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Abstract

Mutations in KRAS, NRAS, and BRAF (RAS/BRAF) genes are the main predictive biomark-

ers for the response to anti-EGFR monoclonal antibodies (MAbs) targeted therapy in meta-

static colorectal cancer (mCRC). This retrospective study aimed to report the mutational

status prevalence of these genes, explore their possible associations with clinicopathologi-

cal features, and build and validate a predictive model. To achieve these objectives, 500

mCRC Mexican patients were screened for clinically relevant mutations in RAS/BRAF

genes. Fifty-two percent of these specimens harbored clinically relevant mutations in at

least one screened gene. Among these, 86% had a mutation in KRAS, 7% in NRAS, 6% in

BRAF, and 2% in both NRAS and BRAF. Only tumor location in the proximal colon exhibited

a significant correlation with KRAS and BRAF mutational status (p-value = 0.0414 and

0.0065, respectively). Further t-SNE analyses were made to 191 specimens to reveal pat-

terns among patients with clinical parameters and KRAS mutational status. Then, directed

by the results from classical statistical tests and t-SNE analysis, neural network models uti-

lized entity embeddings to learn patterns and build predictive models using a minimal num-

ber of trainable parameters. This study could be the first step in the prediction for RAS/

BRAF mutational status from tumoral features and could lead the way to a more detailed

and more diverse dataset that could benefit from machine learning methods.

Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide and its prevalence has

increased due to external risk factors such as diet, obesity, and sedentary lifestyle [1]. In
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Mexico, cancer is the third most common cause of death and CRC is the fourth most frequent.

From 2000 to 2012, the age-adjusted mortality rate per 100,000 inhabitants increased from 3.9

to 4.8 [2]. The most recent data from GLOBOCAN recorded 14,900 deaths from CRC in

Mexico in 2018 [3]. The Mexican healthcare system is unable to cope with the increasing need

for an early cancer diagnosis, a situation worsened by a poor preventive culture. As a result,

almost 80% of CRC cases are diagnosed in advanced stages with a high probability of present-

ing metastasis leading to a poor prognosis [4].

Two of the available targeted treatments for metastatic CRC (mCRC) are based on mono-

clonal antibodies that inhibit the signaling pathway initiated by the epidermal growth factor

binding to its receptor (EGFR). Mutations in genes that integrate the EGFR signaling cascade

determine the response to this therapy, therefore they are used as predictive biomarkers. Previ-

ous studies have shown that KRAS (exons 2, 3, and 4), NRAS (exons 2, 3, and 4) and BRAF
(codon 600 in exon 15) genes, all being part of the EGFR signaling cascade, are mutated in

approximately 45–55% of the mCRC cases [5–8].

CRC is a very complex cancer that can be classified according to its pathological features.

Many studies have found associations between these features or demographical data and genes

mutational status showing interesting results. In a French cohort, mutations in the KRAS gene

were more frequent in men, while an Australian study concluded that they were more frequent

in women [9,10]. A study in Italy found an association between mucinous adenocarcinoma

and KRAS mutations, but not with NRAS or BRAF mutations [11].

One of the approaches to find these associations, especially between the integration of mul-

tiple traits and the mutational status is through machine learning. In the last decade, machine

learning has played a crucial role in effectively building data-driven biological models to

predict cancer progression [12], susceptibility [13], recurrence [14], survival [15], and other

clinical outcomes from complex datasets integrated by clinical and genomic features by discov-

ering and identifying patterns and relationships among those features. Machine learning tech-

niques used in cancer research include Artificial Neural Networks (ANNs) [16,17], Bayesian

Networks (BNs) [18], and Support Vector Machines (SVMs) [19]. ANNs are powerful tools to

study a broad range of cancers, including breast cancer [17], CRC [20], and lung cancer [21].

For example, the integration of mammographic and demographic data of breast cancer

patients for ANN yields 96.5% of the accuracy of breast cancer risk prediction [17]. In this

study, we used neural network model as our starting point for building a predictive model

since its architecture allows it to learn high dimensional nonlinear data spaces, such as clinical

datasets.

The aims of this study were to determine KRAS, NRAS, and BRAF mutation prevalence and

their possible association between tumoral clinicopathological features in mCRC patients

from Mexico. Also, these data were integrated as input features, including clinical variables

and histological parameters, in machine learning algorithms to build and validate a model to

predict and visualize the presence of mutations in the KRAS gene.

Materials and methods

Patients and biological specimens

Biospecimens for this retrospective study were acquired through the KRAS, NRAS, and BRAF
mutation analysis service performed at the Genetics Laboratory at Vitagénesis S.A. de C.V.

located in Monterrey, Mexico. The study was approved by the Ethics and Research Committee

from Hospital La Misión S. A. de C. V. (17CI19039096) in the city of Monterrey, Mexico and

all data were fully anonymized and the requirement for written informed consent was waived,

given this study’s retrospective nature. This research was carried out following approved
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guidelines and the Declaration of Helsinki. Formalin-fixed paraffin-embedded (FFPE) pri-

mary and metastatic (only if the primary tumor was not available) tumor specimens from 546

mCRC patients from diverse hospitals across the country were retrospectively reviewed from

January 2015 to June 2018. Specimens in which only KRAS was analyzed for mutations were

excluded (n = 46), giving a total of 500 specimens for further analysis.

Mutation screening

Five FFPE sections of 15 μm thickness were used per analysis. DNA was extracted with the

QIAmp FFPE Tissue kit (Qiagen, Hilden, Germany) following manufacturer instructions.

Mutation screening was performed for clinically relevant mutations in exons 2, 3, and 4 of

KRAS and NRAS, as well as in codon 600 of exon 15 of BRAF. Specimens that arrived from

2015 to 2016 (n = 128) were analyzed only for KRAS and NRAS mutations by Sanger sequenc-

ing (Genetic Analyzer 3130, Applied Biosystems, Foster City, USA) [22]. From mid-2016 to

2018, specimens were evaluated using the fully-automated qPCR KRAS and NRAS3 (NRAS
and BRAF) Idylla™ (Biocartis, Mechelen, Belgium) mutation assays (n = 370) [23,24]. From the

latter specimens, those that did not meet Idylla™ requirements were screened for only KRAS
and NRAS genes (n = 2) using the EntroGen RAS mutation screening panel (EntroGen, Tar-

zana, USA) in a StepOne™ Real-Time PCR System (Applied Biosystems, Foster City, USA), fol-

lowing manufacturer instructions.

Histopathological features for statistical analyses

Histopathological information of these tumors was retrieved from paired reports by the

institutions where the specimens came from. Those were High Specialty Regional Hospitals

of Bajı́o (HRAEB), Oaxaca (HRAEO), Yucatan’s peninsula (HRAEPY), Chiapas (HRAEC),

Ciudad Victoria (HRAECV), and Ixtapaluca (HRAEI), in addition to the following local

clinics and hospitals: Doctor’s Hospital, Opción Oncologı́a, ONCARE, OCA Hospital, Hos-

pital San José, and Hospital Zambrano Hellion. All information was gathered and arranged

into a database where it was normalized. The W.H.O. histological classification of tumors

served as a guideline for the designation of the histological subtype classification (classical

adenocarcinoma, mucinous adenocarcinoma, and signet-ring cell adenocarcinoma),

histological grade (well, moderately, and poorly differentiated), and tumor site (proximal

and distal colon, and rectum) [25]. Specimens located in cecum, ascending colon, and trans-

verse colon were cataloged as proximal colon while those located in the descending colon

and sigmoid colon as the distal colon. There was no available data on the specimens’ MSI

status.

Traditional statistical analyses

To identify possible associations between clinicopathological features and the mutational sta-

tus, specimens were treated as two different groups: one used for the association analysis of

KRAS and NRAS genes (n = 500) and a subset for the association analysis of BRAF gene

(n = 370). Associations between mutational status and tumoral histopathological features were

analyzed using a χ2-test for qualitative variables and opting for a Student’s t-test for quantita-

tive variables (age only) [9]. The significance threshold was set at p<0.05. Traditional statisti-

cal analyses were performed using SPSS Windows (Version 16.0) software (SPSS Inc, Chicago,

IL, USA).
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Data processing for machine learning

Ages were classified into 10-year range categories. Histological subtype data were categorized

into four groups: classical adenocarcinoma, mucinous adenocarcinoma, signet-ring cell ade-

nocarcinoma, and others. Cities of origin were grouped into five regions: West (or Bajı́o), Cen-

tral, North, North Pacific Coast, and South, based on geography and dietary cultures (S1

Table) [26]. In general terms, Northern Mexico possesses a heavy meat diet with influences

from American southwest food and Bajı́o people prefer deep-fried pork meat, while the North

Pacific Coast consumes more vegetables, seafood, and fruits. Diet in the South is more indige-

nous and influenced by Mayan and Caribbean traditions. Central Mexico, which includes

Mexico City, represents a mixture of dietary cultures not only from other Mexican regions but

also from foreign countries. Tumor sites were grouped into eight potential categories based on

location: colon, ascending colon, descending colon (including tumor sites at recto-sigmoid

joint and sigmoid colon), hepatic system (gallbladder, liver, and hepatic node), rectum, small

intestine (small intestine, ileum valve, duodenum, and cecum), transverse colon, and other

(every specimen not included in other groups).

t-distributed stochastic neighbor embedding (t-SNE)

In this study, we started by visualizing data of 190 patients using an unsupervised clustering

and dimension reduction algorithm, t-SNE [27,28], to identify groups with similar multi-phe-

notypes-genotypes relationships. We utilized the t-SNE Scikit-Learn implementation in our

dataset to evaluate the clinical characteristics pattern within gene mutation. Each subject is

mapped from data space onto a single point in the 2D map space and was then color-coded

according to their respective clinical characteristics. Clinical features are encoded in data space

using a concatenated 1-of-k one-hot vector technique. All 2D map space embeddings reached

a stable configuration within 2,000 iterations with a learning rate set to 300 and perplexity

between 8 and 15. Patients with missing data were excluded. Absolute location and shape of t-

SNE clusters typically have little real-world significance. However, clusters can be used to

build intuition behind how certain features are linked together within the studied dataset and

guide the construction of machine learning models.

Neural networks

After excluding subjects with missing values in age, histological subtype, histological grade,

tumor site, and city, the yielded sample size was 163 patients which were split into 90/10 train/

test set, with 146/17 subjects, respectively. The prevalence of KRAS mutations in this subgroup

is comparable with the whole group, having 41% and 45% of KRAS mutation rate respectively.

We employed a 2-layer neural network using the Keras neural network library [29]. In this

model, patients can be encoded as a 2D vector and those with similar traits will be mapped in

proximity while patients with differing traits are mapped distally. We decided to see if a neural

network model can learn to encode patients from tabular data onto 2D vector space and then

use that vector as a way to classify whether they had KRAS mutations or not. In real practice,

inputs were fed directly into an embedding layer, flattened, and passed to a two-neuron soft-

max output dense layer that predicted the presence of KRAS mutation against wild-type KRAS.

The output of the model is the probability of each target class–contains KRAS mutation or

does not contain KRAS mutation, and the class with the highest probability becomes the

answer of the prediction (yes/no mutation). Categorical cross-entropy serves as the loss func-

tion for the backward propagation learning phase. In the 5-stratified randomized folds cross-

validation method, the dataset was shuffled and split up into five non-overlapping sections

where the KRAS mutation proportion remained equal to the training set proportion (41%). All

PLOS ONE RAS and BRAF genes vs histology in mCRC

PLOS ONE | https://doi.org/10.1371/journal.pone.0235490 July 6, 2020 4 / 16

https://doi.org/10.1371/journal.pone.0235490


models were trained using a 5-fold stratified shuffle split with results averaged across the tests.

All networks reached a stable configuration within 200 epochs. ROC (Receiver Operating

Characteristic) curves and validation prediction accuracy served as a model performance met-

ric. Accuracy and loss curves were also reported to visualize the training cycle over each epoch.

The accuracy is the proportion of correct predictions in the validation set. Since the model is

trained over five different cross-validation folds, we average the prediction accuracy over all

five folds.

Results

Mutation frequency

Fifty-two percent of the specimens were found to harbor clinically relevant mutations in RAS/
BRAF (KRAS, NRAS, and BRAF). Within these specimens (n = 263), 86% had a mutation in

KRAS, 8% in NRAS, and 7% in BRAF (Table 1).

Most of the specimens came from the north of Mexico (n = 268) and the least frequent

region was Central (n = 33). This region had the highest RAS/BRAF mutational rate (69%) and

the north had the lowest (51%).

Regarding the KRAS gene, 72% of the mutations were located in codon 12, 16% in codon

13, 6% in codon 146, 4% in codon 61, and 1% in codons 59 and 117. The most frequent muta-

tion in KRAS was G12D composing 28% of mutations in the said gene. Mutations in NRAS
were more common in codon 61 (prevalence of 55% in all the NRAS mutated specimens),

while the rest were in codon 12, 13, and 117 (30%, 10%, and 5%, respectively) (Table 2). Two

rare cases where the patients had mutations in both NRAS and BRAF were found, despite that

these mutations are generally considered as mutually exclusive.

General histopathological and clinical features

The average age of patients was 56.6 years and their distribution by sex was almost equal.

From the specimens where tumor site information was available (n = 266), 44% of them were

in the rectum, 21.4% were in the proximal colon, and 34.6% in the distal colon. The predomi-

nant histological subtype of the characterized specimens (n = 281) was classical adenocarci-

noma with a prevalence of 86.1%, followed by mucinous carcinoma and signet ring cell

carcinoma with an incidence of 9.6% and 2.1%, respectively. Histological grade was deter-

mined in 197 specimens, of which 12.7% were classified as well-differentiated, 72.6% as mod-

erately differentiated, and 14.7% as poorly differentiated. Almost half of the tumors were

reported to be in stage 4 (n = 236), and from 112 patients we determined that the liver is the

most frequently affected organ by metastasis (n = 56) (Table 3).

Table 1. Mutational status of patients with mCRC by genes and country regions.

KRAS (n = 500, %) NRAS (n = 500, %) BRAF (n = 370, %)

Country region Wildtype Mutated Wildtype Mutated Wildtype Mutated

North 150 (56%) 118 (44%) 254 (95%) 14 (5%) 198 (96%) 8 (4%)

North Pacific Coast 68 (60%) 46 (40%) 112 (98%) 2 (2%) 74 (93%) 6 (7%)

Bajı́o 25 (49%) 26 (51%) 50 (98%) 1 (2%) 35 (97%) 1 (3%)

South 19 (54%) 16 (46%) 34 (97%) 1 (3%) 23 (92%) 2 (8%)

Central 13 (41%) 19 (59%) 30 (94%) 2 (6%) 22 (96%) 1 (4%)

Total 275 (55%) 225 (45%) 480 (96%) 20 (4%) 352 (95%) 18 (5%)

https://doi.org/10.1371/journal.pone.0235490.t001
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Traditional statistical associations between RAS/BRAF mutational status

and patients´ features

KRAS mutation screening revealed that 45% (n = 225) of the specimens harbored a mutation

against 55% of KRAS-wildtype specimens. No significant difference in age was found, KRAS-

mutants had an average of 57.4 years and KRAS-wildtypes an average of 56.1. In terms of sex,

no significant difference was found between male and female patients. Tumors located in the

proximal colon were found to be significantly associated with the presence of mutations in the

KRAS gene in contrast to wild-type specimens (29.2% vs. 15.1%, p-value = 0.0414). KRAS-

mutated and tumor histological classification (classical adenocarcinoma, 83.6%), the histologi-

cal grade of differentiation (moderate differentiation, 67.5%), and clinical stage (stage IV,

78.8%) display an apparent tendency; however, there was no statistically significant difference

to support these premises (Table 3). Furthermore, we probed the possible association between

mutations among exons and codons, but no significant difference was found, either (S1 and S2

Tables).

Regarding NRAS analysis, 4% were NRAS-mutants. No association was found between the

mutational status of NRAS and any clinicopathological feature. All NRAS-mutated specimens

were in the distal colon or rectum. The rectum was the most common NRAS-mutated site

Table 2. Mutations by location and type in RAS/BRAF genes.

Gene Location No. Mutated Cases per Gene

Codon KRAS (n = 225, %) NRAS (n = 20, %) BRAF (n = 18, %)

Codon 12 162 (72%) 6 (30%) N/A

G12V 40 (18%) 0(0%) N/A

G12D 73 (32%) 6 (30%) N/A

G12C 17 (8%) 0(0%) N/A

G12A 17 (8%) 0(0%) N/A

G12S 11 (5%) 0(0%) N/A

G12R 2 (1%) 0(0%) N/A

G12V/D/A† 1 (0.4%) 0(0%) N/A

G12C/S† 1 (0.4%) 0(0%) N/A

Codon 13 36 (16%) 2 (10%) N/A

G13A 36 (16%) 0(0%) N/A

G13D 0(0%) 1 (5%) N/A

G13R/V† 0(0%) 1 (5%) N/A

Codon 59 2 (1%) 0(0%) N/A

A59T/V† 2 (1%) 0(0%) N/A

Codon 61 10 (4%) 11 (55%) N/A

Q61H 2 (1%) 1 (5%) N/A

Q61K 2 (1%) 3 (15%) N/A

Q61L/R† 6 (3%) 7 (35%) N/A

Codon 117 2 (1%) 1 (5%) N/A

K117N/R/E† 2 (1%) 1 (5%) N/A

Codon 146 13 (6%) 0(0%) N/A

A146P/T/V† 13 (6%) 0(0%) N/A

Codon 600 N/A N/A 18 (100%)

V600E/D† N/A N/A 18 (100%)

�Presence of one of these mutations, not concomitant. N/A = Not applicable.

https://doi.org/10.1371/journal.pone.0235490.t002

PLOS ONE RAS and BRAF genes vs histology in mCRC

PLOS ONE | https://doi.org/10.1371/journal.pone.0235490 July 6, 2020 6 / 16

https://doi.org/10.1371/journal.pone.0235490.t002
https://doi.org/10.1371/journal.pone.0235490


(63.6% vs. 43.1%) and there was a tendency in specimens with this genotype for well-differenti-

ated tumors (20% vs. 12.3%) but with no definitive statistically significant difference.

Analysis of the BRAF gene revealed that 5% (n = 18) were mutated. BRAF-mutated patients

were older than BRAF-wildtypes (63.4 and 56.6, respectively), however, no significant differ-

ence was found (p-value = 0.0639). Also, a tendency was found in the histological subtype,

with a bias towards classical adenocarcinoma (90% vs. 85.1%) although not statistically

Table 3. Associations between genetic and clinicopathological features.

KRAS NRAS BRAF Total

Variable Mutated

(n = 225, %)

Wild-type

(n = 275, %)

p value Mutated

(n = 20, %)

Wild-type

(n = 480, %)

p value Mutated

(n = 18, %)

Wild-type

(n = 352, %)

p value (n = 500,

%)

Age, Median 57.4 56.1 0.9233 51.9 56.9 0.1629 63.4 56.6 0.0639 56.6

Sex (n = 500) 0.4662 1 0.814

Female 107 (47.6%) 127 (46.2) 9 (45%) 225 (46.9%) 8 (44.4%) 168 (47.7%) 234

(46.8%)

Male 118 (52.4%) 148 (53.8%) 11 (55%) 255 (53.1%) 10 (55.6%) 184 (52.3%) 266

(53.2%)

Tumor site (n = 266) 0.0414� 0.2298 0.0065�

Proximal colon 35 (29.2%) 22 (15.1%) 0 (0%) 57 (22.4%) 6 (46.2%) 38 (20.1%) 57 (21.4%)

Distal colon 35 (29.2%) 57 (39%) 4 (36.4%) 88 (34.5%) 7 (53.8%) 71 (37.6%) 92 (34.6%)

Rectum 50 (41.7%) 67 (45.9%) 7 (63.6%) 110 (43.1%) 0 (0%) 80 (42.3%) 117 (44%)

Histological subtype

(n = 281)

0.1894 0.4984 0.9237

Adenocarcinoma 102 (83.6%) 140 (88.1%) 14 (100%) 228 (85.4%) 9 (90%) 189 (85.1%) 242

(86.1%)

Mucinous carcinoma 16 (13.1%) 11 (6.9%) 0 (0%) 27 (10.1%) 1 (10%) 23 (10.4%) 27 (9.6%)

Signet ring cell

carcinoma

1 (0.8%) 5 (3.1%) 0 (0%) 6 (2.2%) 0 (0%) 5 (2.3%) 6 (2.1%)

Others 3 (2.5%) 3 (1.9%) 0 (0%) 6 (2.2%) 0 (0%) 5 (2.3%) 6 (2.1%)

Histological grade

(n = 197)

0.2758 0.7361 0.7684

Well 4 (16.9%) 11 (9.6%) 2 (20%) 23 (12.3%) 2 (22.2%) 22 (13.8%) 25 (12.7%)

Moderate 56 (67.5%) 87 (76.3%) 7 (70%) 136 (72.7%) 6 (66.7%) 115 (71.9%) 143

(72.6%)

Poor 13 (15.7%) 16 (14%) 1 (10%) 28 (15%) 1 (11.1%) 23 (14.4%) 29 (14.7%)

Clinical stage

(n = 293)

0.1538 0.1934 0.3535

2 9 (7.1%) 4 (2.4%) 0 (0%) 13 (4.6%) 0 (0%) 10 (4.6%) 13 (4.4%)

3 18 (14.2%) 26 (15.7%) 0 (0%) 44 (15.7%) 3 (27.3%) 29 (13.3%) 44 (15%)

4 100 (78.7%) 136 (81.9%) 13 (100%) 223 (79.6%) 8 (72.7%) 179 (82.1%) 236

(80.6%)

Metastasis site

(n = 112)

0.3794 0.9616 0.956

Liver 22 (45.8%) 31 (48.4%) 2 (66.7%) 51 (46.8%) 1 (100%) 44 (47.8%) 53 (47.3%)

Lung 6 (12.5%) 5 (7.8%) 0 (0%) 11 (10.1%) 0 (0%) 8 (8.7%) 11 (9.8%)

Liver and lung 2 (4.2%) 3 (4.7%) 0 (0%) 5 (4.6%) 0 (0%) 5 (5.4%) 5 (4.5%)

Peritoneum 0 (0%) 5 (7.8%) 0 (0%) 5 (4.6%) 0 (0%) 4 (4.3%) 5 (4.5%)

Lymph node 16 (33.3%) 16 (25%) 1 (33.3%) 31 (28.4%) 0 (0%) 26 (28.3%) 32 (28.6%)

Ovary 2 (4.2%) 4 (6.3%) 0 (0%) 6 (5.5%) 0 (0%) 5 (5.4%) 6 (5.4%)

�Significance threshold at p <0.05.

https://doi.org/10.1371/journal.pone.0235490.t003
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significant. The only association found with BRAF-mutated was the tumor location in the

proximal colon (46.2% vs. 20.1% p-value 0.0065) as shown in Table 3.

t-SNE clustering of KRAS mutational status with integrated patients’

features

To further research the association of integrated features including more than one clinical and

histopathological traits and the KRAS mutational status, t-SNE was used to analyze the data. It

captures local topological patterns in high dimensional spaces and clustering them together on

a low dimensional space. For our dataset, the best clusters were formed using three input fea-

tures–histological grade, tumor site, and city–with genetic KRAS characteristics blindly color

labeled to reveal interesting patterns and separation. City information was grouped according

to the physical location and dietary traditions in mind (S1 Table). Tumor site information,

which was found to be significantly associated with KRAS mutation (Table 3), was broadly

grouped into different main organ loacation. Clustering errors may be introduced as some

patients had tumor sites labeled under ‘Colon’, while others had a more specified tumor site

labeling (i.e. Ascending, Descending, or Transverse Colon). Additionally, we also integrated

the histological grade of differentiation, which was found associated, but not statistically signif-

icant to KRAS. Age and sex information were intentionally excluded since χ2 tests indicating

that these features are poor predictors for the KRAS genotype (Table 3). The histological sub-

type and clinical-stage features were also excluded due to insufficiently large subcategories

such as signet ring carcinoma histological type and clinical stage 2 having less than ten cases

for KRAS mutants and wildtypes. Overall, 190 patients possessed complete sets of data and

were included in the clustering algorithm.

t-SNE clustering allowed us to easily visualize multiple clinical features in comparison at

once (Fig 1). Five clusters were annotated in the blindly labeled plot (lower panel of Fig 1) by

using the t-SNE maps trained on the information from the three smaller subplots (upper panel

of Fig 1). Cluster I shows that patients from Northern Mexico with tumors located in the small

intestine and moderately differentiated histological grade exhibited a strong preference for

KRAS mutation. Cluster II shows that patients from the North Pacific Region generally showed

a high preference for KRAS mutation while cluster III suggests that KRAS mutations were

unfavorable in the lower digestive tract, namely the descending colon and rectum which dis-

play a strong preference for wild type KRAS mutation. Cluster IV and V, representing North

and Central Mexico patients, respectively, show that patients with tumor sites located in the

descending colon and rectum also heavily favor the KRAS wild type status, suggesting that rec-

tum and descending colon tumor sites preference for wild type KRAS status may be indepen-

dent of diet and location.

Predictive models for KRAS mutations by neural network

Neural network predictive modeling was constructed using the same input features used in t-

SNE clinical characteristic plus histological type clustering, which exhibited an apparent ten-

dency not statistically significant (Table 3), and with KRAS as the predicting feature since it

has relatively even number of mutants and wild type cases, 45% and 55%, respectively. BRAF
and NRAS gene information were excluded to reduce signal noise since these features are

dependent on the KRAS genotype [30]. The ROC curve (S1 Fig) shows that the predictive

model built with the above four features outperformed a random classifier (with AUC at 0.7)

and indicates that these features may potentially hold valuable information connecting the

KRAS mutation status and patient’s clinical and histopathological characteristics in a combina-

torial manner. The model achieves accuracy far above chance with good statistical reliability
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(p<0.001) [31] including a 65.9% average validation accuracy (S1b and S1c Fig). Improve-

ments to the predictive model were accomplished when using age as a continuous variable as

opposed to the 10-year categories previously used (Fig 2). Not only does the ROC curve show

slight improvement with an AUC with 0.71 (Fig 2a), the accuracy and loss curves during

model training converge to a more stable configuration with less variation and a more

Fig 1. t-SNE clustering based on 3 clinical features (tumor site, histological grade, and city). And blindly colored KRAS
mutation. Five selected clusters were annotated. Each data point represents a patient with a specific color indicating the subgroup of

a clinical feature.

https://doi.org/10.1371/journal.pone.0235490.g001
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consistent increase in validation accuracy across the 5-fold shuffle split (Fig 2b and 2c). This

model achieves a far superior accuracy in contrast to the one before with statistical reliability

p<0.001 and an average validation accuracy of 74.1%.

Discussion

Distribution and demographics

A pharmacoeconomic study revealed that only 63% of Latin American oncologists resort to

genetic testing for KRAS (NRAS and BRAF not regularly included in the test) after an mCRC

diagnosis [32]. This figure implies that a significant amount of mCRC patients undergo

through a mismanaged therapy. The first molecular epidemiology study of CRC to be carried

out in the Mexican population stated that 38% of the analyzed specimens contained mutations

in the KRAS gene (only codons 12, 13, and 61 of KRAS were screened) [33]. A second study

carried out in our laboratory reported a frequency of 35% of mutated specimens only in exon

2 of KRAS gene, albeit in this study where exon 3 and 4 of this gene, and both NRAS and BRAF
genes were added to the analysis (the first of this scope in Mexico and Latin America), the fre-

quency increased to 45% [22]. Therefore, it is necessary to adopt extended RAS+BRAF testing

as a routine diagnostic procedure for a more precise approach.

A multicenter study conducted in several countries of Europe, Asia, and Latin America in

2010 reported that Hispanic CRC patients have the highest mutation rate in KRAS exon 2

(36% for European patients, 22% for Asian patients, and 40% for Hispanic patients) [32].

Other studies in Latin America report contrasting frequencies ranging from 13% (Colombia
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and Venezuela) to 40% (Chile). However, the literature shows that the RAS mutation preva-

lence usually has a range of 26% to 50% [34–36].

Previous studies have shown that mutations in KRAS are variable among populations. Stud-

ies in Spanish, Slovenian, Greek, Turkish, and Serbian populations reported KRAS mutation fre-

quencies of 48%, 46.2%, 29.3%, 33.2%, and 35%, respectively, while Middle Eastern population

reported frequencies of 48% (Iraq) and 32% (Saudi Arabia). The only study in an African popu-

lation, conducted in Morocco, registered a KRAS mutation frequency of 23.9% [37]. Studies per-

formed in Asian populations report KRAS mutation prevalence varying from 37.9% (Japan) to

52.7% (China), whereas NRAS and BRAF mutations prevalence are closer with China reporting

3.4% and 4.5% while Japan referring 4.2% and 5.4%, respectively [8,38], nevertheless, popula-

tion-based studies report up to 20% of CRC patients with BRAF mutations [39,40]. This differ-

ence could be due since every specimen was screened for KRAS, but only those that were KRAS
wild type were screened for BRAF since KRAS and BRAF mutations are generally mutually

exclusive. There is a lack of studies in countries neighboring south of Mexico (Central America),

however, a study performed in the north of it, in the United States, reported similar results [41].

Traditional statistical associations

Using the dataset described in Table 3, the χ2 analyses yielded a statistically significant associa-

tion between KRAS mutational status and tumors located in the proximal colon (p-value =

0.0414. However, BRAF mutational status was found to be more significantly associated

(p-value = 0.0065) with proximal colon located tumors. These two associations could be

explained by the fact that only KRAS wild-type specimens were screened for BRAF. These

results coincide with the association between BRAF (but no KRAS) mutational status and the

proximal colon in Chinese, Australian, and Swedish populations [8,10,40].

Nevertheless, several associations previously reported could not be replicated in our study.

A tendency was found in the Japanese population where mutations in KRAS or NRAS were

more common in rectal tumors, while our analysis showed a tendency in the proximal colon

for KRAS-mutated and rectal tumors for NRAS-mutated [38]. In China, an association was

found in KRAS exon 2 with older patients, whereas we found a non-significant tendency

between BRAF and age. Also, we could not identify an association either with histologic sub-

type or grade as these studies did.

A large study in French CRC patients reported that KRAS mutants, KRAS exon 2 mutants,

and KRAS codon 12 mutants were associated with the same clinicopathological features: male

sex, classical adenocarcinoma, and well/moderately differentiated histological grade. Also,

KRAS mutations in exons 3 and 4 were associated with rare histological subtypes [9]. We

could not find an association of this type due to the lack of rare histological subtypes in our

samples. The association between BRAF and tumor location found in our analysis was not

found in the French study.

A study in the United States reported that NRAS mutations were associated with rectal

tumors and BRAF mutations to old age [41] in agreement with our findings. Arguably, diet

and environment could have a more significant role than the genetic load on the frequency of

CRC in Mexican patients, more remarkably nowadays, when part of the diet and lifestyle of

Mexico and the US are becoming more similar through globalization. Several studies have

reported an association between a Western diet with a higher risk of CRC [42–44].

t-SNE associations and neural network predictive model

t-SNE is an unsupervised clustering algorithm that has been shown to effectively map local

nonlinear structures from high dimensional data space onto a lower-dimensional embedded
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map space. t-SNE clusters can be used to build intuition behind how certain features are linked

together within our dataset and guide the focus of future clinical studies. To explore the associ-

ations between multiple clinical features and KRAS mutations, we have employed t-SNE to

find the mutational patterns in a particular subgroup sharing three common clinical and histo-

logical features, including city, tumor site, histological grade, and then demonstrated that

some clinical and histological features hold strong predictive properties for genetic informa-

tion supported by the validation accuracy at 74.1% in artificial neural network models. In the

ANNs models, we explored the use of entity embeddings, traditionally employed in natural

language processing to represent sparse categorical data. Entity embeddings can be imple-

mented as part of a supervised dense neural network and allow for learning of an optimal 2D

map space where similar features are theoretically mapped close together [41]. As a result, we

show that given an appropriate subset of input features instead of single features, it is possible

to distinguish between individuals with KRAS mutation and those without it with high accura-

cies, that works well above chance accuracy using a minimal number of trainable parameters.

Thus, we have established the potential of identifying several clinical and histopathological fea-

tures as strong features relevant to mutational status.

Combining the weak pairwise associations reflected in our initial statistical analysis (age,

histological subtype, histological grade, and, region) in machine learning models fuses the sep-

arate, typically weak, associations between each of the features with mutational status and

therefore strengthens the ability to discern mutation preference in a certain group with same

clinical patterns like histological subtype, histological grade, region, and, tumor location.

Larger datasets routinely gathered immediately after or during diagnosis, and with larger sam-

ple size and including more clinical features could help validate further these associations

between mutation and clinical traits for both neural network and t-SNE clustering method.

Machine learning algorithms are only as good as the input data. More and cleaner data would

help capture general population variances and minute patterns that we currently do not have

enough information to accurately model. Since this model was optimized for Mexican patients,

this particular model architecture has been proved to perform well on a small dataset, we

expect a larger dataset to generate state-of-the-art performance. The neural network model has

been widely used in pharmacogenetics to help predict drug efficacy in patients. Also, the inter-

actions between genetic and clinical features modeled by neural networks may be eventually

translated into individualized therapy at the clinical level. Therefore, more comprehensive

data need to be collected in later study.

Model and analysis limitations

Since our study population was chosen from a larger patient group based on their clinical data

available is possibly subject to selection bias. These data should be interpreted with precaution

in mind. Regarding our statistical analyses, several factors could affect the results, such as the

technology used in each study and the number of specimens. Results reported in the Asian

population are the most similar to those reported in this article given their comparable range

of samples (n = 400–500) [8,38]. However, the study in the French population that managed to

find associations with almost all the clinicopathological features had a total of 1793 samples

[9]. Within our data, we could not find a significant difference in tumor location in NRAS-

mutated samples even if all specimens came from distal colon or rectum tumors; likewise, in

BRAF mutational status there was no significant difference between the age of the patients and

the presence of gene mutations (p-value = 0.06). Therefore, it should be noted that these and

even more associations could be found using larger sample sizes.
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The same applies to our computational models. Although t-SNE showed promising blind

cluster formation, its embedding algorithm is suboptimal for our specific dataset where fea-

tures are unbalanced and there is reduced availability from the complete dataset (<500

patients). Larger datasets could help to further validate these associations between mutation

and clinical features for both neural networks and the t-SNE clustering method. With a larger

sample size, features from this dataset can be further combined with other quantitative biologi-

cal features (proteomic data, cancer imaging data, more gene data, etc.) to build more complex

models that can potentially anticipate treatment prediction, disease prognosis, and recurrence

risk in CRC patients.

Conclusions

These methodologies successfully extracted informative features contributing to KRAS muta-

tion prediction and the underlying dependency of the features to indirectly estimate the associ-

ations between genes and clinical traits. This is the first study of this magnitude in Latin

America. Approximately half of the Mexican patients with mCRC have a mutation that ren-

ders anti-EGFR treatment ineffective. Patients whose tumor is in the proximal colon are more

likely to harbor mutations in KRAS or BRAF. t-SNE and Artificial Neural Network analyses

showed systematic associations between tumor location, age, city of origin, histological sub-

type, and histological grade and KRAS mutational status. A predictive model built on these fea-

tures shows the capacity to discern between patients with and without clinically relevant

mutations in KRAS with an accuracy of 74.1% and motivates to spark a collection of larger

datasets. Further analyses increasing the number of patients should improve the robustness

and accuracy of our predictive model.
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Project administration: Hector Eduardo Sanchez-Ibarra.

Supervision: Hugo Alberto Barrera-Saldaña.

Writing – original draft: Xianli Jiang, Elena Yareli Gallegos-Gonzalez.

Writing – review & editing: Hector Eduardo Sanchez-Ibarra, Hugo Alberto Barrera-Saldaña.

References
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