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Abstract

Diffusion magnetic resonance images may suffer from geometric distortions due to suscep-

tibility induced off resonance fields, which cause geometric mismatch with anatomical

images and ultimately affect subsequent quantification of microstructural or connectivity

indices. State-of-the art diffusion distortion correction methods typically require data

acquired with reverse phase encoding directions, resulting in varying magnitudes and orien-

tations of distortion, which allow estimation of an undistorted volume. Alternatively, addi-

tional field maps acquisitions can be used along with sequence information to determine

warping fields. However, not all imaging protocols include these additional scans and cannot

take advantage of state-of-the art distortion correction. To avoid additional acquisitions,

structural MRI (undistorted scans) can be used as registration targets for intensity driven

correction. In this study, we aim to (1) enable susceptibility distortion correction with histori-

cal and/or limited diffusion datasets that do not include specific sequences for distortion cor-

rection and (2) avoid the computationally intensive registration procedure typically required

for distortion correction using structural scans. To achieve these aims, we use deep learning

(3D U-nets) to synthesize an undistorted b0 image that matches geometry of structural T1w

images and intensity contrasts from diffusion images. Importantly, the training dataset is het-

erogenous, consisting of varying acquisitions of both structural and diffusion. We apply our

approach to a withheld test set and show that distortions are successfully corrected after

processing. We quantitatively evaluate the proposed distortion correction and intensity-

based registration against state-of-the-art distortion correction (FSL topup). The results illus-

trate that the proposed pipeline results in b0 images that are geometrically similar to non-
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distorted structural images, and more closely match state-of-the-art correction with addi-

tional acquisitions. In addition, we show generalizability of the proposed approach to data-

sets that were not in the original training / validation / testing datasets. These datasets

included varying populations, contrasts, resolutions, and magnitudes and orientations of dis-

tortion and show efficacious distortion correction. The method is available as a Singularity

container, source code, and an executable trained model to facilitate evaluation.

1. Introduction

The rapid echo planar imaging techniques and high gradient fields typically used for diffusion

weighted magnetic resonance imaging (DW-MRI) introduce geometric distortions in the

reconstructed images. Initially, both the static field distortions (e.g., interactions of fast imag-

ing techniques with inhomogeneities) and the gradient dependent effects (e.g., gradient field

disturbances given eddy current effects) were corrected along with motion through registra-

tion [1, 2]. However, image-based approaches have two central problems. First, accurate inter-

modality alignment between (distorted) DW-MRI imaging and (undistorted) T1w anatomical

imaging is problematic, especially in areas with limited tissue contrast. Second, image registra-

tion does not offer a mechanism for correcting signal pileup–areas of erroneous signal void

and/or very bright signal. Modern approaches resolve these difficulties by acquiring additional

information, either with a field map or supplementary diffusion acquisitions designed to be

differently sensitive to susceptibility and eddy effects (so called “blip-up blip-down” designs).

Field maps are effective, but offer limited robustness to acquisition artifacts [3], and the blip-

up/blip-down studies are widely used, including in the Human Connectome Project [4].

Current tools such as FSL’s topup [5] and TORTOISE [6], use minimally weighted

DW-MRI images acquired with different phase-encoding parameters to estimate the static sus-

ceptibility field maps. Then, a subsequent pass uses the diffusion weighted images to model

and correct for the eddy current effects (e.g., FSL’s eddy [7] and TORTOISE’s DR-BUDDI

[8]). Techniques and datasets for benchmarking [9, 10] and quality control [11] are actively

being explored, as obtaining a sufficiently high quality ground truth that is generalizable to

clinical studies is difficult. Moreover, there is active research on correction techniques for

DW-MRI outside of the brain, e.g., prostate [12] and spinal cord [13].

Despite the availability of effective tools, the supplementary information necessary for these

techniques is not always available, which could be potentially due to scanner limitations, scan

time constraints, acquisition difficulties / artifacts, or legacy considerations. Recently, we pre-

sented a deep learning synthesis approach, Synb0-DisCo, to estimate non-distorted (infinite

bandwidth) minimally weighted images from T1 weighed (T1w) images [14]. Synb0-DisCo

uses a 2.5D (multi-slice, multi-view) generative adversarial network (GAN) to perform the

image synthesis process.

While Synb0-DisCo is a promising first approach for a deep learning solution to the

DW-MRI distortion correction problem, it has several limitations. First, Synb0-DisCo does

not intrinsically compensate for absolute intensities of the target minimally weighed scans,

and therefore, secondary adjustment of the intensity spaces is needed. Second, patient specific

contrasts seen in the acquired distorted DW-MRI cannot be learned as the network only had

relatively homogeneous T1w MRI information available. Third, Synb0-DisCo is susceptible to

3D inconsistencies as the model did not have access to full imaging context.

Herein, we propose a second generation of our deep learning approach, termed Synb0, for

DW-MRI distortion correction to address these limitations. Briefly, we (1) generalize the
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Singularity requires only a b0 and T1 as inputs, and

performs all pre-processing (T1 bias field

correction and normalization, registration to MNI),

image synthesis or model inference, and topup –

returning as output topup field coefficients and all

intermediate data. Source code and binaries are

available at https://github.com/MASILab/Synb0-

DISCO.
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learning approach to use both T1w and distorted DW-MRI images in order to synthesize a b0

with both appropriate geometry and contrast, (2) redesign the network to use full 3-D infor-

mation, and (3) train across a much larger collection of patients / studies / scanners in order to

facilitate generalization across different datasets with varying acquisitions and cohorts. We

evaluate Synb0 using three unique datasets with varying image quality, contrast, and acquisi-

tions with baseline consideration of image registration, Synb0-DisCo, and no correction rela-

tive to the best available techniques using supplementary acquisitions. Finally, we show

generalizability of this methodology by applying the proposed method to eleven different

open-sourced datasets that were not included in the training nor testing data.

2. Materials and methods

The high-level overall pipeline is shown in Fig 1. The aim is to synthesize an undistorted b0

from an input distorted b0 and a T1 anatomical image. Using the topup setting of an infinite

bandwidth will correct for known deformations and movement to match the undistorted

image as well as possible and provide the necessary estimations to proceed with eddy current

correction (e.g., with FSL’s eddy). Put another way, when application of topup and its

advanced distortion correction features and assumptions would traditionally not be possible

(due to the absence of reverse PE scans or field maps), we are synthesizing a geometrically

undistorted image in order to provide topup the information necessary to correct the distorted
diffusion data.

2.1 Data

The data used for this study were retrieved in de-identified form from the Baltimore Longitu-

dinal Study of Aging (BLSA), Human Connectome Project (HCP), and Vanderbilt University.

All human datasets from Vanderbilt University were acquired after informed consent under

supervision of the appropriate Institutional Review Board. All additional datasets are freely

available and unrestricted for non-commercial research purposes. This study accessed only de-

identified patient information. Importantly, these datasets have varying resolutions, signal-to-

noise ratios, T1 and diffusion contrasts, magnitudes of distortions, and directions of

distortions.

Briefly, BLSA acquisition included T1-weighted images acquired using an MPRAGE

sequence (TE = 3.1 ms, TR = 6.8 ms, slice thickness = 1.2 mm, number of Slices = 170, flip

angle = 8 deg, FOV = 256x240mm, acquisition matrix = 256×240, reconstruction

Fig 1. Overall pipeline. The goal is to generate an undistorted b0 from a single blip (distorted) b0 and an anatomical T1 image through a deep learning

approach. The undistorted image can then be concatenated with the distorted b0 and run through FSL’s topup using a simulated infinite PE-bandwidth. This

final correction can be used with FSL’s eddy (or another eddy current modeling tool) to provide a full correction for diffusion data given only a single phase

encoding. Note that the proposed algorithm does not seek to model/correct eddy current effects.

https://doi.org/10.1371/journal.pone.0236418.g001
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matrix = 256×256, reconstructed voxel size = 1x1mm). Diffusion acquisition was acquired

using a single-shot EPI sequence, and consisted of a single b-value (b = 700 s/mm2), with 33

volumes (1 b0 + 32 DWIs) acquired axially (TE = 75 ms, TR = 6801 ms, slice thickness = 2.2

mm, number of slices = 65, flip angle = 90 degrees, FOV = 212�212, acquisition

matrix = 96�95, reconstruction matrix = 256�256, reconstructed voxel size = 0.83x0.83 mm).

HCP acquisition included T1-weighted images acquired using an 3D MPRAGE sequence

(TE = 2.1 ms, TR = 2400 ms, slice thickness = 0.7 mm, flip angle = 8 deg, FOV = 224x224mm,

acquisition, voxel size = 0.7x0.7mm). Diffusion acquisition was acquired using a single-shot

EPI sequence, and consisted of three b-values (b = 1000, 2000, and 3000 s/mm2), with 90 direc-

tions (and 6 b = 0 s/mm2) per shell (TE = 89.5 ms, TR = 5520 ms, slice thickness = 1.25 mm,

flip angle = 78 degrees, FOV = 210�180, voxel size = 1.25mm isotropic). The scans collected at

Vanderbilt were part of healthy controls from several projects a typical acquisition is below,

although some variations exist across projects. T1-weighted images acquired using an

MPRAGE sequence (TE = 2.9 ms, TR = 6.3 ms, slice thickness = 1 mm, flip angle = 8 deg,

FOV = 256x240mm, acquisition matrix = 256×240, voxel size = 1x1x1mm). Diffusion acquisi-

tion was acquired using a single-shot EPI sequence, and consisted of a three b-values

(b = 1000, 2000, 3000 s/mm2), with 107 volumes (11 b0 +96 DWIs per shell) acquired axially

(TE = 101 ms, TR = 5891 ms, slice thickness = 1.7 mm, flip angle = 90 degrees,

FOV = 220�220, acquisition matrix = 144�144, voxel size = 1.7mm isotropic). We again note

that variations in acquisition parameters exist in this dataset (resolution up to 2.5mm

isotropic).

The data for training the network consists of T1 and distorted b0 image inputs and a truth

of undistorted b0 images. For HCP and Vanderbilt, the undistorted b0 images were obtained

by running topup on opposite phase encoded b0 images. For HCP, these phase encodings

were L-R while for Vanderbilt, the phase encoding were A-P. For BLSA, the undistorted b0

images were obtained using a multi-shot EPI acquisition. The distorted b0 images from BLSA

have a phase encoding along the A-P direction. Qualitative depictions of the data (T1, dis-

torted, and undistorted processed b0’s) are shown in Fig 2, while the number of datasets and

scan information are shown in Table 1.

2.2 Preprocessing

The first step for preprocessing was a special step needed for the BLSA data because the inten-

sities for the distorted b0 and undistorted b0 were not guaranteed to match due to the fact that

the undistorted b0 was a separate acquisition with a potentially different gain factor. To

account for this, the median value of the masked undistorted b0 was scaled such that it

matched the masked median value of the undistorted b0 (in a process similar to that done by

topup with the -scale option). The rest of the data had undistorted b0s computed from topup,

which have the same intensities as the distorted image. The rest of the preprocessing steps

were applied to the rest of the data in the same manner.

A summary of the preprocessing is shown in Fig 3. The inputs are the T1 image, the dis-

torted b0, and the undistorted b0, while the outputs are a normalized T1, and distorted and

undistorted b0, all registered and transformed to MNI-space. To do this, the T1 image was

intensity normalized using FreeSurfer’s mri_nu_correct, mni, and mri_normalize which per-

form N3 bias field correction and intensity normalization, respectively on the input T1 image

[15]. Next, the distorted b0 and undistorted b0 were coregistered to the skullstripped (via bet)
T1 using FSL’s epi_reg [2] (a rigid-body 6 degrees of freedom transformation). The T1 was

then affine registered using ANTS to a 1.0 mm isotropic MNI ICBM 152 asymmetric template

[16]. The FSL transform from epi_reg was converted to ANTS format using the c3d_affine_tool
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and the b0s were transformed into 2.5 mm isotropic MNI space via antsApplyTransforms. All

transforms were saved so the inverse transform could be applied to bring the results back into

Fig 2. Datasets used in this study. The b0’s from Vanderbilt were acquired with opposite phase encodings along the A-P direction and corrected with topup. The b0s

from HCP were acquired with opposite phase encodings along the L-R direction and corrected with topup. Lastly, b0s from BLSA were acquired with a single phase

encoding along the A-P direction and corrected via a multi-shot EPI acquisition. The arrows in the distorted b0 columns highlight areas of visible susceptibility

distortion.

https://doi.org/10.1371/journal.pone.0236418.g002

Table 1.

Learning and Testing Vanderbilt HCP BLSA

Subjects 38 488 424

Sessions 80 488 529

Phase Encoding A-P L-R A-P

Correction Topup Topup Multishot EPI

Resolution (mm) 1.7–2.5 iso 1.25mm iso 0.83x0.83x2.2

TE/TR 101/5891 89.5/5520 75/6801

Training splits (subjects)

Learning (Training + Validation) 35 433 381

Testing (with-held) 3 55 43

https://doi.org/10.1371/journal.pone.0236418.t001
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subject space. Additionally, whole volume masks were created for the undistorted b0, distorted

b0, and T1 and transforms were applied as needed to these masks to prevent training on

regions where resampling could not be done.

Before training, the normalized 2.5 mm atlas aligned T1’s intensities were linearly scaled

such that intensities ranging from 0 to 150 were mapped between -1 and 1. Fixed values of 0

and 150 could be used because of the FreeSurfer T1 intensity normalization as described. The

distorted b0’s intensities were scaled such that 0 to the 99th percentile were mapped between -1

and 1. Using the min and max of the distorted b0 was unstable due to signal pileup (which can

cause localized large values). The 99th percentile was close enough to get the intensity of the

cerebrospinal fluid mapped to 1. For the undistorted b0, the same 99th percentile value found

for the undistorted image was used to scale it between– 1 and 1. This was to ensure the same

scaling was applied for the distorted and undistorted b0 since their overall intensities should

be the same.

2.3 Network/training/loss

The network, inputs and outputs, and loss calculation are diagrammed in Fig 4. The network

used to generate the undistorted b0 in 2.5 mm space was a 3D U-Net [17, 18] (2 channel input

and 1 channel output), based on the original implementation in PyTorch [19]. Some differ-

ences were that leaky ReLU were used in place of ReLU. In addition, instance norm was used

Fig 3. The preprocessing pipeline. This figure show data preparation prior to network learning (Fig 4). The pipeline inputs includes a T1 image as well as

distorted and undistorted b0 images, and the outputs are all images aligned in MNI space.

https://doi.org/10.1371/journal.pone.0236418.g003
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in place of batch norm since a small batch size was used. The implementation is available

within a singularity container release (https://www.singularity-hub.org/collections/3102).

For training purposes, the data (organized in BIDS format [20]) was partitioned across sub-

jects for the test/validation/training sets. The data set was first partitioned into a test set of 100

random subjects and a “learning” set of 850 subjects. The test set was completely withheld. The

“learning” set was again partitioned using 5-fold cross validation into training and validation

sets (i.e., randomly shuffled into 680 testing and 170 validation for each fold).

The network trained for 100 epochs with a learning rate of 0.0001. Adam optimizer was

used with betas set to 0.9 and 0.999. A weight decay of 1e-5 was applied. For each fold, the net-

work was trained and after each epoch, the validation mean squared error (MSE) was com-

puted and stored. The network with the lowest validation was selected for each fold as the

most optimal network, resulting in 5 trained networks. Training was performed on Nvidia

TITAN Xp GPUs with 12 GB of memory.

The loss function depended on the input data. For the BLSA subjects, since there was only

single blip b0s (a distorted b0, b0_d), the output of the U-Net (a synthesized b0, b0_synth) was

compared directly to the undistorted image (b0_u) with MSE to generate the loss (‘). For HCP

and Vanderbilt images, there were two blip b0s (b0_d1 and b0_d2). Both distorted b0s were

passed through the network. Both outputs (b0_synth1 and b0_synth2) were compared with the

undistorted b0 (b0_u) with MSE (MSE1 and MSE2) and the average of the two was stored as

the “truth” loss (‘1 + ‘2 / 2). In addition, the two outputs (b0_synth1 and b0_synth2) were sub-

tracted and compared via MSE loss (MSEdiff), which we consider as the “difference” loss (‘diff).

These two losses were summed to get the final loss (‘). The “truth” loss can be interpreted as

minimizing the bias of the result (output should not deviate far from the truth). The “differ-

ence” loss can be interpreted as minimizing the variance of the result (outputs should be the

same). For all losses computed, masks were used as described in the preprocessing section to

Fig 4. Training logic and loss calculation. Each U-net has 2 input channels (a T1 image and distorted b0) and a single output channel (synthesized undistorted b0). For

single blip b0’s (BLSA; lower half of the decision tree), only the “truth” loss was computed. For two blip b0’s (HCP and Vanderbilt; upper half of decision tree), two

“truth” losses were computed, averaged, and then a “difference” loss term was added to obtain the final loss.

https://doi.org/10.1371/journal.pone.0236418.g004
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only compute the loss in regions where resampling could be done. This strategy, of including

both single blip data, as well as two-blip data, let’s the networks learn from distortions in a

number of directions. This network architecture mirrors the Siamese [21] and null space [22]

network designs.

2.4 Pipeline

For the final network, the five networks trained during cross validation were used and the

ensemble average of the result was taken to get the synthesized undistorted b0 in affine MNI

space. The inverse transforms were used to warp the generated undistorted b0 back into sub-

ject space. The distorted b0 was smoothed slightly to match the smoothness of the undistorted

b0 because the output resolution of 2.5 mm isotropic from the network, followed by resam-

pling back to subject space, resulting in some smoothing due to interpolation in the undis-

torted b0. We believe this is only required due to the fact that we are constrained to 2.5 mm

isotropic for the network input due to GPU memory, so this step would be unnecessary if a

higher resolution network on a GPU with more memory was used. The slightly smoothed dis-

torted b0 and undistorted b0 were merged together and passed into topup with an acquisition

parameters file containing two rows (see overall pipeline in Fig 1). The first row is a “dummy”

row with arbitrary readout set, although care must be taken to ensure the arbitrary value is set

in the correct column depending on the phase encoding direction. The second row is set with

a readout of time of 0, which lets topup know that the second volume (the undistorted b0) con-

tains no susceptibility distortion. The end result is the correction from topup which can be

used as input into FSL’s eddy to perform a full diffusion imaging pre-processing which

includes distortion, eddy current, and motion correction.

2.5 Quantitative evaluation with cross-validation

To quantitatively investigate the geometric fidelity and contrasts of the images from the pro-

posed pipeline, the resulting b0 images were compared to both the (undistorted) T1 image and

the state-of-the art distortion correction (topup). For each of the classes of data (i.e., Vander-

bilt, HCP, BLSA), 5 subjects were randomly selected from the withheld test set (i.e., had never

been used in any part of the model selection process), resulting in 15 evaluations. For each,

two measures were calculated. First, mutual information (MI) of the b0 with T1 was calculated

as a measure of geometric similarity. Second, the mean-squared error of signal intensities

between the synthesized correction and the topup correction is calculated, which assesses both

distortion correction accuracy and contrast accuracy. For comparison, these measures were

calculated with (A) the uncorrected b0, (B) a standard registration-based distortion correction

method (that from Bhushan et al., 2012 [23] implemented using the default parameters in

BrainSuite software toolkit [24]), and (C) the output from the proposed synthetic distortion

correction (note that the synthesized b0 is not used for comparison, rather the acquired b0

after distortion correction is used for quantitative analysis).

2.6 Quantitative evaluation with external validation

We additionally chose a number of external validation datasets (not used in testing, training,

nor validation steps) in order to validate our algorithm on data from sets entirely different

from testing/training/validation. All datasets are freely available and unrestricted for non-com-

mercial research purposes (and found through literature searches, searches through https://

openneuro.org, or through https://www.nitrc.org). These include the “MASSIVE” brain data-

set [25], Kirby21 dataset [26], the age-ility project dataset, an ABIDE dataset (ABIDE I) [27],

IXI datasets (acquired at both Hammersmith hospital and Guys hospital)(https://brain-

PLOS ONE Diffusion MRI Distortion Correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0236418 July 31, 2020 8 / 15

https://openneuro.org/
https://openneuro.org/
https://www.nitrc.org/
https://brain-development.org/ixi-dataset/
https://doi.org/10.1371/journal.pone.0236418


development.org/ixi-dataset/), SCA2 DTI dataset [28], a “DWI Traveling Human Phantom”

dataset [29], HCP Lifespan data (HCP Development [30], subject age = 8), MGH HCP dataset

[31], and a Unilateral Glaucoma 3T dMRI dataset (dataset doi: 10.18112/openneuro.ds001743.

v1.0.1). Importantly, these are all acquired with widely varying acquisition conditions for both

T1 and diffusion images, on different scanners, different resolutions, with different contrasts

and levels of distortions. For example, the MASSIVE dataset [25] was acquired on one subject

over 18 sessions (T1 acquired at 1mm isotropic resolution using a 3D-TFE sequence, diffusion

acquired at 2.5mm isotropic resolution, TE = 100ms, TR = 7000, flip angle = 90, PE = AP

direction), Kirby 21 [26] is a scan-rescan reproducibility dataset (T1 acquired at 1x1x1.2mm

resolution using a MPRAGE sequence, diffusion acquired at 2.2mm isotropic resolution,

TE = 67ms, TR = 6281, flip angle = 90, PE = AP direction). As a final example, Age-ility [32] is

a project that aims to investigate cognition and behavior across the lifespan (T1 acquired at

1mm isotropic resolution using a MPRAGE sequence, diffusion acquired at 2mm isotropic

resolution, TE = 108ms, TR = 15,300, flip angle = 90, PE = AP direction). We refer to the

appropriate references for detailed acquisitions descriptions of each dataset.

3. Results

3.1 Results with cross-validation

The resulting training/validation and test results are shown in Fig 5. There are 5 validation

curves (dashed lines) and 5 training curves (solid lines) since 5-fold cross validation was used.

Note that the test MSE falls within the same range of the tail end of the training/validation

curves. Training took 2.5 days to complete on a single Nvidia TITAN Xp GPU.

Fig 6 shows results from the withheld test set, including distorted b0 (indicated by a “D”)

and corrected (or undistorted) b0 after application of the proposed distorted correction (indi-

cated by a “U”), for the Vanderbilt, HCP, and BLSA datasets. Note that the corrected b0 in Fig

6 represents the results of the entire proposed pipeline–synthesizing an undistorted b0, then

Fig 5. Training, validation, and withheld loss. Left: Training and validation curves for each fold (5 training loss curves and 5 validation loss curves). The solid

lines are the training curves and the dashed lines are the validation curves. Right: Plot of the MSE of the withheld test set (N = 100) for each fold shown as gray

dots (5 folds) against a boxplot of the tail-end of the validation curves for each fold. Note that the test loss falls within the same range of the tail-end of the

validation curves.

https://doi.org/10.1371/journal.pone.0236418.g005
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applying topup to the synthesized images. Thus, we are visualizing corrected b0 images and not

the synthesized images.

In all cases, it is clear that the corrected b0 is geometrically more similar to the T1 image

than uncorrected, indicating significant reductions in distortions. For Vanderbilt and BLSA

data, the most pertinent region of correction is the anterior region of the brain, and mid-brain

areas. For HCP, left/right distortion is clearly corrected, and is most obvious in the temporal

lobe and inferior aspects of the white/gray matter boundary.

To verify anatomically faithful distortion correction, it is critical to quantify geometric simi-

larity of the resulting corrected b0 images to the co-registered (and undistorted) T1. Fig 7 (left)

shows the mutual information between a non-corrected b0 (N.C.), registration-corrected b0

(R.C.), the legacy synthetic distortion (S.D.) [33], and the proposed synthetic-correction (Syn.

C.), where a higher value serves as an indicator of a closer match to the structural scan. It is

clear that all correction methods significantly improve brain geometry. We point out that the

legacy distortion correction [33] (S.D.) appears to show improvements mainly for the BLSA

datasets (which it was trained on) and did not well generalize to additional contrasts and

geometries–limitations which the currently proposed approach specifically intend to address.

Fig 7 (right) quantifies the MSE of each b0 with the state-of-the art topup-corrected b0. In this

case, the synthesized method shows significant improvements in both geometry and contrast

(with one outlier). Thus, results are structurally similar to T1, and on par with registration

techniques (as assessed by MI to T1) and more closely match the ground truth state-of-the art

topup correction (as assessed by MSE with TOPUP b0).

3.2 Results with external validation

We apply the proposed synthesis+topup pipeline using data from existing open-sourced diffu-

sion datasets that were not included in training (Table 1). Fig 8 shows that this pipeline can

correct distortions on datasets that may differ from those the networks were trained on. Specif-

ically, we use the MASSIVE, Age-ility, and Kirby21 datasets, all of which are acquired at

Fig 6. Withheld test set results. BLSA (top), Vanderbilt (middle), and HCP (bottom) datasets, the distorted (“D”) and

undistorted (after applying the proposed pipeline) b0 (“U”) are displayed along with a structurally-undistorted T1

image. This demonstrates qualitatively improved alignment to the subjects’ T1 using the proposed pipeline (i.e.,

synthesized b0 and topup correction). Arrows highlight areas of observable improvement as described in the text.

https://doi.org/10.1371/journal.pone.0236418.g006

Fig 7. Validation of geometry and contrast after distortion correction. Top: MI of the non-corrected (N.C), registration corrected (R.C.), legacy synthetic-distortion

(S.D) and proposed synthetic correction (Syn.C.) b0 images with the structural T1 image. A higher value suggests a geometry more similar to the undistorted T1.

MIddle: MI of the N.C, R.C., S.D, and Syn.C. b0 with state-of-the art topup distortion correction results. A higher value indicates geometry/contrast more similar to the

goldstandard. Bottom: MSE of the N.C., R.C., S.D, and Syn.C., b0 with state-of-the art topup distortion correction results. A lower value indicates structure and image

intensities more similar to the topup results. For both, solid and dashed lines indicate mean and median values, respectively. Each contains 15 datapoints, from 5 HCP

subjects (blue), 5 Vanderbilt subjects (black), and 5 BLSA subjects (red).

https://doi.org/10.1371/journal.pone.0236418.g007
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Fig 8. External dataset validation. External validation of corrected b0’s after applying the synthesized b0 distortion correction pipeline with data from open-sourced

studies. The distorted (“D”) and undistorted (“U”) b0 images are shown alongside T1 images. In all cases, effective distortion correction is visually apparent (distortions

indicated by arrows).

https://doi.org/10.1371/journal.pone.0236418.g008
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varying resolutions, different distortion directions, different brain sizes, and different subject

ages. Most areas show significantly improved geometric match to T1’s, for example frontal

areas, ventricles, and brainstem indicating effective distortion correction. Quantifying MI with

T1 as a proxy for geometric similarity shows statistically significant improvement in correction

(paired t-test, p<0.001), and an increased MI for all 11 samples tested (MI distorted: 0.42

±0.98; MI undistorted: 0.53±0.13).

4. Discussion

The Synb0 substantively improves upon the state-of-the art for distortion correction of

DW-MRI data without supplementary acquisitions. Synb0 more accurately identifies anatomi-

cal geometry than image-based distortion correction as assessed by mutual information and

mean squared error. The improvement is consistent across multiple datasets. Moreover, Synb0

runs in ~2 minutes per scan (specifically, inference, or generation of synthetic images, is ~2

minutes), versus ~10–15 minutes for image-based registration. It is important to point out

that the full proposed pipeline still involves running topup, which can vary from ~20–40 min-

utes depending on image resolution and topup configuration.

We emphasize that correction without modern/supplementary sequences is not a first

choice for study design. However, vast quantities of DW-MRI have been acquired (and are still

being acquired) with classic/limited DW-MRI sequences (e.g., legacy studies, older scanners,

scanners without advanced DW-MRI license keys, clinically acquired imaging). Hence, it is

important to have the best possible alternative processing strategies for these data.

This effort is the second publication to examine deep learning for DW-MRI distortion cor-

rection. Mutual information is improved by a mean of 36% over the prior publication and 11%

over registration correction (Fig 7A and 7B). On a study by study basis, these are statistically

significant (p<0.001, paired t-test) across all individual cohorts. Similarly, mean squared error

is improved (decreased) by a mean of 40% over the prior publication and 63% over registration

correction (Fig 7C), with differences in cohorts showing statistical significance (p<0.001,

paired t-test).

A Singularity virtual machine image has been made available to enable simple evaluation of

the proposed techniques at https://github.com/MASILab/Synb0-DISCO. The Singularity

requires only a b0 and T1 as inputs, and performs all pre-processing (T1 bias field correction

and normalization, registration to MNI), image synthesis or model inference, and topup–

returning as output topup field coefficients and all intermediate data. Source code and binaries

are available at https://github.com/MASILab/Synb0-DISCO. These open source efforts sim-

plify training or transfer learning with larger datasets.
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