2) small rivers of less importance that were more rarely mentioned in

historical sources. To tackle this issue, we calculated the potential diadromous taxon richness

corresponding to the total number of taxa identified in both historical and current records.

Then, at the site scale, we based our assessment of the Loss of Diadromous Fish taxa (LDF) on

a ratio between the current and potential taxon richness (adapted from a metric developed in

the European EFI+ project [23]):

LDF ¼ 1 � ðCurrent Richness=Potential RichnessÞ
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An LDF value of “1” corresponds to the loss of all taxa historically recorded; whereas an

LDF value of “0” means that no historically recorded taxa has been lost. On a total number of

1948 sites, 1393 (71.5% of the dataset) had neither historical nor current occurrence data. The

LDF variable was calculated for 555 sites (29.5% of the dataset).

In addition, for each taxon, we assessed the loss of the distribution range throughout the

whole metropolitan French hydrographic network by dividing the river length currently occu-

pied by the river length potentially occupied (combining past and current distribution ranges).

Environmental data

Environmental variables reflecting natural conditions, fragmentation (presence of barriers),

water quality and morphological and hydrological alterations were compiled for each of the

555 sites in order to study the possible links between diadromous fish loss and natural and

anthropogenic river features.

The distance to the sea ("dist_sea"), the altitude ("alti") and the upstream catchment area

("area") were calculated for each site. These variables were useful to take into account the natu-

ral context of the sites and their position along the hydrographic network. Moreover, consider-

ing that species composition of diadromous fish assemblage could naturally vary according to

biogeographical regions (e.g. between the Atlantic and Mediterranean basins), we defined

eight hydrographic units, adapted from Oberdorff et al. [24], to integrate a possible biogeo-

graphic influence on species loss. These hydrographic units (defined under the variable

"basin") identify large river basins or aggregate smaller coastal catchments according to the sea

into which they flow (Fig 1).

To characterize river fragmentation downstream of each site, we used the ROE database

(Référentiel des Obstacles à l’Écoulement) [25]. This database provides localization and char-

acteristics of barriers in the French river network (e.g. dams, weirs, locks, sluices, obstacles

induced by bridges) as well as information on fish pass facilities if existing. In this database, a

selection was conducted to remove barriers with no expected impact on diadromous fishes. As

a result, barriers listed as "in project", "in construction" and "destroyed" were not retained.

Only barriers across the river course were considered. Longitudinal embankments, levees and

fish farm grids were therefore excluded. To avoid bias, when several river branches existed,

only the barriers located in the main stem were considered. Thereby, more than 70,000 barri-

ers were selected. The height of barriers is relevant information to estimate the difficulty for

fish to migrate in the river network [26]. So we tried to determine this height, defined in the

ROE database by the difference between the upstream and downstream water surface at low

water level, for each selected barrier. In the selected database, 3% of the barriers had a null

height; these barriers were not included in further analysis as they were considered

"destroyed". Half of the total number of barriers had a precisely defined height, while 7% of the

barriers had only height range information. In that case, the mean of the range was used (for

example if the height range was 1 to 2 m, the estimated height was 1.5 m). Forty percent of the

barriers had no height information at all. In such a case, the height was estimated according to

the barrier type and location: as applied in Miguet [27], the mean height of the same type of

structure in the same hydroecoregion was allocated [19]. Given that several rivers have their

downstream part outside the French territory (e.g. Rhine, Moselle, Meuse, Sambre, Scheldt),

data about barriers present in Germany, Belgium, and the Netherlands were gathered from

other sources. For the Rhine, Meuse, Moselle, and Sarre, data were collected from the reports

of the International Commission for the Protection of the Rhine [28], the International Com-

mission for the Meuse [29] and the International Commission for the Protection of the

Moselle and Sarre [30]. These reports provide information on the main barriers (location,
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height and fish pass). For the Sambre, data were collected from a private website [31] and for

the Scheldt from the website VisuRIS [32]. A visual inspection was performed using satellite

views on Google Maps1 to complete the survey and ensure an exhaustive enumeration of

major barriers (e.g. dams, locks, weirs).

For each site, several variables reflecting downstream continuity (i.e. from the site to the

sea) were calculated. The number of downstream barriers ("barriers") was estimated and their

density ("density") was calculated by dividing the number of downstream barriers by the dis-

tance (in km) between the site and the sea [33]. The maximum height ("max_height"; i.e. the

height of the highest downstream barrier) and the cumulated height ("sum_height"; i.e. the

sum of the heights of all the downstream barriers) were calculated. A fish pass ratio ("pass_ra-

tio") was calculated by dividing the number of downstream barriers with fish pass facility by

the total number of downstream barriers. For the sites where no downstream barriers were

recorded, the fish pass ratio was set to one. Only the fish passes of the following types were

considered as relevant: pool passes, fish lifts, fish locks, counterflow passes, vertical slot passes

and bypass channels [34].

Morphological and hydrological conditions of each site were characterized at the local

scale. For each site, data from expert judgment had been collected for nine morphological and

four hydrological alteration parameters (see [35, 36] for previous uses of these data). For each

parameter, the alteration intensity was described by four levels: "Null", "Low", "Medium" and

"High". We summarized morphological and hydrological alterations using multiple correspon-

dence analyses (MCA; [37]) performed on each group of parameters. The site coordinates on

the first axis of both MCA were used to create two synthetic quantitative variables ("alter_mor-

pho" and "alter_hydro"), describing a gradient of morphological and hydrological alteration

(S2 and S3 Files). The more positive the variable value was, the more altered the site was.

To characterize water quality at the site scale, we used data extracted from the online data-

base Naïades [38], which provided quantitative information on 212 physicochemical parame-

ters (due to their poor availability, micropollutants were excluded). For each parameter, the

values were averaged over 30 years, from 1978 to 2007, corresponding to the fish expertise

period considered here. These parameters were then pooled into five groups: organic, phos-

phorous and nitrogenous matters (excluding nitrates), nitrates, and suspended matter. For

each group, the water quality status is defined by five classes: "Bad", "Poor", "Moderate",

"Good", "High". The class limits were defined according to the thresholds recommended in the

SEQ-Eau version 2 [39]. An MCA was used to create a synthetic variable ("alter_wq") describ-

ing a gradient of water quality alteration, using the site coordinates on the first axis (S4 File).

Model

To analyze variations in LDF (expressed as a proportion) against environmental variables we

used a logistic generalized linear mixed modeling approach (GLMM) with a binomial distribu-

tion and a logit link. Depending on their distribution, the environmental variables were trans-

formed when necessary to avoid asymmetric distribution due to the presence of extreme

values (Table 2). To ensure the relative independence of predictors and to avoid multicolli-

nearity, we first calculated Spearman rank correlation coefficients among environmental vari-

ables. When variables were highly correlated (Spearman rho < -0.7 or > 0.7), only one of

them was included in the multivariate analysis [40]. For example, the variable "dist_sea" was

strongly correlated to "area", "barriers" and "alti", and the variable "max_height" was strongly

correlated to "sum_height". The variables "dist_sea" and "max_height" were retained as they

provided a better performance of the model (lower Akaike Information Criterion; AIC; [41])

in a preliminary analysis. The variable "density", "alter_wq", "alter_morpho", "alter_hydro" and
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"pass_ratio" were all selected as they were not strongly correlated to other variables. Because of

the location of study sites, spatial autocorrelation might affect our analysis. To downplay the

effect of spatial autocorrelation, the variable "basin" was used as a random effect factor to take

into account large-scale biogeographic dissimilarities [42–45].

To identify the most relevant model we performed a multi-model selection approach [46]

using the “MuMIn” package [47]. We first ranked the candidate models (covering all the possi-

ble combinations of predictor variables) according to their AICc (correct AIC for small sample

size). We then identified the best models as those with the lowest AICc values and with a thresh-

old value of ΔAICc< 2. In a next step, considering this set of best models, we applied a model

averaging procedure to assess the relative importance of each predictor variable (by summing

the Akaike weights of all the models that include that variable), we considered a predictor as

noticeably important when its relative importance value exceeded 0.5 [48]. Finally, we built our

final model including only the predictor variables identified as important in the previous step

(importance value> 0.5). The variance inflation factor (VIF) was applied to detect a problem of

multicollinearity [49]. Since environmental data were not available for every site, the model was

built on a reduced number of sites (n = 361, 18.5% of the original dataset). Marginal and condi-

tional R-squared were calculated to assess the variance explained by fixed and random effects

[50]. To assess the predictive performance of the model, cross-validation was performed by split-

ting the calibration dataset into two subsets, the “training” and “test” datasets, containing respec-

tively 70% and 30% of the calibration sites [51]. The splitting was based on a random selection

but we forced the process to comply with the initial proportion of sites per basin in both datasets.

The model coefficients were re-estimated using the training dataset. The model goodness of fit

was evaluated both on training and test datasets using three metrics: the mean absolute error

(MAE), the root mean squared error (RMSE) and the squared correlation between the response

variable and the predicted values (R2). This operation was repeated 200 times.

The significance of the fixed term coefficients in the model was assessed with a Wald test

and profiled confidence intervals were calculated. This step allowed us to precise the uncer-

tainty around the significance of coefficients in the relationship between environmental vari-

ables and the LDF variable. To visualize the effect of environmental variables on the LDF

variable, the specific marginal effect of each environmental factor was represented along the

environmental gradient. The values of the other environmental variables were held constant at

their median [52]. Finally, the magnitude of the random effect was assessed by comparing the

basin intercepts.

Table 2. Candidate variables to model the potential effects of environmental constraints on richness loss of diadromous fishes.

Variable Description (units) Transformation Candidate for the GLMM (X) Scale

alter_hydro Alteration of natural hydrology (-) - X Site

alter_morpho Alteration of river morphology (-) - X Site

alter_wq Alteration of water quality (-) - X Site

alti Altitude of the site (m) sqrt(x) Site

area Upstream catchment area (km2) sqrt(x) Upstream

barriers Number of downstream barriers (-) log(x+1) Downstream

basin Basin name (-) - X Basin

sum_height Cumulative heights of downstream barriers (m) log(x+1) Downstream

density Density of downstream barriers (barriers/km) sqrt(x) X Downstream

dist_sea Distance between the site and the sea (km) sqrt(x) X Downstream

max_height Maximum height of downstream barriers (m) log(x+1) X Downstream

pass_ratio Ratio of downstream fish passes (-) sqrt(arcsin(x)) X Downstream

https://doi.org/10.1371/journal.pone.0236575.t002
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Projections under mitigation scenarios

From the model previously built, we tested the effect of four mitigation scenarios on potential

diadromous fish recovery: (1) removal of all large-size barriers (height> 10 m), (2) removal of all

medium-size barriers (height between 2 and 10 m), (3) removal of all small-size barriers (height<

2 m) and (4) general reduction in local alterations on river morphology, hydrology and water

quality. We deliberately chose contrasting scenarios to see if very different and radical mitigation

measures led to contrasted changes in diadromous loss and if these changes varied among basins.

Plus, we did not take into account the possible consequences of dam removal on river morphol-

ogy, hydrology and water quality. This constitutes a simplification that must be taken into account

when interpreting results. In the scenario 4, hydrological and morphological variables were set to

a "low" level or held to a "null" level and water quality variables set to a "good" quality level or held

to a "high" quality level. The three synthetic variables were then recalculated by considering this

new configuration of sites as supplementary individuals in the respective MCAs initially built. For

each site, we predicted the new proportion of richness loss (predicted LDF) under each scenario

and we calculated the difference in predicted LDF compared to the initial prediction (current

environmental conditions). The greater the difference among the predicted LDF values, the more

likely the scenario is to reduce the proportion of richness loss. Finally, for each scenario, the reduc-

tion in LDF was tested by a Fisher’s exact test [53] at the basin-level and France-level. All statistical

analyses and mapping were performed with R 3.4.2 [54].

Results

Evolution in the diadromous fish richness

The potential richness in diadromous taxa was high in the largest rivers (Fig 2) with a maxi-

mum of seven taxa for the Atlantic and the English Channel river systems (Seine, Loire,

Adour, Dordogne, Garonne and Somme rivers–see Fig 1 for river locations). This richness was

lower for the Rhone and the French part of the Rhine rivers (six taxa) and most of the rivers in

the Moselle and Meuse basins (five and three taxa, respectively). Conversely, the smallest

coastal basins hosted much poorer diadromous assemblage (less than four taxa with a few

exceptions). Given the life history of diadromous fish species and their way of colonizing river

networks, the potential richness exhibited a downstream-upstream gradient with a maximum

richness in river segments close to the sea.

The loss of taxa showed considerable variation across sites (from 0 to 100%) and appeared

geographically contrasted over the country (Fig 3A). The Chi2 independence test indicated a

significant difference in the distribution of sites in the classes of diadromous taxon loss accord-

ing to the basins (chi2 = 344; df = 35; p-value< 0.001). The Seine, Rhone and North basins

experienced the most dramatic decline, with about 90% of their sites exhibiting a total loss of

diadromous taxa (Fig 3B). In the North Basin, the French parts of the Meuse and the Moselle

rivers lost all their diadromous taxa, three to five taxa respectively on their lower reaches (Fig

2). Similarly, a large part of the upper Seine basin showed a total loss (up to six taxa) while the

downstream part partially maintained its historical richness. Three taxa remained on the

downstream part of the French Rhine, while the whole historical community disappeared

from its upper part. The coastal Mediterranean basin, Loire and Garonne basins seemed more

heterogeneously impacted, with about 40% of their sites exhibiting a total loss of diadromous

taxa but 20 to 30% of the sites showing no loss. The sites with a total loss of diadromous taxa

were mainly located on the upper part of the Loire, Dordogne, Vienne, Lot and Tarn rivers. In

the Mediterranean basin, the sites without any diadromous taxa remaining were rather located

in the lower part of some coastal rivers. On the other hand, the coastal Atlantic and coastal
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Channel basins were the less impacted basins, with only 5% and 18% of sites showing a total

loss of diadromous taxa, respectively. Most of the sites (ca. 80%) in these basins have indeed

maintained their historical diadromous richness.

The loss of distribution range within the French river network varied greatly among taxa

(Fig 4). While the observations of houting were historically mentioned on the Rhine River and

its distribution represented less than 100 km, the species is nowadays absent (see S5 File for

potential and current distribution maps). The sturgeons, which were historically distributed in

all the main French rivers (ca. 6,000 km occupied), lost 96% of their former distribution range

and only a few individuals remain in the Gironde estuary, Garonne and Dordogne. The distri-

butions of the European flounder, shads and salmonids have also dramatically declined, with a

loss of 70%, 69% and 64% of their potential distribution range. This loss was especially high for

Fig 2. Potential richness of diadromous fishes in France. The potential number of taxa was calculated considering historical and current data. River

segments without any known historical or current data appear as "no recorded species" segments.

https://doi.org/10.1371/journal.pone.0236575.g002
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salmonids and shads with respectively 9500 km and 7000 km of river length lost. Lampreys

have remained broadly distributed over the Loire and Adour-Garonne basins while their dis-

tribution dropped considerably in the Seine, Rhine and Rhone basins, leading to a loss of 41%

of their potential distribution range. The lowest losses concern the mullets and the smelt with

a reduction of 20% and 18% of their potential distribution range, representing respectively less

than 500 km and 100 km of river length.

Main drivers of loss

Among all possible initial candidate models, six models were selected in our multi-model

selection approach based on lower AICc values (see S6 File). Each of the seven environmental

candidate variables was retained at least once in the selected models. However, the relative

importance value of the ratio of fish passes (pass_ratio) was low (< 0.5—see S6 File); this vari-

able was consequently removed from our final LDF model (Table 3). Despite non-significant

associated p-values (above the 5% level), water quality alteration (alter_wq) and river morphol-

ogy alteration (alter_morpho) were incorporated into the model (relative importance value of

0.79 and 0.55, respectively), suggesting that these variables contributed to improving the pre-

diction of diadromous fish loss (Table 3). Multicollinearity was not detected in our final vari-

able set (VIF < 2).

Eighty percent of the overall variance was explained by both fixed and random effects (53%

for fixed effects only).

The cross-validation displayed a reasonable consistency in the model performance statistics

when predictions were computed (1) on the training datasets (70% of the randomly selected

calibration sites) or (2) on the validation datasets (30% of the randomly selected calibration

Fig 3. LDF classes per site (A) and proportions (%) of classes per basin (B). ‘n’ corresponds to the number of sites considered in each basin.

https://doi.org/10.1371/journal.pone.0236575.g003
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sites) with the new model coefficients established from training datasets (S7 File). This sug-

gested that the error rates associated with new predictions on independent datasets should

increase quite slightly compared to the error rates observed for the calibration dataset.

The different environmental variables included in the model exhibited more or less strong

links with the loss of diadromous taxa (Table 3 and Fig 5). The predicted LDF increased

strongly with the distance to the sea (dist_sea), suggesting a higher vulnerability of diadromous

assemblage in the most distant sites from the sea. Considering all other variables fixed at their

median value, a site located 100 km (10; after transformation [Fig 5]) away from the sea had a

predicted LDF of 0.2 whereas it reached nearly 0.8 at sites located 400 km away (20; after

Fig 4. Maintained and lost potential distribution ranges of the French river system per taxon. The potential distribution range

is represented in thousands of kilometers. The proportions of lost river length and maintained river length are represented in red

and blue respectively and the percentage of lost length is displayed for each taxon.

https://doi.org/10.1371/journal.pone.0236575.g004

Table 3. Results of the generalized linear mixed model predicting the proportion of richness loss for diadromous fish.

Fixed effects β 95% CI p-value Random effects Intercept

Intercept -7.37 [-9.97;-4.77] Coastal Mediter. 3.28

max_height 3.76 [2.31;5.21] <0.001 Seine 2.39

dist_sea 0.22 [0.12;0.31] <0.001 Rhone 0.42

density 5.36 [2.02;8.69] 0.002 Coastal Channel 0.39

alter_hydro 0.65 [0.17;1.13] 0.007 North -0.78

alter_wq 0.56 [-0.08;1.21] 0.085 Garonne -0.86

alter_morpho 0.38 [-0.19;0.95] 0.193 Loire -1.15

Coastal Atlantic -1.87

For the fixed effects: β coefficients of the GLMM and their 95% confidence interval (95% CI) are provided in square brackets. The significance of the fixed terms is tested

with a Wald test (p-values provided). For the random effects: Intercept coefficients are provided for each basin.

https://doi.org/10.1371/journal.pone.0236575.t003
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transformation). Both variables related to the presence of barriers were closely related to the

loss of diadromous species. The maximum height of downstream barriers (max_height) was

the variable that showed the most pronounced effect. In a median situation, a two-meters-high

barrier (0.5; after transformation) resulted in a predicted LDF of 0.4. It reached 0.8 for a ten-

meters-high barrier (1.0; after transformation). The rise in barrier density also strengthened

the risk of diadromous species loss. This increase seemed roughly linear up to 20 barriers per

100 km (0.45; after transformation), beyond which the increasing trend slowed down. The

three variables accounting for local anthropogenic alterations (hydrological regime [alter_hy-

dro], river morphology [alter_morpho] and water quality [alter_wq]) displayed a positive link

with the risk in diadromous taxon loss. Both the alteration of water quality and the alteration

of river morphology did not show a significant effect (p-value > 0.05). The standard deviation

of the random intercept (SD = 2.05) indicated a significant effect of the basins on LDF, sug-

gesting inter-basin differences in LDF. The coastal Mediterranean basin and the Seine basin

showed the most positive intercept, while the Coastal Atlantic and Loire basins had the most

negative intercept and the Coastal Channel and Rhone basins had an intercept close to 0.

Scenarios of reducing anthropogenic pressures

In the initial dataset (no scenario), 22 barriers were recorded downstream to each site on aver-

age with a mean density of 10 barriers/100 km (Table 4). These statistics remained nearly

unchanged in the scenario 1 but were reduced in the scenario 2 (barriersmean2 = 16 barriers;

Fig 5. Specific marginal effect graphs from the LDF model. The graphs display the predicted LDF values (y-axis) along a gradient of a given

environmental variable (x-axis). The x-axis values are transformed as described in Table 2. Lower and upper limits of the 95% confidence interval are

represented by dashed lines.

https://doi.org/10.1371/journal.pone.0236575.g005
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densitymean2 = 8 barriers/100 km) and drastically reduced in the scenario 3 (barriersmean3 = 6

barriers; densitymean3 = 2 barriers/100 km). While the scenario 2 and 3 had no effect on the

mean maximum height of downstream barriers, the scenario 1 reduced significantly the value

of this metric (max_heightmean1 = 4 m) compared to the initial dataset (max_heightmean0 = 8

m). The scenario 4 resulted in a significant decrease in the mean value of the three synthetic

variables of hydrological, morphological and water quality alterations regarding the initial

dataset (resp. -0.2 vs 0.2; 0.001 vs 0.23 and -0.07 vs 0.14).

In comparison with the initial conditions, the predicted LDF values remained unchanged

for most sites under the scenario 1 (Figs 6A and 7). Only a few sites located in the downstream

part of the Rhone basin, in the central part of France and in the coastal Channel basin exhib-

ited a decrease of LDF. But these punctual modifications were not significant for any basin.

The scenario 2 showed a much more widespread reduction in the risk of loss of diadromous

taxa (Figs 6B and 7). The resulting changes were particularly significant in the Seine, North

and Garonne basins. In the Seine basin, the proportion of sites with a low taxon loss risk (pre-

dicted LDF < 0.2) increased from 10% to 30%, with the most important changes in the lower

reaches. Whereas the taxon loss risk remained quite high in most of the North basin (predicted

LDF> 0.4), the proportion of sites with very high taxon loss risk (predicted LDF> 0.8) was

reduced by more than half. The scenario 3 led to a significant drop in predicted LDF in the

coastal Atlantic basin with 68% of the sites having a low predicted LDF (� 0.05) against 17% in

the initial conditions (Figs 6C and 7). In the coastal Channel and Loire basins, predicted LDF

showed significant changes as well. In the Loire basin, 15% of the sites presented a low pre-

dicted LDF (against 7% in initial conditions), with the major decreases of predicted LDF (up

to 0.8) located in the medium part of the basin. However, 46% of the sites, mainly located in

the upper part of the basin, remained unchanged with a high predicted LDF (> 0.8). Despite a

few local changes, especially in the downstream part of the Rhine River, the North, the Seine,

the Rhone, and the Garonne basins did not show significant changes in response patterns

under the scenario 3. The scenario 4 induced local and punctual reductions in predicted LDF

but did not significantly change the risks of taxon loss at the level of each large basin unit (Figs

6D and 7). At the whole France level, only the scenarios 2 and 3 induced a significant change

in the predicted LDF (Fisher test p-value < 0.001).

Discussion

Decline in diadromous fishes

The first step of our work was to evaluate the loss of diadromous fishes in the French hydro-

graphic network. Based on the analysis of a large range of historical sources we reconstructed

Table 4. Mean values of anthropogenic pressure variables and their standard deviations calculated on the 361 sites for the different scenarios.

Mitigation measures barriers Density (barriers/100

km)

max_ height

(m)

alter_

hydro

alter_

morpho

alter_ wq

No

scenario

- 22 (22) 10 (10) 7.97 (14.18) 0.26 (0.81) 0.21 (0.74) 0.14

(0.59)

Scenario 1 Removal of all large-size barriers (height > 10 m) 21 (22) 9 (10) 4.03 (2.84) 0.26 (0.81) 0.21 (0.74) 0.14

(0.59)

Scenario 2 Removal of all medium-size barriers (height between 2 and 10

m)

16 (18) 8 (9) 6.36 (14.54) 0.26 (0.81) 0.21 (0.74) 0.14

(0.59)

Scenario 3 Removal of all small-size barriers (height < 2 m) 6 (8) 2 (2) 7.64 (14.34) 0.26 (0.81) 0.21 (0.74) 0.14

(0.59)

Scenario 4 Reduction in local alterations on river morphology,

hydrology, and water quality

22 (22) 10 (10) 7.97 (14.18) 0 (0.51) -0.19 (0.29) -0.07

(0.37)

https://doi.org/10.1371/journal.pone.0236575.t004
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the past distribution of species and we found that diadromous fishes occupied most of the

main French rivers hundred years ago, illustrating the recent considerable loss of diadromous

species at the national level. The Atlantic, English Channel and North Sea basins exhibited

higher richness than the Mediterranean basin (e.g. the Rhone River). This has confirmed what

is known about the historical-biogeographical distribution patterns of diadromous species [1,

55]. By comparing this past distribution with current data on taxon occurrences, we quantified

the decline in diadromous taxon and found that this phenomenon is very widespread. Thus,

according to our results, 45% of the 555 study sites, which were formerly inhabited by diadro-

mous fishes, have currently lost their entire diadromous assemblage. Among the eight taxa

studied, five have lost more than 50% of river length occupied two centuries ago in France.

These observations are consistent with the massive decline in these species that has been

observed elsewhere in Europe or eastern North America [7, 56, 57].

It should be noted that our estimate of diadromous loss is a conservative assessment that

probably understates the real decline of some species occurrences. First, we considered occur-

rence data, but the persistence of a species may hide a potentially massive decline in terms of

fish abundances. Second, we used relatively recent historical data (mainly from the late 18th

Fig 6. Reduction in predicted LDF induced by each scenario. The colors correspond to the LDF classes calculated (A) after removing barriers over 10 m in height

(Scenario 1), (B) after removing barriers between 2 m and 10 m in height (Scenario 2), (C) after removing barriers under 2 m in height (Scenario 3) and (D) after reducing

local hydrological, morphological and water quality alterations (Scenario 4). The circle size represents the predicted reduction in LDF compared to the initial conditions

without any scenario.

https://doi.org/10.1371/journal.pone.0236575.g006

Fig 7. Proportions of LDF classes per basin for each scenario. The colors correspond to the LDF classes calculated without any scenario (No Scenario), after

removing barriers over 10 m in height (Scenario 1), after removing barriers between 2 m and 10 m in height (Scenario 2), after removing barriers under 2 m in height

(Scenario 3) and after reducing local hydrological, morphological and water quality alterations (Scenario 4). P-values significant at a 5% level (�), 1% (��), 0.1% (���)

and not significant (NS) are provided. ‘n’ corresponds to the number of sites in each basin.

https://doi.org/10.1371/journal.pone.0236575.g007
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and 19th centuries) to qualify the former species distribution, but it is well established that the

human-induced decline in diadromous fishes started earlier and was already very significant

in Western Europe since the Middle Ages [58, 59]. Third, despite an extensive effort in collect-

ing historical data, the reconstruction of the past species distribution remains incomplete,

either because existing historical sources have potentially been missed or simply because the

past presence of some species was not recorded in old documents. In contrast, knowledge of

the current distribution of species is much more exhaustive as it has involved many field

experts and has been the subject of many inventories. As a result, the extinction or decline in

diadromous assemblage was certainly underestimated in some areas of the river network.

Fourth, the grouping of pairs of species under a single taxon (imposed by the limitations of his-

torical data) could hide some extinction when both species initially coexisted but only one has

remained. Finally, due to imprecisions regarding the location of some past occurrences, we

have limited the presence of any given species to the lowest part of the watercourse, which has

tended to underestimate the historical distribution of some species. To avoid misleading rec-

ommendations, stakeholders should keep all these limitations in mind if they would consider

using our data and approach.

Main drivers of loss

Our modeling approach has shown that the loss of diadromous fishes in the French river net-

work can be largely explained by environmental conditions under anthropogenic pressures.

Cross-validation suggests that the relationships highlighted between the variables and the loss

of diadromous fishes are quite robust and of low sensitivity to possible outliers in the calibra-

tion dataset.

The present study confirmed that river fragmentation (i.e. from the sea to the considered

site) is a major threat to diadromous fish [60–63]. In our model, statistics and the response

curve associated with the maximum height of downstream barriers suggest that the size of the

barriers is the factor that exerts the strongest and steepest effect on diadromous assemblage,

leading to major and systematic impact when dams exceed about ten meters.

The density of barriers also contributes to diadromous assemblage degradation but seems

to have a more diffuse and moderate effect than the size of downstream barriers. It reflects the

potential cumulative effect of barriers. The cumulative effect of successive obstacles, such as

small weirs or lock systems, that are not physically difficult to pass individually, may cause

considerable problems to fish (e.g. delays, reduction in the migration success, injuries) [64–

66]. According to its clearing rate, each barrier reduces the fraction of the community that can

continue its migration. Even if the proportion of fish stuck in front of a given barrier is low,

the succession of obstacles to cross can lead to a drastic reduction in the number of fish at the

end of the course [26].

We also found a positive link between the distance from the sea and diadromous taxon loss

suggesting that the most distant assemblages from the sea are intrinsically the most vulnerable.

Indeed, with the distance, the energetic costs of migration rise as well as the risk of predation.

However, it should be stressed that for a given density of barriers, a greater distance to the sea

means more obstacles to be crossed for fish. In the context where practically all the French riv-

ers are concerned by the presence of weirs or dams, the distance from the sea could also be

considered as a descriptor of the cumulative detrimental impact of obstacles on diadromous

fishes.

The close links observed between the loss of diadromous fishes and the height and density

of barriers suggest that dam construction has had a significant contribution to the long-term

decline in diadromous fishes. However, this result raises a certain paradox insofar as a large
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proportion of barriers referenced in the current ROE database, probably already existed when

first historical observations of diadromous taxa were made. In Western Europe and particu-

larly in France, the development of watercourses is several centuries old and expanded consid-

erably in the second half of the Middle Ages with the widespread installation of watermills on

most of the small and medium-sized rivers [58, 59, 67]. The number of mills has been esti-

mated at 100,000 along French rivers in the 13th century. This number had remained almost

unchanged until 1809 when their use gradually ceased over the 19th century [68]. The cessation

of milling activities has not implied, however, the systematic disappearance of associated

obstacles. Many of the current weirs and low head dams are legacies of medieval constructions

(see for example Rouillard et al. [69] for the Seine River basin). Nevertheless, it would seem

that the changes induced over time regarding (1) the management of these facilities (e.g. stop-

ping the regular opening of gates previously required for the proper functioning and mainte-

nance of the mills) and (2) their modernization (e.g. reinforcement, raising heights, design

change) have made their passage more difficult for fish [70–73]. However, following technical

progress, most of the medium to large dams were built later [20]; i.e. (1) during the 19th cen-

tury with the development of inland navigation and industrial expansion, and (2) after the Sec-

ond World War as a consequence of economic development [20, 68]; for example, in France,

86% of the existing large dams (i.e., equal or higher than 15 m) were commissioned after 1930

[74]. Thus, most of the medium to large dams, which are the most impactful on diadromous

fishes according to our results, was built after the period over which the historical distribution

of diadromous fishes was described.

In accordance with the concept of extinction debt, the impact of barriers on fish assemblage

can also extend over long periods of time, leading to a gradual decline in populations to their

possible extirpation long after the obstacle construction [75]. For example, in a study examin-

ing the freshwater fish distribution in Japan, Fukushima et al. [61] have shown that the pres-

ence of dams negatively affected diadromous species and that, for some species, the duration

since dam construction was also a relevant explicative variable. This suggests that the negative

consequences of dam construction on fish populations involve long-term and gradual adverse

processes. Thus, even if most of the barriers considered in our study had been already in place

several centuries ago, i.e. before the period chosen to characterize the historical composition of

diadromous fish assemblage, it is quite plausible that their effects persisted much later and

could have contributed to the extinctions observed during the last two centuries. Integrating

the construction date of dams and weirs is certainly a crucial issue for a better understanding

of the dynamics and drivers of diadromous fish loss. Unfortunately, given the considerable

number of barriers involved, this purpose was clearly beyond the scope of our present work.

Despite contrasting situations (from 0 to 100% of downstream barriers equipped), the ratio

of barriers with fish passes was not retained in our model, thus highlighting the difficulty to

quantify the mitigating effect of fish passes on diadromous fish loss. This result was unexpected

given that fish pass establishment is a widely supported measure to restore river continuity

and diadromous populations and that observation-based evidence supports the relationship

between the upstream recovery of diadromous fish and the implementation of dam crossing

facilities [76]. Several reasons may explain the absence of significant biological responses to

this variable. First, it should be pointed out that our way of considering the state of the diadro-

mous assemblage (loss/conservation of half of the taxa) may blur more subtle changes that

could be induced by the establishment of fish passes (increase in population size, recovery of

some species only). Second, most devices target specific species (particularly salmonids and

shads) and stages (generally adults in upstream migration) and are very rarely effective for the

whole diadromous assemblage and both upstream and downstream movements [77, 78].

Third, our description of fish passes did not take into account either their efficiency (some
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devices may be partially or totally ineffective due to their design or management) or their loca-

tion in the hydrographic network (the impacts of fish passes are likely to be very different

depending on whether they concern the most downstream dams or only dams in the upstream

areas), two essential aspects concerning the effective recovery of populations [79]. Fourth,

even if fish passes are locally effective, their succession along migration routes can generate

cumulative effects that can jeopardize the maintenance of populations when significant num-

bers of obstacles need to be crossed [80, 81].

In addition to the variables related to river continuity, three variables that account for local

alterations have been selected in our model suggesting that local degradations in water quality,

hydrology, and river morphology also contributed to the loss of diadromous fishes. The

hydrology alteration seems to have the strongest effect (based on the response curve and asso-

ciated p-value). This result is in line with many studies demonstrating that changes in natural

river flow may have detrimental effects on diadromous fishes especially through loss of stimuli

for migration [82], loss of migration routes [78, 83, 84] and spawning grounds [85] or

decreased survival of eggs and juveniles [64, 86]. Although the p-values associated with river

morphology and water quality alteration were above the significance threshold, their inclusion

in the model suggests that these variables improve the prediction of diadromous fish loss.

Damages to river morphology may be particularly harmful when they affect spawning grounds

and development areas for young stages [9, 16, 87–89]. Similarly, the abundant literature illus-

trating the decline of diadromous stocks due to pollution confirms this result [6, 14, 90, 91]. It

should be noted that we addressed the water quality, river morphology and hydrology effects

at a local scale only. But these alterations can be widespread in watersheds and generate river

fragmentation undermining diadromous species, especially in case of water pollution [75].

This issue may be particularly detrimental to diadromous fishes when severe pollution usually

affects the lower reaches of the river system, and forms a chemical barrier against migration

due to cumulative effects along the continuum, largely preventing the movement of species

further upstream (chemical barrier to migration [91, 92]).

The basin effect reveals that some basins are more prone to diadromous loss than others,

regardless of barriers and local alterations already taken into account. This difference in vul-

nerability among basins can result from biogeographical differences in the distribution of

diadromous fishes (for example, diadromous salmonids are naturally lacking in rivers flowing

into the Mediterranean Sea). Given that all diadromous species are not equally sensitive to

anthropogenic threats, basins naturally hosting the most sensitive species are expected to pres-

ent diadromous assemblage with a higher risk of extinction. This difference in basin vulnera-

bility could also result from natural conditions. For example, based on the intercepts, we

found that the coastal Mediterranean basin was more vulnerable to diadromous losses. Yet,

this basin essentially includes small watercourses exhibiting steep slopes in their upstream

parts and a very harsh climatic context. Under such conditions, the suitable areas for diadro-

mous species are of little extent, hosting small-sized populations, making them intrinsically

more vulnerable to extinction. We can also assume that this basin effect accounts for other fac-

tors such as the impact of fisheries or long-term hydroclimatic changes, which were not

directly integrated into our model.

Since river and marine catch data may only reflect the stock status and are not proof of

overexploitation, testing the implication of fisheries in diadromous fish decline is a tricky task

[93]. For this reason and due to a lack of data, we did not include this information into the

model. However, even if we are not aware of any case in which overfishing has led directly to

species extinction, overfishing may have contributed to the decline of some diadromous popu-

lations [94]. As an example, in France, European sturgeons were massively caught for caviar

until the fishing ban in 1982, which certainly participated in the near extinction of this species
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[7, 95, 96]. Recruitment overfishing in the 20th has also been pointed out as a reason for the

dramatic drop in allis shad populations [97, 98] and salmons [6].

Effect of different scenarios on richness loss

Based on four independent scenarios, we evaluated how the reduction in various anthropogenic

pressures could reduce the proportion of the diadromous fish loss. These scenarios did not seek

to evaluate realistic restoration plans but rather to clarify the main limitations to the recovery of

diadromous assemblage. Moreover, the relevance of these scenarios for restoration purposes

implies a certain resilience of diadromous fish populations to recover after the removal of some

factors that led to their decline, an issue that is still under debate. Indeed, on the one hand,

examples of dam removal or treatment of large-scale water pollutions, which were blocking for

fish migration, have led to some noticeable successful recoveries of several species [99, 100],

illustrating the strong natural recolonization capacity of most diadromous species [101]. On the

other hand, some ambitious restoration plans implementing both intensive measures on habi-

tats and extensive restocking have resulted in disappointing results or even failures [102].

The first lesson that can be drawn from the application of these scenarios is that measures

focused exclusively on improving local conditions should have much more limited effects than

those focused on restoring continuity. In contrast to the scenarios addressing river continuity,

the scenario 4, based on the reduction in local alterations of water quality, river morphology,

and hydrology, did not bring out widespread changes at both basin and country levels, and for

sites showing signs of improvements, these were always of very limited amplitude. It should be

noted, however, that even if we have considered river alterations and the presence of barriers

independently, the removal of dams may result in local improvements of water quality, river

morphology, and hydrology. The effect of improving local conditions can then be coupled

with the effect of restoring continuity to consolidate the recovery of diadromous species.

Given that local alterations may be reduced by barrier removals, the scenarios of barriers

removals should have also integrated a reduction in local alterations. We did not integrate,

however, this aspect in the modeling procedure, because we were not able to quantify a reduc-

tion in local alteration related to barrier removal.

Surprisingly, although our model revealed that the maximum height of dams has a consid-

erable influence on diadromous fish loss, the scenario focusing on large dam removal (> 10 m,

scenario 1) did not show the strongest responses. The relatively low consequences of this sce-

nario are probably due to the small number of large dams (compared to lower ones) and their

location, which, with a few exceptions, is restricted to the upper reaches. Thus, upstream sites

concerned by large dams are generally also affected by many downstream smaller barriers that

may themselves already have a negative impact on diadromous fish assemblage.

The two scenarios that predicted the most substantial and widespread responses addressed

the removal of medium-sized (height between 2 and 10 m–scenario 2) or small-sized

(height < 2 m–scenario 3) dams. The extent of the responses varied substantially between the

two scenarios and among basins probably depending on the history of developments and the

nature and location of existing dams and weirs specific to each basin. Thus, the Seine and

North basins, whose main waterways have been largely developed with navigation facilities

(e.g. weirs, locks) show greater improvements with the scenario 2, focusing on medium-size

barriers. On the opposite, it is when removals focused on the small-size barriers (scenario 3)

that responses are the most substantial for the Loire basin whose main axes are most often

free-flowing, and for the coastal Atlantic and Channel basins. This suggests that the most effec-

tive measures for restoring the diadromous community are likely to vary significantly from

one basin to another or from one region to another.
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Overall, the outcomes from the various scenarios suggest that a large-scale improvement in

diadromous fishes (e.g. assemblage throughout the French territory) will necessarily require

large-scale measures to improve river continuity without limiting them to the largest dams but

also taking into account smaller obstacles whose cumulative effect seems potentially very sig-

nificant. The scenarios we have implemented are based on the removals of a considerable

number of barriers but without considering their cost and effectiveness and their possible neg-

ative incidental consequences (e.g. loss of heritage and cultural value, economic and commer-

cial impact, morphological destabilization). More refined approaches examining the cost/

effectiveness balance could help to identify optimized scenarios, adapted to each basin and

limiting the number of dams to remove while maintaining a good efficiency of the recovery of

diadromous species [103].

Implications for conservation and management

In this study, we used data on the historical and current fish distributions to quantify species

loss of diadromous assemblage and help the identification of anthropogenic drivers that con-

tributed to their long-term decline. Ignoring long-term ecosystem trends is likely to induce a

shifting baseline syndrome that may lead to underestimating biodiversity losses and minimiz-

ing or ignoring the contribution of some of the anthropogenic drivers [104]. This concern is

particularly acute in the case of diadromous fishes whose populations have long been severely

depleted. By placing historical data, from one or two centuries ago, at the core of our approach,

we have sought to limit this problem, but we cannot completely avoid it since the human-

induced decline in diadromous fishes in Western Europe is a very old phenomenon dating

back more than a millennium. This historical approach allowed us to highlight the negative

impact of hindering the river continuity resulting from the construction of dams and weirs on

diadromous assemblage. In this respect, it is noteworthy that some comparable statistical

approaches, based solely on the current distribution of species, may have more difficulty to

highlight the negative influence of barriers [55, 61]. However, using the past species occur-

rence to establish benchmarks for future restoration raises some issues, in the context of ongo-

ing climate change. Prospective approaches predict significant changes in the continental

distribution ranges of diadromous fishes due to warming and hydrological regime shifts [105].

Thus, basins now inhabited by certain species, particularly cold-water ones, could become

unsuitable for them within a few decades. In this context and for effective and long-term resto-

rations, historical occurrences of diadromous species should be seen as an indicator for poten-

tial recovery and not as a fixed list of species strictly defining future restoration targets.
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