
RESEARCH ARTICLE

Bayesian hierarchical modeling of joint

spatiotemporal risk patterns for Human

Immunodeficiency Virus (HIV) and

Tuberculosis (TB) in Kenya

Verrah A. OtiendeID
1*, Thomas N. Achia2, Henry G. Mwambi2

1 Department of Mathematical Sciences, Pan African University Institute of Basic Sciences Technology and

Innovation, Nairobi, Kenya, 2 School of Mathematics, Statistics & Computer Science, University of KwaZulu

Natal, Pietermaritzburg, South Africa

* otiende.verrah@students.jkuat.ac.ke, verrahodhiambo@gmail.com

Abstract

The simultaneous spatiotemporal modeling of multiple related diseases strengthens infer-

ences by borrowing information between related diseases. Numerous research contribu-

tions to spatiotemporal modeling approaches exhibit their strengths differently with

increasing complexity. However, contributions that combine spatiotemporal approaches to

modeling of multiple diseases simultaneously are not so common. We present a full Bayes-

ian hierarchical spatio-temporal approach to the joint modeling of Human Immunodeficiency

Virus and Tuberculosis incidences in Kenya. Using case notification data for the period

2012–2017, we estimated the model parameters and determined the joint spatial patterns

and temporal variations. Our model included specific and shared spatial and temporal

effects. The specific random effects allowed for departures from the shared patterns for the

different diseases. The space-time interaction term characterized the underlying spatial pat-

terns with every temporal fluctuation. We assumed the shared random effects to be the

structured effects and the disease-specific random effects to be unstructured effects. We

detected the spatial similarity in the distribution of Tuberculosis and Human Immunodefi-

ciency Virus in approximately 29 counties around the western, central and southern regions

of Kenya. The distribution of the shared relative risks had minimal difference with the

Human Immunodeficiency Virus disease-specific relative risk whereas that of Tuberculosis

presented many more counties as high-risk areas. The flexibility and informative outputs of

Bayesian Hierarchical Models enabled us to identify the similarities and differences in the

distribution of the relative risks associated with each disease. Estimating the Human Immu-

nodeficiency Virus and Tuberculosis shared relative risks provide additional insights

towards collaborative monitoring of the diseases and control efforts.
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Introduction

Disease mapping as a modeling approach is commonly used to describe the geographical distribu-

tion of disease burden thereby generating hypotheses on their possible causes and differences [1].

Statistical methods for characterization of the geographical variations have contributed significantly

towards advancing the focus of disease mapping to incorporate other analysis techniques. An

extension to the univariate disease mapping considering a single disease is the joint spatial model-

ing of multiple related diseases with common risk factors. This extension outspreads the standard

univariate disease mapping methodologies by generating both the shared and divergent trends

thereby increasing the estimation precision of disease risk [2]. Including the time dimension further

advances the subject of disease mapping to the spatiotemporal modeling of the variation of disease

risk. Such analyses enables studying of spatial patterns, temporal variations and spatiotemporal

interaction thereby giving deeper insights over purely spatial mapping [3,4]. Another extension is

the joint spatiotemporal modeling of multiple diseases. This approach advances the space-time

analysis to model multiple diseases simultaneously thereby strengthening inference by borrowing

information across neighboring regions and between related diseases or sub-populations with com-

mon aetiological factors [5]. The benefits of borrowing information lie in the ability to observe con-

currency of patterns and to allow conditioning of one disease on others [6] which is very valuable

when accounting for uncertainty due to sparse disease count or underreporting [7]

Studies combining spatiotemporal approaches to modeling multiple diseases simultaneously

are not so common despite the development and application of novel computational tech-

niques. Reviews from literature show few contributions of these approaches that exhibit their

strengths differently with increasing complexities. [8] used a Bayesian factor analysis approach

to combine the space-time disease mapping and joint modeling of different cancers. [9] used a

full Bayesian hierarchical model to split the disease risks into shared and disease-specific spatio-

temporal components. Their definition of multiple diseases was male and female subpopula-

tions. [10] also applied a full Bayesian hierarchical approach to their spatiotemporal model to

estimate the relative risk of various cancers while adjusting for age and gender. Using the hierar-

chical Bayesian factor models, [11] combined the dynamic factor analytic models with space-

time disease mapping and produced a flexible framework for jointly analyzing multiple related

diseases. Another study by [12] compared three formulations of the spatiotemporal shared com-

ponent model on five diseases and examined the changes in the shared factors over time.

Incorporating the spatiotemporal modeling approaches to modeling of multiple diseases

simultaneously adds significant complexity to the model structure [13]. The Bayesian hierar-

chical modeling approach makes an appropriate framework for solving complexities in the

spatiotemporal structures [9,10,14,15]. The uniqueness of the Bayesian approach that differen-

tiates it from other classical approaches is its robustness to interpretation of the posterior esti-

mates and generating inferences of all model parameters [16].

The feasibility of using case notifications as a surrogate of population-based studies to esti-

mate the shared and disease-specific risks of multiple diseases is also unknown. Against this

background, we investigate the spatial and temporal patterns of Human Immunodeficiency

Virus (HIV) and Tuberculosis (TB) burden in Kenya jointly using case notification data for a

six-year period and characterize the areas with unusually high relative risks. Maps generated

from these models describe new exposure hypotheses that warrant further epidemiological

investigations on existing challenges and opportunities for disease surveillance and etiology.

Motivation of the study

The HIV and TB diseases have a co-epidemic overlap in their epidemiologic characteristics and

clinical manifestations [17]. Both the HIV and TB pathogens interact synergistically,
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accelerating the progress of illness thereby increasing the likelihood of death [18]. TB is a com-

municable disease and a major cause of ill health globally that affects the lungs (pulmonary) but

can also affect other sites (extrapulmonary) [19,20]. Despite being a curable and preventable dis-

ease, TB is the leading cause of death from bacterial infection worldwide and undoubtedly rep-

resenting a global public health priority [21–24]. TB is also the leading cause of morbidity and

mortality among people living with HIV/AIDS [24], accounting for approximately 40% of

deaths globally [20]. HIV disease is equally a major global health concern causing substantial

morbidity, mortality rate, human suffering, and development challenges [25]. HIV infection

increases the risk of TB disease up to 20 times [26,27]. The rapid disease progression and associ-

ated leading opportunistic infection, TB, contribute to the high mortality rates [28]. Beyond

affecting the health of individuals, HIV and TB diseases are stigmatized [17] and have a signifi-

cant impact on the social, economic and political stability of the hardest-hit countries [29,30].

Kenya suffers from the dual epidemics ranking 4th and 15th globally in the high disease bur-

den for HIV and TB respectively [31–33]. In 2013, Kenya reported more than 35% of the noti-

fied TB to be HIV infected compared to the global 13%. Some regions had up to 75% HIV

infections among the TB patients [27]. The high HIV prevalence in Kenya is the major driver

of TB related morbidity [33]. The Kenya AIDS Indicator Survey of 2012 indicated that one

third of persons who reported prior tuberculosis nationally were HIV positive [34,35]. Equally,

TB was the leading opportunistic infection in settings of high HIV prevalence [35,36] and the

most re-emerging infection for people living with HIV [37,38]. The KAIS-2012 survey also

indicated a stronger association between HIV and TB for the self -reported cases with 1 out of

every 5 HIV positive cases having a TB recurrence situation [34].

Studies on TB and HIV incidences in Kenya have limited spatial and temporal scoping

making generalizations of their findings to the whole country difficult. This study uses routine

case notification data to provide more accurate estimates and insights on the elevated risk

areas of HIV and TB individually and jointly over time. By using the spatiotemporal approach

to modeling HIV and TB diseases simultaneously, we present the shared and disease-specific

spatial risk patterns and explore their temporal evolution. The joint model also determines the

combined and disease-specific elevated risk areas.

Materials and methods

Study location

The study was conducted in Kenya, a country of great diversity situated in East Africa extend-

ing between latitudes 4030N and 4030S and longitudes 34000E and 42000E [39]. Kenya has a

coastline stretch of approximately 14420 km along the Indian ocean mostly covered by salt-tol-

erant mangrove trees that creates a distinctive ecological zone [40]. The total coverage area of

Kenya is 583,367km2 with 569,140km2 as land area and 14,227km2 being water area [41]. The

diversity of Kenya’s landscape is shaped by four distinguishable relief zones; these are the

coastal and eastern broad plains, the central and western highlands, the Rift Valley and Lake

Victoria basins [42].

Kenya is administratively subdivided into 47 counties as the first level of administrative

subdivisions which in turn are further subdivided into 290 sub-counties and 1450 wards as the

second and third levels of administrative subdivisions respectively [43]. The population of

Kenya is unevenly distributed throughout the country and predominantly urban. The popula-

tion density has continued to increase from 77.9% in 2012 to 88.2% in 2017 per sq.km [44–46].

Supplementary information S2 presents the geospatial arrangements and the list of the 47

counties of Kenya according to their corresponding geographic codes as used in this study.

The population estimates per county from 2012–2017 are in supplementary information S3.
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A big obstacle to human capital development in Kenya is health challenges. Many people

are exposed to a wide range of disease burdens largely because of the country’s geographical,

economic, political and climatic conditions [47] which are further compounded by inadequate

resources to mitigate the impact of health risks [48]. Presently, cases of emerging and re-

emerging diseases–like TB and HIV—are on the rise thereby having important implications

on public health policy processes [49]. Understanding variations in incidence trends at the

county level–where health services are planned, organized and delivered–is essential in

addressing health inequalities.

Data sources

This study considered routine case notification data on TB and HIV diseases in 47 counties of

Kenya for 6 years, 2012–2017. Case notifications are data from specific subpopulations who

seek treatment and care from health facilities; these are geographically representative of nearby

populations. The data were collected and made available by two main sources; the National

Tuberculosis Leprosy & Lung Disease Program (NTLD-P) and National AIDS & STIs Control

Program (NASCOP). The Government of Kenya has routine case-based monitoring and

reporting regulations for TB and HIV diseases through the NLTP and NASCOP programs.

The Integrated Electronic Medical Records (EMR) Data Warehouse (IDWH) is the on-line

case-based repository hosted by NASCOP accommodating all EMR databases from all health

facilities across the country. It operates both as a repository and analytics platform presenting

data through interactive dashboards and ad-hoc data analysis. Health facilities update their

EMR databases into the IDWH on a monthly basis. The Tuberculosis Information from Basic

Unit (TIBU) is the centrally located case-based surveillance system hosted by NLTP that allows

for real-time reporting. Since its inception in 2012, TIBU has made notifications of TB patients

very timely and instant in report generation. All public, faith-based and private treatment cen-

ters in the country enter data into the TIBU system. There are 301 TB control zones across the

47 counties of Kenya which are coordinated by the Sub County TB and Leprosy Coordinators

(SCTLCs), who are responsible for notifying TB cases from health facilities in their control

zones into the TIBU system. Both programs have adapted the data recording and reporting

standards of WHO at the health facilities in every county and the national surveillance system.

For the purpose of this study, we analyze the data aggregated per county per year for the period

2012–2017.

Variables in the study

The study involved three variables; HIV case notifications, TB case notification and Population

estimates. Each of this variable was aggregated at county level for each year of study. The HIV

and TB case notifications were the total number of diagnosed and reported cases within the

national surveillance system. The county yearly population estimates were projected from the

2009 population census.

Ethical considerations

This study involved the use of non-identifiable secondary data collected as part of the routine

programs monitoring. Ethical permission to use the routinely collected data was obtained

from NASCOP and NLTP, which are commissioned by the Ministry of Health to host the data

surveillance systems for the HIV and TB programmes respectively. The study was subjected to

Human Research Protection Review by the African Medical Research Foundation (AMREF

Health Africa) Ethical and Scientific Review Committee (ESRC), which determined it not to

constitute human participation.
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Hierarchical model specification

We formulated a statistical model that applied the spatiotemporal methods to the modeling of

HIV and TB simultaneously. The study applied a full Bayesian Hierarchical approach on the

model to estimate the spatial and temporal parameters for the two diseases individually and

jointly. We applied the spatial and temporal specifications of [9] and [50] to our model. While

[9] modeled a single disease for two subpopulations, we modeled two diseases -HIV and TB-

with co-epidemic overlap. They were also keen to interpret the unexpected differential risks

between two subpopulations; our aim was to determine the shared and specific spatiotemporal

patterns to interpret the relationships between the two diseases. Unlike [50], our model

accounts for the joint space-time interaction using similar specifications as [9].

a. Log-linear model. The initial step in defining our model within the Hierarchical Bayes-

ian framework was selecting the probability distribution for the observed data. This study uti-

lized the Poisson distribution from the exponential family. For county s in the year t, we

modeled cases notification ydst for disease d, where d = 1 is HIV and d = 2 is TB as;

ydst � PoissonðmdstÞ; mdst ¼ rdstEdst

This study defined the mean μdst in terms of the unknown relative risk ρdst and the expected

number of cases Edst. We computed Edst per county per year. Our statistical consideration for

the standard population Ns was the average of the pooled county population estimates, i.e.

Ns ¼
Ps
T , where P is the estimated population of county s, which we are considering to be the

population at risk of disease d and T is the number of years, which is six years for this study.

We calculated the crude rate as Rdst ¼

P
ydst

Pst
, where ∑ydst and Pst are the number of cases for

disease d and estimated population respectively for county s in the year t. We then multiplied

the crude rate by the standard population Ns to obtain the expected number of cases for disease

d for county s in the year t as;

Edst ¼ Rdst � Ns

The linear predictor of the unknown relative risk was on the logarithmic scale, ηdst = log (ρdst)

which is the recommended invertible link function for the Poisson family of distributions. The

variability of the cases around the unknown relative risks ρdst for HIV and TB respectively

were as follows;

y
1st � Poisðρ

1stE1stÞ η1st ¼ α1 þ λsδþ ξtκþ β1s þ γ1t þ υst

y
2st � Poisðρ

2stE2stÞ η2st ¼ α2 þ
λs
δ
þ
ξt
κ
þ β2s þ γ2t þ υst

The linear predictor was defined by the following terms; the shared spatial effect, (λ =

{λs}s = 1,2,. . .,S), the disease-specific spatial effect (β = {βds}d = 1,2; s = 1,2,. . .,S), the shared time

trend (ξ = {ξt}t = 1,. . .,T), the disease-specific time trend (γ = {γdt}d = 1,2; t = 1,. . .,T), and the space-

time interaction term (ν = {νst}s = 1,. . .,S; t = 1,. . .,T). The notations αd, λs, and ξt captured disease-

specific intercept, space and time main effects respectively whereas γdt and βds were disease-

time and disease-space interactions of order 2 respectively. The coefficients δ and κ repre-

sented the spatial and temporal scaling parameters on the shared term to the risk of TB com-

pared to HIV. Even though the overall relative risk level is the same for both diseases, the

magnitude of the area-specific and time-specific relative risks may differ—hence the need for

the scaling parameters [9,51,52]. Therefore, contribution of the shared component to the
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overall relative risk is weighted by the scaling parameters to allow different risk gradients for

each disease.

We applied a symmetric formulation to both the shared and disease-specific random

effects, implying that λs, and ξt captured the common spatial and temporal patterns. The terms

γdt and βds allowed for departures from the shared patterns for the different diseases. The

space-time interaction term, νst provided additional flexibility towards identifying varying pat-

terns. We assumed the shared random effects to be the structured effects and the disease-spe-

cific random effects to be unstructured effects.

b. Bayesian prior specification. In a Bayesian framework, random effects are unknown

quantities assigned to prior distributions that reflect any prior knowledge on the structure of

the effects. The model assigned priors and generated the posterior distribution used for deriv-

ing the conditional densities for posterior sampling.

The spatial random effects λs and βs assumed a spatially correlated prior distribution (CAR

spatial priors) with a neighborhood matrix W defined by contiguity; τλ and τβ were the prior

hyperparameters. The CAR spatial prior defines a binary specification for the geographical

contiguity such that correlation is certain for geographically adjacent areas that is:

Wsj ¼
1 if s � j

0 otherwise

(

The non-contiguous areal units are conditionally independent given the values of the remain-

ing random effects. The sth diagonal elements are the number of neighbors of the sth region,

therefore ∑ Wsk = 0, 8s.

To reflect the prior of yearly fluctuations for ξt and γdt, the study assumed a random walk

prior of order 1 (RW (1)) with a weighted matrix Q which defines the temporal neighborhood

with τξ and τγ as the prior hyperparameters. The expression for the random walk of order 1

(RW (1)) given a set of temporal random effects Θ = {θt}, where θ represents ξ and γ and t sig-

nifies the number of equally spaced time points is:

ytjyð� tÞ � Normalðyðtþ1Þ; s
2

y
Þ for t ¼ 1;

� Normal
yðt� 1Þ þ yðtþ1Þ

2
;
s2
y

2

� �

for t ¼ 2; . . . ;T � 1;

Normal ðyðt� 1Þ; s
2

y
Þ for t ¼ T;

Where θ-t denotes all elements ofΘ except the θt. This is equivalent to specifying

yt j y� t � Normal
X

k
Ctkyk; tyMtt

� �
for t ¼ 1; . . . ; T;

where Ctk ¼
Qtk

Qtþ
; Qtþ ¼

X

k
Qtk;

Qtk ¼
1

k ¼ ðt � 1Þ

k ¼ ðt þ 1Þ

0 otherwise

; Mtt ¼
1

Qtþ
:

8
>>><

>>>:
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We impose a sum-to-zero constraints on both the spatial and temporal random effects to min-

imize any identifiability problem on the intercept [9,53].

The space-time interaction term νst prior was a simple exchangeable hierarchical structure

nst � Nð0; s2
n
Þ, where s2

u
¼ 1

tv
. We defined improper flat priors for the intercept as P(αd)/1.

The logarithm of the scaling parameters δ and κ assume normal priors Nð0; s2
δÞ and Nð0; s2

κÞ

which are symmetric around zero on the log-scale, therefore, any value is as equally likely as

the reciprocal value and the posterior distribution of the relative risks for each disease are

exactly the same for δ> 0 and κ> 0. More precisely,

Pðδl � δ � δuÞ ¼ P
1

δu
�

1

δ
�

1

δl

� �

Pðκl � κ � κuÞ ¼ P
1

κu
�

1

κ
�

1

κl

� �

For the distribution of the hyper-parameters, we assumed the default specifications of INLA

whereby we assigned minimally informative priors on the log of the precision of both the

structured and unstructured effects, logGamma(0.5, 0.0005). INLA estimates the posterior

marginal distribution for the hyperparameters using an integration-free algorithm described

in [54]. We use INLA approach for the model estimations as it is capable of handling complex

models with large predictor spaces. Equally the approach does not require convergence check-

ing (unlike McMC) [55,56] as it does not suffer from slow convergence and poor mixing.

Results

To determine the areas of high risks, we created the spatial maps of the standardized incidence

ratio for HIV (Fig 1) and TB (Fig 2). The two diseases displayed varying spatiotemporal pat-

terns, though most of the regions of high risk for HIV were also high risk for TB. The progres-

sion of the risk during the period 2012–2017 was much faster in TB as compared to HIV.

We considered the analysis of the combined spatial patterns in the model. Table 1 provides

the summary statistics of the shared and disease-specific spatial effects. The disease-specific

estimates for α1 and α2 were significantly different from zero (as depicted by the credible inter-

vals). These estimates, on average, were greater than 1indicating that the country is still at a

high risk of new infections for both diseases. For the precision parameters, the percentage of

the variation expresses what each of the parameters fitted contributes to the explained variabil-

ity in the model. The results show both the spatial and temporal shared components explain

Fig 1. Standardized incidence ratio
Odst
Edst

� �
for HIV.

https://doi.org/10.1371/journal.pone.0234456.g001
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the most variability (comparative variation in the shared parameters relative to the disease-spe-

cific parameters).

Fig 3 presents the relative risk of the combined spatial patterns for HIV and TB. The com-

bined spatial patterns are both the structured and unstructured spatial effects. Both HIV and

TB had similar areas of high risk in the South West, Central and South regions of Kenya. Fur-

ther, TB revealed additional areas of high risk in the North West and North of Kenya.

The relative risks for the shared and disease-specific spatial patterns are presented in Fig 4.

In all the maps, common areas of high risk were in the west part of the country. Equally, the

shared spatial pattern showed fewer regions of high risk compared to TB-specific spatial pat-

terns. This could be because of higher dependence of HIV on the shared spatial term making

the shared pattern to account for most of HIV spatial patterns.

The posterior means of the shared, disease-specific, and combined temporal trends are in

Fig 5. The shared temporal effect displayed the overall constant increasing risk trend in time

with estimates ranging between 0.8–1.1. The HIV temporal trend equally exhibited increasing

risk over time with relative risks between 0.8–1.2 whereas the TB temporal trend presented a

nearly constant trend across the years with relative risks close to one. The combined temporal

trends for HIV and TB showed an increasing risk trend for both diseases. From the combined

temporal trends graph, HIV risk was relatively lower than TB in 2012 and 2013. From 2015–

2017, the HIV risk trend surpassed that of TB. The shared temporal effect shows trends on the

joint diseases that are similar to the disease-specific and combined temporal trend.

Fig 2. Standardized incidence ratio
Odst
Edst

� �
for TB.

https://doi.org/10.1371/journal.pone.0234456.g002

Table 1. Summary statistics of the shared and disease-specific spatial and temporal effects.

Parameters mean(95%CI) percentage of variation

fixed effects:

α1 1.93(1.86–2.01) -

α2 2.42(2.39–2.46) -

random effects:

tb1s
0.43(0.24–0.64) 15%

tb2s
0.04(0–0.23) 1%

tls 0.76(0.58–0.89) 27%

tg1t 0.31(0.01–0.38) 11%

tg2t 0.02(0–0.41) 1%

txt 0.97(0.88–1) 34%

t ust
0.31(0.22–0.39) 11%

https://doi.org/10.1371/journal.pone.0234456.t001
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The posterior probabilities for the smoothed joint Spatio-temporal interaction P e ustð Þ > 1jyð Þ

are in Fig 6, and the posterior estimates are presented in Table 1. Over the years the uncertainty

associated with the posterior estimates (exceedance risk) varied for the different counties

although most consistent around the coastal region.

Discussion

We presented a Bayesian Hierarchical approach to the joint modeling of spatio-temporal rou-

tinely collected health data. The joint modeling approaches have yielded substantial co-

dynamic insights via mathematical, statistical and computational approaches [38]. By optimiz-

ing the spatial scale at different points in time, spatial heterogeneity influences the interpreta-

tion of temporal patterns more especially in disease dynamics and surveillance [38]. This is

especially true for the case of HIV and TB that have significant geographic overlap and are sub-

ject to diverse regional variations in their co-dynamics. HIV and TB rank as the leading causes

of death from infectious diseases globally with an estimated 2.5 million new HIV infections

and 8.7 million incidences of TB annually [57,58]. They have a close link even though their

biological co-existence and co-dynamics vary regionally with much burden in Sub-Saharan

Africa [33,59]. This study determined the space-time joint risk trends of HIV and TB in

Kenya. Our model enabled us to define the shared and specific spatial and temporal patterns

of HIV and TB thus identifying similarities and differences in the distribution of the relative

risks associated with each disease. The model separately estimated the shared and disease-spe-

cific relative risks and displayed the spatial-disease, temporal-disease, and spatio-temporal dis-

ease interaction effects across all regions. We included scaling components on the shared

spatial and temporal parameters to compare their strength signals for HIV and TB.

The disease-specific spatial and temporal patterns detected areas with varying spatial trends

and temporal variations for each disease. The HIV high-risk areas were to the further west of

Kenya spreading towards the central and further south. The TB high-risk areas were similar to

the HIV high-risk areas but also spread upwards towards the North. The TB geographical pro-

gression in relation to HIV was proportionally higher which could reflect environmental fac-

tors favoring the TB spread in the high-density settlements especially towards the North.

These findings are corroborated in other studies by [33,60]. Looking beyond Kenya, studies by

Fig 3. Relative risk of the combined spatial patterns (λs + βds).

https://doi.org/10.1371/journal.pone.0234456.g003

Fig 4. Relative risk of shared spatial patterns (λs) and disease specific spatial patterns (βds).

https://doi.org/10.1371/journal.pone.0234456.g004
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[37] revealed that TB appeared to outpace HIV in Rwanda and Burundi while HIV greatly out-

paced TB in Mauritania, Senegal and The Gambia.

Joint temporal analysis is important when investigating the temporal coherency of epidemi-

ological trends from the same area [37]. In our study, the shared temporal trend an almost

constant risk with minimal variation over time. The disease-specific and combined temporal

trends equally presented an increased risk over time. The temporal trend of HIV risk was

lower than that of TB for the years 2012 and 2013 but between 2015 and 2017 the HIV risk was

higher than TB risk. Similar studies in Sub-Saharan Africa that utilized routinely collected data

observed similar temporal dynamics [61–64]. A possible explanation could be HIV drives TB

related incidences, therefore, the incidence and prevalence of TB increases (decreases) with

increasing (decreasing) HIV trends [65–67].

Our study successfully detected the spatial similarity in the distribution of TB and HIV in

approximately 29 counties around the western, central and southern regions of Kenya. The

spatial patterns were largely similar for Homabay, Siaya, Kisumu, Busia and Migori counties as

the high risk with Mandera, Wajir and Garissa counties at low risk for both HIV and TB. The

distribution of the shared relative risks had minimal difference with the HIV disease-specific

relative risk whereas that of TB presented many more counties as high-risk areas. This could

be attributed to higher dependence of HIV on the shared spatial term making the shared pat-

tern account for most HIV spatial patterns. Similar studies by [68] in China and [60] in

Uganda observed significantly persistent clusters for TB and HIV using the spatial co-cluster-

ing approach. They examined the clusters exhibited by each disease as well as the combined.

Fig 5. Relative risk of the shared ξt,specific γdt and the combined temporal trends (ξt+γdt).

https://doi.org/10.1371/journal.pone.0234456.g005

Fig 6. Posterior probabilities for the joint spatio-temporal interaction P e υstð Þ > 1jyð Þ.

https://doi.org/10.1371/journal.pone.0234456.g006
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Our model also presented areas of elevated joint risk by looking at the posterior probabili-

ties of the relative risk to understand the certainty of the shared geographical patterns. There

was strong evidence of disease-time, disease-space and space-time interactions. Studies by [68]

and [69] also found a strong association on the joint risks of HIV and TB, they used bivariate

maps to show that the joint distribution for both TB and HIV diseases was spatially heteroge-

neous across Brazil.

The primary limitation of the study is using routine case notification data as a surrogate

measure of the general population of infected persons; this type of data has challenges of

underreporting. The spatial regions were based on the counties since there was no data for

sub-county or health facility levels. The age and sex standardized rates were not utilized as the

HIV data was not disaggregated by age and gender. Whereas this kind of data is not completely

spatially random for the joint epidemic burden, it still captures the spatiotemporal patterns of

incidence risk, which is the ultimate goal of this study.

Conclusions

We defined a joint Bayesian space-time model of two related diseases to jointly quantify the

risk of TB relative to HIV thereby facilitating the comparative benefits obtained across popula-

tions. The disease burden was apparent at each spatial level of analysis. Identifying the spatial

and temporal similarities between HIV and TB enabled us to understand the shared risk. The

flexibility and informative outputs of Bayesian Hierarchical Models played a key role in clus-

tering these risk areas. Quantifying how HIV and TB varied together provided additional

insights towards collaborative monitoring of the diseases and control efforts. To control the

HIV-TB twin epidemic it is important to determine the TB life history that could greatly

reduce TB incidences if intervened and which stages of HIV needs optimized TB control

benefits.
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