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Abstract

Accuracy of infrared (IR) models to measure soil particle-size distribution (PSD) depends on

soil preparation, methodology (sedimentation, laser), settling times and relevant soil fea-

tures. Compositional soil data may require log ratio (ilr) transformation to avoid numerical

biases. Machine learning can relate numerous independent variables that may impact on

NIR spectra to assess particle-size distribution. Our objective was to reach high IRS predic-

tion accuracy across a large range of PSD methods and soil properties. A total of 1298 soil

samples from eastern Canada were IR-scanned. Spectra were processed by Stochastic

Gradient Boosting (SGB) to predict sand, silt, clay and carbon. Slope and intercept of the

log-log relationships between settling time and suspension density function (SDF) (R2 =

0.84–0.92) performed similarly to NIR spectra using either ilr-transformed (R2 = 0.81–0.93)

or raw percentages (R2 = 0.76–0.94). Settling times of 0.67-min and 2-h were the most

accurate for NIR predictions (R2 = 0.49–0.79). The NIR prediction of sand sieving method

(R2 = 0.66) was more accurate than sedimentation method(R2 = 0.53). The NIR 2X gain

was less accurate (R2 = 0.69–0.92) than 4X (R2 = 0.87–0.95). The MIR (R2 = 0.45–0.80)

performed better than NIR (R2 = 0.40–0.71) spectra. Adding soil carbon, reconstituted bulk

density, pH, red-green-blue color, oxalate and Mehlich3 extracts returned R2 value of 0.86–

0.91 for texture prediction. In addition to slope and intercept of the SDF, 4X gain, method

and pre-treatment classes, soil carbon and color appeared to be promising features for rou-

tine SGB-processed NIR particle-size analysis. Machine learning methods support cost-

effective soil texture NIR analysis.

Introduction

Soil particle-size distribution (PSD) is of prime importance for plant growth and soil manage-

ment [1]. Mimicking particle sedimentation in natural water bodies, PSD has been tradition-

ally quantified using the sieve-pipette method that determines particle mass, and the sieve-

hydrometer or sieve-plummet balance method that measures changes in suspension density

[2]. Sedimentation techniques are thought to overestimate the concentration of plate-like

clay particles that do not fit into Stokes’ law [3]. Reynolds’ number should be less than 0.05,
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otherwise, the drag force for sedimentation increases faster than predicted by Stokes’ law [3].

Because organic matter binds soil particles [4], organic matter is often destroyed using a perox-

ide pre-treatment as method modifier to disperse soil particles. Laser techniques are much

faster than sedimentation techniques but tend to underestimate clay-size particles due to insuf-

ficient particle dispersion despite sonication pre-treatment, and this may require using conver-

sion equations [5,6].

On the other hand, visible and near infrared (VIS–NIR: 350–2500 nm) spectroscopy is an

efficient soil quality and fertility screening tool [7] because spectra correlate well with several

chemical, physical and mineralogical properties [8]. The VIS represents the visible light range

between 350 and 780 nm, from violet to red. Because most routine soil and plant laboratories

are equipped with NIR spectrometers for forage analysis, they may contribute to documenting

soil characteristics at low cost. Where VIS is not available, soil RGB (red-green-blue) can be

assessed from the Munsell color chart using computer models (“munsell2rgb” from the “aqp”

package). Mid-infrared (MIR) is generally more accurate than NIR [9] but requires more sam-

ple preparation, limiting its application as routine determination method.

Infrared spectroscopy (IRS) more accurately predicts clay than sand and silt contents [10]

because the IR spectrum is sensitive to clay mineralogy [10–12] and total reflectance decreases

as grain size increases [13,14]. Light absorption is also influenced by soil features such as parti-

cle roundness [15–18], soil pH, and the Mehlich-3 soil test for Ca, Mg and Mn [19]. The IRS

detects Al-OH (2200 nm) and Fe-OH (2290 nm) [20,21] that in turn have an impact on soil

structure [22] and IR reflectance [23]. The VIS-NIR spectra are sensitive to soil moisture and

C content [24]. Organic matter, multi-nutrient extraction and reconstituted bulk density from

scooped soil samples are also common features quantified in routine laboratories.

The sedimentation methods provide percentages of sand, silt, and clay from the log-log

relationship between settling time and suspension density. The slope and intercept return pro-

portions of sand, silt and clay at pre-selected settling times that may vary between laboratories

[1], thus affecting the accuracy of IRS models. Providing more flexibility using the slope and

intercept of the log-log relationship and reducing the arbitrariness of the settling time selection

may allow increased reliability of IRS models calibrated against sedimentation methods.

There are unattended sources of error in IRS calibration. There is systematic negative

covariance between sand, silt and clay fractions due to resonance within the ternary diagram

[25]. Indeed, there are D-1 degrees of freedom in a D-part composition [26]. Not considering

the problem of closure to 100% in statistical analysis, confidence intervals about means of pro-

portions may take values outside of the compositional space, i.e.< 0 or > 100% [27], and the

measures of distance and dissimilarity are non-Euclidian [28]. To return unbiased statistical

results, orthonormal balances among subsets of components can be computed as D-1 isomet-

ric log ratios (ilr) [29]. The back-transformed ilr values allow recovering proportions of sand,

silt, and clay totalling exactly 100% within the limits of the ternary diagram.

For both the sedimentation and laser techniques there are several soil pre-treatments (per-

oxide, sodium hypochlorite, sodium hexametaphosphate, sonication intensity), soil features,

calibration techniques, options (NIR 2X, NIR 4X, settling times or suspension density function

for sedimentation; pump and stirrer spin, refractive index of the medium, real or imaginary

refractive index, density for laser) and expressions (percentages, ratios) that influence results

of particle-size distribution. Machine learning (ML) is an emerging data mining technique

of artificial intelligence that can unravel patterns and rules in large data sets [30] and predict

target variable from input data [31]. Machine learning methods can account for numerous

independent variables that may impact on NIR spectra to assess accurately soil particle-size

distribution.
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This paper is presented in two parts, one focusing on methodology and the other on model-

ing. In the methodology section, we hypothesized that methods and pre-treatments return dif-

ferent results and thus cannot be combined to run a single IRS calibration set without input

information on methodologies. In the modeling section, we hypothesized that: 1. IRS cannot

accurately predict PSD from laser methods due to underestimation of the clay fraction; 2. IRS

accurately predicts sand fraction determined using sand sieving methods; 3. IRS more accu-

rately predicts PSD from sedimentation methods after accounting for soil features; 4. IRS pre-

diction accuracy for PSD is improved using the slope and intercept of the log-log relationship

and isometric log ratios compared to raw percentages and pre-determined settling times; and

5. MIR prediction accuracy for PSD is higher compared to the NIR spectra. The objective of

this study was to calibrate infrared determination methods against routine PSD methods,

methodological modifiers and soil features to reach high IR-ML model accuracy for routine

soil texture determination.

Materials and methods

Characterization of soils

The data set of 1298 soil samples collected in the arable layer (0–20 cm) was obtained from sev-

eral research institutions in Québec, Canada (Fig 1). The main crops were maize (Zea mays)
cereals and forages on coarse- to fine-textured soils, potatoes (Solanum tuberosum) on sandy

loams and loamy sands, and cranberries (Vaccinium macrocarpon) on sandy soils. The soils

were mainly Inceptisols and Spodosols.

Soil samples were air-dried then passed through a 2-mm sieve [32,33]. The 2-mm sieved

soil was 3-mL scooped and then weighed to determine the reconstituted bulk density as per-

formed routinely in soil testing laboratories. Soil color was assessed on dry samples using the

Munsell chart and then transformed into RGB percentages using “munsell2rgb” in R. The

Fig 1. Repartition of soil sampling areas on eastern provinces in Canada. Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap,

under ODbL. Contains information from OpenStreetMap and OpenStreetMap Foundation, which is made available under the Open Database License.

http://maps.stamen.com/#toner/12/37.7706/-122.3782.

https://doi.org/10.1371/journal.pone.0233242.g001
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total carbon (Ct) was quantified using the Leco CNS analyzer (Leco Corporation, St. Joseph,

Michigan). For pH determination, 10 g of soil was mixed with 20 mL 0.01M CaCl2. For oxalate

extracts, a 0.5 g sample of soil was mixed with 20 mL of oxalate solution (0.2 M of ammonium

oxalate and 0.2 M of oxalate acid) and agitated for 4 h in the dark [34]. The mixture was centri-

fuged at 2000 rpm for 5 min and then filtered through Whatman no. 40 paper. Concentrations

of P, Fe, Ca, Al, Mn and Si were quantified by ICP-OES. Soils were also extracted using the

routine Mehlich3 method [35]. Concentrations of P, Ca, Mg, Fe, Al, Mn, Zn and Cu were

quantified by ICP-OES.

Particle-size analysis

Particle size distribution was analyzed in 50–100 g samples using the sedimentation method

[36]. A separate batch of soils was pre-treated with peroxide for comparison with the no-per-

oxide pre-treatment. Samples were mixed with 0.05 M hexametaphosphate and agitated at 300

rpm for 16 h. The mixture was transferred to a 1 L cylinder and hand-shaken for 30 sec. Sus-

pension density readings (g L-1) taken after 0.75-, 5-, 120-, 420-, and 1440- min were referred

to as the sedimentation multi-point method. Samples reporting suspension density after 0.67

and 120 min as originally suggested [37] were assigned to the 2-point 2-h sedimentation

method. The clay fraction was also recorded after 7-h settling time, close to the 6-h settling

time used by Gee and Bauder (1979) [38]. Although the clay fraction was overestimated as

compared to the 7-h sedimentation multi-point method, the 2-point 2-h sedimentation

method was selected as our reference because it has been widely used as a proximate method

in soil surveys combined with tactile assessment. After taking the last reading, the entire

hydrometer contents from sedimentation method were passed through 1-, 0.5-, 0.25-, 0.10-

and 0.05- mm sieves under tap water to clean the coarser particles of any adhering finer parti-

cles and to determine the sand-size distribution. The suspension density was transformed into

particle-size percentages by mass using standard equations [37,38]. The sedimentation curve

relating suspension density to settling time was log-transformed (ln) to determine the slope

and intercept as model parameters.

Samples were also analyzed using the Mastersizer 2000 Laser particle size analyzer (Malvern

Instruments, Worcestershire, UK, measurements at 633 nm and 466 nm) combined with

Hydro 2000G (800-mL tap water volume, 500-rpm stirrer and 2000-rpm pump) with or without

ultrasonic action at nominal 40 kHz frequency for 2 min [39]. Only samples within 10 to 20% of

obscuration were retained in the database. The refractive index of the medium was set at 1.5.

Calculation

The three particle-size fractions and carbon content were isometric log ratio (ilr) transformed

as follows [29]:

ilr carbonjclay:silt:sand½ � ¼

ffiffiffi
2

3
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Spectral data acquisition

The air-dried and 2-mm sieved samples [40] were placed into a 5-cm quartz cup then scanned

using a Nicolet Antaris FT-NIR analyzer (Thermo Electron Corp., Ann Arbor, Michigan).

Absorbance was measured with gains of 2X or 4X. Triplicated spectra were scanned 30 times

in the range of 9090 to 4000 cm-1 (1100 to 2500 nm) at a resolution of 2 cm-1 (0.3 nm at 1250

nm) [41]. A library of 3069 NIR spectra with 2X gain and 668 spectra with 4X gain were

obtained after probabilistic quotient normalization and first derivation [42]. All samples were

stored in white plastic storage containers.

The soil and KBr samples were ground to less than 74 μm using a mortar and pestle [43],

then oven-dried at 105˚C for 3 h [44]. A 2 g sample was weighed and mixed with 200 g KBr

powder. The mixture was pressed at 517 MPa for 3 min using a manual hydraulic press

(Carver, Model 4350.L, Carver Inc., Wabash, Indiana) to yield clear 13-mm-diameter pellets.

The mid-infrared spectra were scanned using a transmission DTGS detector Varian 1000

FT-IR Scimitar series spectrometer (Varian Inc., Palo Alto, California). Spectra were in the

range of 4000 to 400 cm-1 (2500 to 25 000 nm) at 4 cm-1 (0.6 nm) resolution. Each pellet

was scanned 10 times and rotated once manually at 90˚. A library of 413 MIR spectra was

obtained.

Spectral data modeling

Statistical analyses were conducted using the R-3.6.1 version [45] with the packages “tidy-

verse”, “reshape2”, “stringi”, “signal”, “mvoutlier”, “caret”, “compositions”, “soiltexture”,

“aqp”, “patchwork”, “broom”, “ggExtra”, “ggmap”, “neuralnet” and “outliers”. The machine

learning (ML) method was GBM (Stochastic Gradient Boosting) that outperformed other ML

models including neural networks. Neural networks was tested with a hidden of 3 and an acti-

vation function settled at “logistic” (S2 Table). The NIR and MIR spectra were normalized and

passed through a binning process with 10 cut points and a Savitsky-Golay smoothing filter.

After first derivation, spectra compressed into scores using principle component analysis

(PCA) [46]. Because of the diversity of the soil samples, we did not remove outliers. Sand, silt

and clay percentages, oxalate and Mehlich-3 extracts composed of 0.2N CH3COOH-0.25N

NH4N03-0.015NNH4F-0.013NHN03-0.001M EDTA were ilr-transformed. Every set was

divided into training (70%) and testing (30%).

Results

Soil characterization

There was a large spectrum of soil properties (Table 1). In comparison, soils of the region have

been reported to range from 5 to 137 g organic matter kg-1, 560 to 19 992 mg Feoxalate kg-1 and

270 to 36 638 mg Aloxalate kg-1, and 4–494 g sand kg-1, 40–734 g silt kg-1, and 6–796 g clay kg-1

[47]. Particle-size distribution is presented in Fig 2. Orthonormal balances were normally dis-

tributed except for [clay | silt,sand] using the laser method (Fig 3). Indeed, the clay content was

systematically underestimated, and the silt content systematically overestimated by the laser

method.

Methodologies

Paired t-tests comparing methods are presented in Table 2. Comparisons involving the perox-

ide pre-treatment must be interpreted with care due to the smaller number of observations (26

to 38). Mean ilr differences between the reference 2-point 2-h sedimentation method and

other methods are illustrated in Fig 4. The difference between the laser and the 2-point 2-h
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sedimentation methods depended on the ilr coordinate (also shown in Fig 3). After 2-min of

sonication, the [silt | sand] balance differed slightly between methods while the [clay | silt,

sand] balance differed markedly between methods, indicating insufficient dispersion of clay-

size particles.

As expected, the multi-point 7-h sedimentation method returned a smaller proportion of

clay-size particles compared to the 2-point 2-h sedimentation method due to longer settling

time. The peroxide pre-treatment for the multi-point 7-h sedimentation method tended to

increase clay and silt fractions. The [silt | sand] balance resulting from the no-peroxide pre-

treatment preceding sedimentation methods was comparable across methods, with the excep-

tions of the laser and pretreated multi-point 7-h sedimentation methods. Excluding the 0-min

sonicated laser and comparable methods, the amount of sand was slightly lower compared to

Table 1. Ranges of soil properties (0–20 cm) in the data set (particle-size distribution according to the multi-point 7-h sedimentation method using 45-sec settling

time for sand and 7-h settling time for clay).

Site Mean Standard deviation Minimum Maximum

pH (0.01 M CaCl2) 5.36 0.67 3.37 7.90

g kg-1

Sand total 613 24 1 986

• 1–2 mm 41 50 0 282

• 0.5–1.0 mm 108 115 1 541

• 0.25–0.5 mm 191 126 5 580

• 0.1–0.25 mm 235 154 3 766

• 0.25–0.01 mm 118 103 0 587

Silt 256 15 5 816

Clay 131 13 5 839

Total C 25.5 2.4 0.1 443

Total N 1.9 1.6 0.7 19

Total S 0.3 0.4 0 10.3

mg kg-1

Feoxalate 5599 2449 447 10400

Aloxalate 4000 2693 528 15346

Mnoxalate 309 304 7 2287

Caoxalate 30 14 3 153

Poxalate 803 464 68 2266

Sioxalate 829 578 88 5585

PMehlich3 118 62 6 362

CaMehlich3 1776 1437 113 5103

MgMehlich3 191 224 5 1572

FeMehlich3 232 108 72 715

AlMehlich3 1265 431 310 2241

MnMehlich3 25 20 5 206

ZnMehlich3 8 9 0 130

CuMehlich3 4 3 0.4 30

%

Green 47 8 28 68

Blue 34 10 11 58

Red 54 7 31 75

g cm-3

Reconstituted bulk density 1.06 0.16 0.71 1.46

https://doi.org/10.1371/journal.pone.0233242.t001
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sand sieving. Sand contents did not differ significantly between the peroxide pre-treatments or

multi-points calculation without pre-treatment. Except for the peroxided pre-treated dataset,

the [carbon | clay,silt,sand] balances were differentially influenced by methodologies.

Spectral data modeling

To conduct predictions to details of methodologies and features, the data set was divided into

eight subsets (Table 3). Prediction models were run for each subset. In general, prediction

accuracies were weakest for the silt fraction and were similar whether data were crude or ilr-

Fig 2. Particle size distribution of studied soils in the Canadian textural diagram.

https://doi.org/10.1371/journal.pone.0233242.g002
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Fig 3. Distribution of ilr textural variables across methodologies.

https://doi.org/10.1371/journal.pone.0233242.g003

Table 2. Comparison of methods (method1 minus method2) using paired t-test and confidence intervals (p� 0.05).

Target variable Method1 Method2 p.value N

[Carbon | Clay,Silt,Sand] Sedimentation No peroxide Sedimentation peroxide ns 38

[Carbon | Clay,Silt,Sand] Sedimentation No peroxide Laser 0 min �� 46

[Carbon | Clay,Silt,Sand] Sedimentation No peroxide Laser 2 min �� 106

[Carbon | Clay,Silt,Sand] Sedimentation 2-pointpoint No peroxide Sedimentationmulti-pointpoint No peroxide �� 763

[Carbon | Clay,Silt,Sand] Sedimentation 2-pointpoint peroxide Sedimentation multi-points peroxide ns 227

[Clay | Silt,Sand] Sedimentation No peroxide Sedimentation peroxide �� 38

[Clay | Silt,Sand] Sedimentation No peroxide Laser 0 min �� 46

[Clay | Silt,Sand] Sedimentation No peroxide Laser 2 min �� 106

[Clay | Silt,Sand] Sedimentation 2-point No peroxide Sedimentation multi-point No peroxide �� 763

[Clay| Silt,Sand] Sedimentation2-point peroxide Sedimentation multi-point peroxide �� 227

[Silt | Sand] Sedimentation No peroxide Sedimentation peroxide ns 38

[Silt | Sand] Sedimentation No peroxide Laser 0 min 46

[Silt| Sand] Sedimentation No peroxide Laser 2 min � 106

[Silt | Sand] Sedimentation 2-point No peroxide Sedimentation multi-point No peroxide �� 763

[Silt | Sand] Sedimentation 2-point peroxide Sedimentation multi-point peroxide �� 227

Sand Sedimentation No peroxide Sieving � 746

Sand Sedimentation peroxide Sieving ns 26

Sand Laser 0 min Sieving �8 34

Sand Laser 2 min Sieving � 77

Sand Sedimentation multi-point No peroxide Sieving ns 358

Sand Sedimentation multi-point peroxide Sieving � 84

ns, �,��: Non-significant and significant at the 0.05 and 0.01 levels, respectively.

N: Sample size.

https://doi.org/10.1371/journal.pone.0233242.t002
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transformed. As expected, the clay fraction determined by laser in Set1 was poorly related to

the NIR spectra (R2 = 0.45–0.64) whether the PSD was expressed as ilr or % (Table 3). Com-

bining laser and sedimentation methods in Set2 improved the clay predictions with R2 values

of 0.85–0.91. In Set3, PSD predictions were more accurate with the 2-point 2-h sedimentation

method (R2 = 0.49–0.79) than with the multi-point sedimentation method (R2 = 0.44–0.70).

Modeling Set4 showed that NIR was less accurate (R2 = 0.40–0.71) compared to MIR (R2 =

0.45–0.80). Accuracy was higher with NIR-4X (R2 = 0.87–0.95) than with NIR-2X (R2 = 0.69–

0.92) (Set5). Models for Set6 showed that data expressed as ilr or % (R2 = 0.76–0.94) for inter-

polated PSD were similarly accurate to the slope and intercept from the relationship between

settling time and suspension density (R2 = 0.84–0.92). Several features in Set7 improved model

accuracy (R2 = 0.86–0.91) compared to no features at all (R2 = 0.82–0.97). The total carbon

content contributed the most to the increase in accuracy, followed by colors and oxalate

extracts. Finally, the carbon content showed higher performance with raw data (R2 = 0.63–

0.89) than with ilr-transformed data (R2 = 0.28–0.84). Compared to a model without features

(R2 = 0.97), the reconstituted bulk density (R2 = 0.99), color (R2 = 0.96), oxalate (R2 = 0.98)

and Mehlich-3 (R2 = 0.98) extracts were similar to the accuracy of the NIR model. For the sand

fraction, the NIR model calibrated against the sand-sieving method showed higher accuracy

(R2 = 0.66) compared to the sedimentation 2-point 2-h method (R2 = 0.53).

Discussion

Methodologies. The IR technologies are generally calibrated against a single methodol-

ogy. In this paper, several methodologies were IR-tested on comparable soil samples. The

present paper presented IR-SGB results across several methodologies and features that are

rarely addressed altogether in the literature. Machine learning integrated the available

Fig 4. Mean differences (p� 0.025) in textural balances between several methodologies against the reference 2-point 2-h sedimentation method

without pre-treatment.

https://doi.org/10.1371/journal.pone.0233242.g004
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information on pre-treatments, methods and features to predict soil texture at low cost in

routine laboratories.

Sedimentation methods. The peroxide pre-treatment tended to increase the clay and silt

fractions at the expense of the sand fraction, indicating that clay- and silt-size particles were

freed from the clay- or silt-organic matter complexes in micro-aggregates [50]. While metals

such as Fe are sequestered by soil organic matter [51] or associated with it [52], iron may be

freed from organic matter using hydrogen peroxide to form reactive iron hydroxide [53] that

may, conversely, positively impact soil aggregation [54]. Peroxide-treated soils may thus

require additional dispersion prior to sedimentation [55]. Nevertheless, the 2-point 2-h sedi-

mentationwith and without peroxide pre-treatments showed comparable results or minor dif-

ferences for the [clay | silt,sand] and [silt | sand] balances.

Laser method. The Mie theory considers soil particles to be spherical (Malvern Instru-

ments Ltd., 2007). Parameters such as the refractive index of the medium, the real or imaginary

refractive index and the density could be included to improve accuracy. The 2-min sonicated

laser method and the sand sieving method returned closed results. The 40 kHz sonication for a

duration of 2 min appeared to be suitable for sandy soils [56]. Variants include 36 kHz for 3

Table 3. Accuracy, slope, intercept, and number of observations of models.

Set Dependent

Variables

Independent variables Laboratory method for

calibration

Sand Silt Clay C Sand Silt Clay C Value

interpretation�
N

Adjusted R2 RMSE

Set1 Ilr 2X Laser 0.80 0.79 0.45 0.28 10.80 10.64 1.32 0.67 - 92

% 0.86 0.80 0.64 0.63 9.11 10.35 1.06 0.48 -

Set2 Ilr Lab method, PT, NIR-

2X

2-point 2-h sedimentation

+ Laser

0.90 0.85 0.80 0.58 9.05 6.94 5.27 0.72 + 485

% 0.89 0.91 0.85 0.71 9.30 7.17 4.21 0.62 ++

Set3 Ilr NIR-2X Multi-point 7-h

sedimentation

0.63 0.44 0.70 0.40 16.17 13.22 6.94 0.92 - 667

2-point 2-h sedimenttion 0.76 0.49 0.79 0.36 13.42 11.50 6.60 0.95 -

Set4 Ilr MIR 2-point 2-h sedimentation 0.75 0.45 0.80 0.21 14.75 11.34 7.88 0.77 - 222

NIR-2X 0.71 0.40 0.69 0.02 15.78 11.81 9.75 0.86 -

Set5 Ilr NIR-4X 2-point 2-h sedimentation 0.94 0.87 0.95 0.85 7.26 6.15 3.62 0.48 ++ 311

NIR-2X 0.83 0.69 0.92 0.76 12.42 9.40 4.78 0.62 +

Set6 Ilr PT, NIR-2X 2-point 2-h sedimentation 0.90 0.81 0.93 0.84 8.75 6.98 3.94 0.73 + 860

% 0.91 0.76 0.94 0.89 8.40 7.74 3.84 0.61 +

Slope, Intercept 0.90 0.84 0.92 - 8.63 6.34 4.29 - ++

Set7 Ilr All features, NIR-2X 2-point 2-h sedimentation 0.91 0.86 0.90 0.69 9.27 5.86 6.06 0.36 ++ 156

No feature, NIR-2X 0.94 0.82 0.97 0.97 7.78 7.67 3.07 0.71 ++

Carbon, NIR-2X 0.96 0.88 0.97 0.95 6.59 6.34 3.36 0.97 ++

Bulk density, NIR-2X 0.89 0.63 0.94 0.99 10.59 10.84 4.66 0.52 -

pH, NIR-2X 0.92 0.78 0.96 0.94 8.84 8.39 3.53 1.06 +

Color, NIR-2X 0.94 0.86 0.95 0.96 7.55 6.64 4.10 0.84 ++

Oxalate, NIR-2X 0.95 0.84 0.96 0.98 7.19 7.17 3.71 0.54 ++

Mehlich3, NIR-2X 0.89 0.70 0.93 0.98 10.62 9.83 4.71 0.64 +

Set8 % NIR-2X Sand sieving 0.66 - - - 12.15 - - - + 746

2-point 2-h sedimentation 0.53 - - - 14.73 - - - -

C: Carbon; PT: Pre-treatments (no peroxide or peroxide); MIR: MIR scores; RMSE: Root mean square error; N: Sample size.

�: Value interpretation on sand, silt and clay contents.

-: Vulnerable estimations; +: Approximated estimations; ++: Research application estimations; +++: Quality control estimations [48,49].

https://doi.org/10.1371/journal.pone.0233242.t003

PLOS ONE Particle-size distribution predicted by infrared spectroscopy

PLOS ONE | https://doi.org/10.1371/journal.pone.0233242 July 20, 2021 10 / 16

https://doi.org/10.1371/journal.pone.0233242.t003
https://doi.org/10.1371/journal.pone.0233242


min [57] and 30 kHz for 30 min [2]. Although fragile quartz grains may be broken using ultra-

sonication [58], the [silt | sand] balance for the sedimentation method showed results close to

the 2-min sonicated laser method.

According to Storti and Balsamo (2010) [59], the high-strength materials are not as affected

by the procedures as the low-strength materials. Using water as the dispersing agent and 1750-

, 700- rpm for the pump and stirrer speeds, Sochań et al. (2012) [60] obtained R2 values of

between 0.67 and 0.95 for high-strength materials in silt loamy to sandy soils, values close to

our raw data results (R2 = 0.64–0.86). For clayed soils, a surfactant or solvent may replace tap

water [61]. As small particles increase in number and combine into sand-sized aggregates, pre-

treatments may be required and adjusted to soil specificities. There is no standard procedure

to disperse soil samples for the laser method because pre-treatment is soil specific.

Spectral data modeling

In this study, we used subsets� 92 samples and GBM as the machine learning method for par-

ticle-size prediction compared to suggested subsets� 130 samples for cLHS and FCMS [62].

Here, only Set1 for laser samples did not meet that criterion. The Boosted Regression Trees is

another suitable ML method for complex predictions [41] and is relatively fast compared to

random forest and neural network algorithms. Model accuracies in validation were in the

range reported in the literature where R2 values have been found to vary between 0.46 and 0.94

for clay [10,63,64] and between 0.53 and 0.82 for sand. More generally, the R2 values may vary

widely between 0.05 and 0.84 [65,66].

Prediction accuracy. Because the 2-point 2-h sedimentation with and without pre-treat-

ment showed comparable results, they could be combined for IRS calibration with method

and treatment information inputs. Hence results of soil surveys could provide a large database

for IRS calibration purposes.

Laser methods produced results with lower accuracy compared to the sedimentation meth-

ods, due to underestimation of the clay fraction. The [silt | sand] balance from the laser

method, however, was close to that of the 2-point 2-h sedimentation method, despite higher

silt and sand percentages for the laser method, indicating advantage for log-ratioing. Higher

accuracies from the laser method were obtained by Blott and Pye (2006) [67] across a wide

range of soils, sediments and powders. Zobeck (2004) [68] related results from a LS-230 laser

diffraction particle size analyzer to those of the pipette method and obtained R2 values of 0.97,

0.99, and 0.99 for the< 2-,< 50-, and< 100 –μm in non-calcareous soils, using a shape factor

of 0.2 compared to the default 1.0 shape factor for the laser method. Nevertheless, we found

that the laser method did not produce results as consistent as the sedimentation method for

clay predictions by IRS, indicating regional, soil-specific, calibration.

Mehlich-3 extracts, reconstituted bulk density and pH did not improve prediction accuracy.

Soil features such as total carbon content, colors and amorphous materials (oxalate extracts)

increased model prediction accuracy. Prediction accuracy of carbon content could perform

with features as reconstituted bulk density as well as Mehlich-3, colors and oxalate extracts.

Using suspension density function parameters instead of arbitrary settling times did not

increase the accuracy of PSD predictions but provided a uniform base to run NIR models as

various settling times have direct impact on predictions. Then, in Set3, we observed that

0.67-min and 2-h settling times were more accurate than 0.75-min and 7-h periods for sand

and clay NIR predictions.

In the present study, MIR spectra were more accurate than NIR for sand, silt and clay deter-

minations. The NIR method can provide accurate prediction for clay as it has been also found

to be accurate for cation exchange capacity (CEC) with R2 values of 0.82 [41] and 0.81 [63]. On
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the same direction, Viscarra Rossel et al. (2006) [9] concluded that MIR was more suitable

than NIR for texture and carbon determination, due to higher incidence of spectral bands

combined with higher intensity and specificity of the signal compared to NIR. To further sup-

port NIR calibration and model accuracy, the R-coded GBM machine learning model used in

the present study came across several soil textural classes, carbon contents and features that

have not been addressed simultaneously in past research.

Conclusions

In this paper, IRS inaccurately predicted the PSD’s clay fraction using laser methods. However,

IRS accurately predicted PSD against sedimentation and sieving methods after adding soil fea-

tures such as color, total carbon content and concentration of amorphous materials related to

soil genesis and classification. Soil pre-treatments and the need for dispersing agents could be

adjusted to the nature and concentration of binding agents for silt-, clay-size particles and fine

particles adhering to sand particles. Combined with method and treatment as features, post-

screening total carbon content and color routinely determined in service laboratories can

improve IRS accuracy for mineral soils. Features as reconstituted bulk density and Mehlich-3

extracts could be added as features for higher-C soils.

The GBM returned similar results whether particle-size data were analyzed as raw pre-

determined settling times (percentages) or as ilr-transformed percentages. The GBM returned

similar accuracies using the slope and intercept of the log-log relationship between settling

time and suspension density, ilr-transformed percentages or raw percentages. The MIR and

NIR 4X gain methods performed better than the NIR 2X gain method. However, additional

features increased NIR 2X predictability. Modeling the log-log relationship between settling

time and suspension density provided greater flexibility in the choice of soil-specific settling

times. The GBM model proved to be a powerful tool to process the results of several analytical

methods used worldwide to determine soil grain-size distribution [8]. More methodologies

could be included in the future such as the pipette methods, and chemical and sonication

methods to disperse microaggregate.
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Julie Guérin, Antoine Karam, Michaël Leblanc, Jérôme Goulet-Fortin, Sébastien Marchand,

Reza Jamaly, Zonlehoua Coulibali, Samuel Morissette and Daniel Marcotte for providing soil

samples, and Jonathan Lafond for R coding of the laser method.

PLOS ONE Particle-size distribution predicted by infrared spectroscopy

PLOS ONE | https://doi.org/10.1371/journal.pone.0233242 July 20, 2021 12 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233242.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233242.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0233242.s003
https://doi.org/10.1371/journal.pone.0233242


Author Contributions

Conceptualization: Elizabeth Jeanne Parent, Serge-Étienne Parent.
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References
1. Bohn CC, Gebhardt K. Comparison of Hydrometer Settling Times in Soil Particle Size Analysis. J

Range Manag. 1989; 42(1):81–3.

2. Fisher P, Aumann C, Chia K, O’Halloran N, Chandra S. Adequacy of laser diffraction for soil particle

size analysis. PLoS ONE. 4 mai 2017; 12(5):1–20. https://doi.org/10.1371/journal.pone.0176510 PMID:

28472043

3. Cheng Nian-Sheng. Simplified Settling Velocity Formula for Sediment Particle. J Hydraul Eng. 1 févr
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Data Analysis in the Natural Sciences and Life Sciences [Internet]. Berlin, Heidelberg: Springer; 2011
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